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The phytohormone salicylic acid (SA) not only is a well-known signal molecule mediating 
plant immunity, but also is involved in plant growth regulation. However, while its role in 
plant immunity has been well elucidated, its action on plant growth has not been clearly 
described to date. Recently, increasing evidence has shown that SA plays crucial roles 
in regulating cell division and cell expansion, the key processes that determines the final 
stature of plant. This review summarizes the current knowledge on the action and molecular 
mechanisms through which SA regulates plant growth via multiple pathways. It is here 
highlighted that SA mediates growth regulation by affecting cell division and expansion. 
In addition, the interactions of SA with other hormones and their role in plant growth 
determination were also discussed. Further understanding of the mechanism underlying 
SA-mediated growth will be instrumental for future crop improvement.
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INTRODUCTION

Salicylic acid (SA) is an important phytohormone that serves as a critical signal molecule 
mediating immunity and plant growth (Hayat et  al., 2007; Vlot et  al., 2009; Rivas-San Vicente 
and Plasencia, 2011). SA is synthesized from chorismate through two distinct pathways in 
plants, the isochorismate (IC) and the phenylalanine ammonia-lyase (PAL) pathways (Serino 
et  al., 1995; Zhang and Li, 2019). In Arabidopsis, the majority (>90%) of SA is produced via 
the IC pathway, which contains two isochorismate synthase (ICS) enzymes (ICS1, also known 
as salicylic acid induction deficient 2, SID2, and ICS2) and two other enzymes, namely, avrPphB 
susceptible 3 and enhanced pseudomonas susceptibility 1 (Wildermuth et  al., 2001; Zhang and 
Li, 2019). In contrast, in rice, the PAL pathway, which contains nine PAL enzymes and an 
abnormal inflorescence meristem 1 (AIM1) enzyme, may constitute the predominant pathway 
for SA synthesis (Silverman et  al., 1995; Tonnessen et  al., 2015). SA is perceived by the 
nonexpressor of pathogenesis-related gene 1 (NPR1) and its paralogues NPR3 and NPR4. It 
subsequently stimulates the downstream SA responsive genes and induces plant immune response 
(Fu et  al., 2012; Wu et  al., 2012; Ding et  al., 2018). In addition to the canonical SA receptor 
NPRs (NPR1/NPR3/NPR4), there are many other SA-binding proteins (SABPs), such as SABP1 
(Catalase), SABP2 (MeSA Esterase), and SABP3 (β carbonic anhydrase), which may act as 
potential SA receptors in plants and may be  involved in SA signaling (Pokotylo et  al., 2019). 
SA could be  modified through glycosylation, methylation, and amino acid (AA) conjugation 
to render it inactive or fine-tune its accumulation, function, and/or mobility (Dempsey and 
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Klessig, 2017; Ding and Ding, 2020), and thus affecting the 
regulation of SA on plant immunity and growth.

The final stature of plant growth is manifested by cell number 
and cell size, which are mainly controlled by the cell division 
and expansion processes, and these are determined by both 
genetic constraints and environmental signals (Mizukami, 2001; 
Weiss et  al., 2005; Tsukaya, 2019). In the past two decades, 
increasing evidence has shown that SA plays essential roles 
in regulating plant growth by affecting cell division and cell 
expansion (Vanacker et  al., 2001; Scott et  al., 2004; Miura 
et  al., 2010; Fujikura et  al., 2020). However, the action of SA 
in the regulation of plant growth has not been comprehensively 
described yet in most reviews on this topic, compared to the 
role of other plant hormones, such as auxin and gibberellin 
(GA; Santner et  al., 2009; Wolters and Jürgens, 2009; Depuydt 
and Hardtke, 2011; Vanstraelen and Benková, 2012; Ali et  al., 
2020). This mini-review mainly describes the versatile action 
and molecular mechanisms of SA regulating plant and organ 
growth. This knowledge of the SA-mediated growth regulation 
will contribute to the future crop improvement.

EFFECT OF SA ON PLANT GROWTH

The altered endogenous SA levels in plants can result in 
abnormal growth phenotypes (Rivas-San Vicente and Plasencia, 
2011; Pokotylo et  al., 2021). A high level of endogenous SA 
induces a stunted stature. Many Arabidopsis mutants with 
overaccumulating SA, such as accelerated cell death 6 (acd6), 
constitutive expresser of PR gene 5 (cpr5), and the SAP and 
MIZ domain protein gene 1 (siz1), present the dwarf plant 
phenotype with a shorter stem, smaller leaves, and/or floral 
organs compared to the wild type (WT; Bowling et  al., 1997; 
Rate et  al., 1999; Miura et  al., 2010). On the contrary, the 
Arabidopsis SA-deficient mutant sid2 and SA-depleted NahG 
transgenic line show increased leaf biomass compared to WT 
(Scott et  al., 2004; Abreu and Munné-Bosch, 2009). It is worth 
noting that SA may have divergent effects in different plant 
species or organs. For example, the aim1 rice mutant with 
reduced endogenous SA levels has shorter seedling and 
adventitious roots compared to the wild type (Xu et  al., 2017).

The effect of exogenous SA on growth depends on its 
concentration and on the plant species. Different SA 
concentrations have either promoting or inhibiting effects on 
plant and organ growth in different plant species (Table  1). 
Studies have shown that a 0.01 mm SA treatment increased 
rosette diameter and the number of leaves and flower buds 
in African violet (Jabbarzadeh et  al., 2009), while 0.05 mm SA 
stimulated the growth of wheat seedlings and the formation 
of larger ears (Shakirova et  al., 2003). In finger millet, 0.1 mm 
SA stimulated flowering and grain set (Appu and Muthukrishnan, 
2014) and, in strawberry, 0.25 mm SA caused a significant 
increase in leaf area and weight of primary fruits (Kazemi, 
2013). In addition, 0.5 mm SA enhanced dry weight of root, 
shoot and nodule, and the number of flower and pods in 
chickpea (Kaur et  al., 2022), and it also significantly increased 
photosynthesis and growth in wheat and mungbean (Khan 

et  al., 2013, 2014). However, in Arabidopsis, exogenous SA 
(0.02–0.03 mm) reduced pollen tube length by about 25% (Rong 
et  al., 2016), and SA treatments (0.1 and 1 mm) also decreased 
trichome density and number (Traw and Bergelson, 2003). In 
tobacco, 0.1 mm SA reduced shoot growth and leaf epidermal 
cell size (Dat et  al., 2000). Pancheya et  al. (1996) observed 
that SA concentrations between 0.1 and 1 mm inhibited the 
growth of leaves and roots of barley seedlings in a dosage-
dependent manner. Generally, for a plant species, lower 
concentrations of exogenous SA seem to have a growth-promoting 
effect while higher ones may negatively regulate growth (Table 1). 
For example, 0.05 mm SA significantly stimulated the growth 
of rosette leaves and roots of chamomilla by 32 and 65%, 
respectively, while 0.25 mm SA decreased it by 40 and 43%, 
respectively (Kovácik et  al., 2009). In Arabidopsis, 
low-concentration SA (<0.05 mm) promoted adventitious roots, 
whereas high-concentration SA (>0.05 mm) inhibited all growth 
processes in the root (Pasternak et  al., 2019). The discrepant 
performances of different concentration SA on growth were 
also reported in wheat and pepper (Hayat et al., 2005; Canakci, 
2011). It should be mentioned that the threshold SA concentration 
between growth promotion and growth inhibition may vary 
with plant species. These contrasting effects due to different 
concentrations of exogenous SA indicate that this compound 
has a complex role in plant growth.

SA-INDUCED REGULATION OF CELL 
DIVISION AND EXPANSION

SA can regulate plant growth by modulating cell division and 
expansion, either in a negative or positive way. In Arabidopsis 
leaves, some evidence has shown that SA has a negative effect 
on the two cellular processes. For instance, SA-deficient NahG 
transgenic plants displayed a higher growth rate compared to 
WT and they presented a 1.7-fold increase in leaf rosette 
biomass at the early stage of reproduction (Abreu and Munné-
Bosch, 2009). This increased growth effect on NahG transgenic 
plants was more obvious at low temperatures, and it resulted 
from enhanced cell expansion of rosette leaves (Scott et  al., 
2004; Xia et al., 2009). Further investigations have demonstrated 
that, compared with WT, NahG transgenic plants at 4°C 
presented an elevated expression of the cell cycle G1/S transition 
regulator cyclin D 3 (CYCD3) and enhanced endoreduplication 
levels, which led to larger cells (Xia et al., 2009). This evidence 
indicated that SA suppresses cell expansion by regulating the 
expression of the cyclin genes. In addition, the SA-accumulating 
mutant siz1 showed a dwarf phenotype characterized by a 
decreased leaf cell volume and number. The cell division and 
expansion defects caused by siz1 can be  suppressed through 
the overexpression of NahG (Miura et  al., 2010), further 
demonstrating that SA inhibits these two cellular processes. 
However, SA accumulation in a different context may exhibit 
a discrepant action on cell growth control. Vanacker et  al. 
(2001) found that SA activates cell division and expansion in 
acd6-1 leaves with a very high SA level. Additionally, the 
positive effect of SA on cell division was also found in the 
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roots. For example, the aim1 rice mutant, whose SA biosynthesis 
was deficient, showed a reduced root meristem activity and a 
significantly lower expression of the cell cycle G2/M phase 
transition regulator cyclin B1;1 (CYCB1;1) compared to WT, 
indicating that SA has a positive role in root cell division (Xu 
et  al., 2017). Moreover, the SA-overaccumulating Arabidopsis 
mutant known as constitutively activated cell death 1 (cad1) 
increased cell division in the quiescent center (QC) in the 
root apical meristem, which was observed in the SA-treated 
WT (Wang et al., 2021). In summary, the SA-induced regulation 
of cell division and expansion is complicated and may depend 
on plant organs and the context in which signaling occurs.

SA-INDUCED REGULATION OF PLANT 
GROWTH VIA MULTIPLE SIGNALING 
PATHWAYS

SA signaling during plant immune responses has been well 
explored, and NPR1 was identified as a key component of 
this process. NPR1 is also important for SA-mediated growth 
regulation through the control of cell division and expansion 
(Vanacker et al., 2001; Fujikura et al., 2020; Wang et al., 2021). 
The Arabidopsis npr1-1 mutant leaves had fewer cells and higher 
DNA content, indicating that NPR1 promotes cell division 
and represses endoreduplication in leaves (Vanacker et  al., 
2001). Fujikura et  al. (2020) found that the xs2 mutant 
accumulated high SA contents and impaired cell expansion, 
producing smaller cells compared to those observed in 
WT. Interestingly, the significant defect in cell size observed 
in the xs2 mutant was restored in the xs2 npr1 double mutant. 
These results indicate that the suppression of cell expansion 
in xs2 was mediated through an NPR1-dependent signaling 
pathway. Additionally, the SA-overaccumulating Arabidopsis 

mutant cad1 increased cell division in the QC, which was 
rescued through the mutation of SID2 or NPR1, indicating 
that the QC cell division in the cad1 mutant is promoted in 
an NPR1-dependent SA signaling pathway (Wang et al., 2021). 
Further investigation found that SA accumulation in the cad1 
mutant promotes QC cell division through the accumulation 
of reactive oxygen species and downregulation of the transcription 
factor genes Plethora 1 (PLT1), PLT2, and WUSCHEL-related 
homeobox5 (WOX5) involved in QC maintenance (Wang et al., 
2021). NPR1 may also have a negative effect on cell division 
in some specific developmental contexts, such as the SA-Ethylene 
(ET)-mediated apical hook development (Raz and Koornneef, 
2001; Huang et  al., 2020). The above examples support the 
hypothesis that SA could regulate cell division, cell expansion, 
and then plant growth in an NPR1-dependent manner.

Besides the NPR family proteins, other SABPs also play 
essential roles in SA-mediated plant growth regulation (Pokotylo 
et  al., 2019). Tan et  al. (2020) found that SA directly binds 
to A subunits of protein phosphatase 2A (PP2A) to suppress 
the dephosphorylation of PIN-formed (PIN) auxin efflux carriers 
and inhibit root development (including root elongation, gravity 
response, and lateral root formation) in an NPR-independent 
manner. Additionally, the inhibiting effect of SA on pollen 
tube growth in Arabidopsis is also independent of NPRs because 
the npr1, npr3, npr4, and npr3 npr4 mutants exhibited responses 
that were identical to that of 20 mm SA in WT (Rong et  al., 
2016). Further investigations revealed that SA and methylated 
SA (MeSA) antagonistically regulate pollen tube growth by 
affecting clathrin-mediated endocytosis (CME) and the apical 
activation of a key pollen tip growth regulator, known as 
Rho-type GTPase 1 (ROP1), with SA and MeSA having inhibitory 
and stimulatory effects, respectively. Interestingly, the 
methylesterase and methyltransferase enzymes, which catalyze 
the interconversion between SA and MeSA, are both localized 
on the tip of pollen tubes, indicating that the tip-localized 

TABLE 1 | Effect of exogenous SA on growth in different plant species.

Plant species SA conc. Effect References

African violet 0.01 mm Increased rosette diameter and the number of leaves and flower buds. Jabbarzadeh et al., 2009
Finger millet 0.1 mm Stimulated flowering and grain set. Appu and Muthukrishnan, 2014
Strawberry 0.25 mm Increased leaf area and weight of primary fruits. Kazemi, 2013
Chickpea 0.5 mm Enhanced dry weight of root, shoot and nodule, and the number of flower and pods. Kaur et al., 2022
Mungbean 0.5 mm Promoted photosynthesis and growth. Khan et al., 2014
Tobacco 0.1 mm Reduced shoot growth and leaf epidermal cell size. Dat et al., 2000
Barley 0.1–1 mm Inhibited the growth of leaves and roots of seedlings. Pancheya et al., 1996
Wheat 0.05 mm Stimulated the growth of young seedlings and the occurrence of larger ears. Shakirova et al., 2003

0.5 mm Promoted photosynthesis. Khan et al., 2013
0.01 and 1 mm Low-concentration SA increased fresh and dry plant weight, whereas high-

concentration SA decreased it.
Hayat et al., 2005

Chamomilla 0.05 and 0.25 mm Low-concentration SA stimulated the growth of rosette leaves and roots by 32 and 
65%, respectively, whereas high-concentration SA decreased it by 40 and 43%, 
respectively.

Kovácik et al., 2009

Arabidopsis 0.02–0.03 mm Reduced pollen tube length by about 25%. Rong et al., 2016
<0.05 mm, >0.05 mm Lower concentrations SA promoted adventitious roots, whereas higher concentrations 

SA inhibited all growth processes in the root.
Pasternak et al., 2019

0.1 and 1 mm Decreased trichome density and number. Traw and Bergelson, 2003
Pepper 1.5 and 10 mm Low-concentration SA has a stimulating effect on seedling length and fresh weight, 

whereas high-concentration SA has an inhibiting effect on it.
Canakci, 2011
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production of the two compounds plays an important role in 
the regulation of polar cell growth (Rong et al., 2016). However, 
it remains to be  determined which SABP is responsible for 
the SA/MeSA-mediated regulation of pollen tube growth.

Other SA pathways regulating plant growth have also been 
reported. The Arabidopsis cpr5 containing an elevated SA 
level was shown to reduce primary root length and lateral 
root number, and these could be  restored in the cpr5/sid2 
double mutant (Bowling et  al., 1997). Additional research 
demonstrated that CPR5 can repress the accumulation of 
SA and favor growth through the inhibition of the 
SA-dependent inositol-requiring protein-1 (IRE1)-basic leucine 
zipper 60 (bZIP60) arm-induced plant unfolded protein 
response (UPR), which antagonizes organ growth (Meng 
et  al., 2017), indicating that CPR5 regulates root growth 
through the SA-dependent IRE1-bZIP60 signaling pathway. 
Moreover, SA also regulates plant growth by affecting the 
expression of genes involved in cell expansion. In the siz1 
mutant mentioned above, SA accumulation negatively regulates 
the expression of the xyloglucan endotransglycosylase/hydrolase 
(XTH) genes, XTH8 and XTH31, which facilitate cell wall 
loosening and cell expansion in leaves (Miura et  al., 2010). 
Nevertheless, the SABPs involved in these pathways have 
not been explored yet.

The above-mentioned studies show that the action of SA 
on organ and plant growth is mediated by different receptors, 
and it occurs through multiple pathways, supporting the hypothesis 
that SA plays a complex role in plant growth regulation.

ROLE OF SA CROSSTALK WITH OTHER 
HORMONES IN THE REGULATION OF 
PLANT GROWTH

SA also interacts with other hormones involved in the regulation 
of cell division and expansion, such as auxin, GA, and ethylene 
(ET), to modulate plant and organ growth (Ari et  al., 2020; 
Emamverdian et al., 2020; Mazzoni-Putman et al., 2021; Pokotylo 
et  al., 2021).

Auxin is a major growth hormone that controls these cellular 
processes, especially in roots (Perrot-Rechenmann, 2010; Barbeza 
et  al., 2017; Huang et  al., 2019; Seo et  al., 2021), and SA 
can influence root development by affecting the accumulation 
and transport of auxin. Pasternak et  al. (2019) proved that 
exogenous SA affects the root tip meristem in Arabidopsis in 
a concentration-dependent manner. A low level of SA (below 
0.05 mM) induces auxin accumulation by activating the 
expression of the auxin biosynthetic enzyme TRP 
aminotransferase of Arabidopsis 1 (TAA1) and the auxin efflux 
protein PIN1, and by repressing PIN2 and PIN7. Then, it 
increases the number of periclinal and tangential cells in the 
roots’ outer layers through a cyclin D6;1 (CYCD6;1)-dependent 
mechanism. In contrast, a high dosage of SA (above 0.05 mM) 
induces auxin depletion in the root meristem by repressing 
the expression of PIN1, PIN2, and PIN7, and then inhibiting 
the cell cycle and growth processes in the roots (Pasternak 

et  al., 2019). SA can also lead to the hyperphosphorylation 
of PIN2 by directly binding to the PP2A to repress its 
dephosphorylation activity toward PIN2, thereby reducing PIN 
activity, which results in a decrease in auxin export and 
attenuation of root growth (Tan et  al., 2020). Furthermore, 
SA can induce PIN2 hyperclustering through a remorin (REM)-
dependent lipid nanodomain organization to hamper auxin 
accumulation and impair the auxin-mediated root gravitropic 
response (Ke et  al., 2021).

GA promotes plant growth by increasing cell division and 
expansion (Achard et al., 2009; Sprangers et al., 2020; Vercruysse 
et  al., 2020). The application of exogenous GA increases SA 
biosynthesis in wild Arabidopsis plants or promotes seed 
germination and seedling growth in the sid2 under adverse 
conditions, suggesting a synergistic interplay between SA and 
GA (Alonso-Ramírez et  al., 2009). However, SA can also 
antagonize GA in growth regulation. In barley, SA treatments 
were shown to inhibit the GA-induced alpha-amylase expression 
in the aleurone layers and to influence seed germination and 
subsequent growth (Xie et  al., 2007). In Arabidopsis, GA 
increases trichome number, while this effect is suppressed 
by SA (Traw and Bergelson, 2003). Moreover, the 
hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl 
transferase (HCT)-RNAi lines of Arabidopsis characterized by 
overaccumulating SA reduced the expression of GA marker 
genes and caused severe dwarfism in the plant. The defects 
of HCT RNAi lines in GA signaling and growth could 
be restored by mutating SID2 or overexpressing NahG (Gallego-
Giraldo et al., 2011). It is therefore inferred that SA negatively 
regulates cell division, cell expansion, and overall plant growth, 
by antagonizing GA.

ET is also an endogenous regulator of cell division and 
expansion in vegetative growth (Dubois et al., 2018). It participates 
to the stimulation of cell division during the early development 
of apical hooks (Raz and Koornneef, 2001). SA can inhibit 
ET biogenesis and signaling (Leslie and Romani, 1988; Huang 
et  al., 2020) and, in Arabidopsis, it was shown to reduce the 
apical hook angle of etiolated seedlings by antagonizing ET 
signaling. The SA-activated NPR1 directly interacts with ethylene 
insensitive 3 (EIN3), the core transcription factor of ET, and 
disrupts the binding of EIN3 to its target gene promoters, 
such as the promoter of HOOKLESS 1 which is essential for 
apical hook development, thus reducing the hook angle (Huang 
et  al., 2020). Therefore, SA may have a negative effect on cell 
division by antagonizing ET.

CONCLUSION AND PERSPECTIVES

Over past decades, numerous studies have focused on the role 
and mode of action of SA in plant immunity (Zhang and Li, 
2019; Ding and Ding, 2020). A few studies have identified 
some molecular connections between SA and cell division, 
cell expansion, and growth. The uncovered pathways shown 
in this mini-review, such as SA-dependent plant UPR pathways, 
SA-regulated expression of cell cycle genes, and SA-auxin 
crosstalk, were species-, organ-, or context-dependent. The 
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universal and key connections of SA modulating cell division 
and expansion are still vague and remain to be  identified. 
Based on the current available evidence, a simple model 
describing SA-induced regulation of cell division and expansion 
with effects on plant growth was here proposed (Figure  1). 
It suggests that NPRs or other SABPs bind to SA to modulate 
the transcription of key genes (such as those associated with 
the cell cycle and cell wall loosening) or crosstalk with other 
hormones (such as auxin, GA, and ET) in either positive or 
negative way, and then regulate cell division or expansion, 
ultimately modifying plant growth.

It must be noted the higher accumulation of endogenous 
SA enhances plant immunity but generally suppresses growth 
(Van Butselaar and Van den Ackerveken, 2020). Nevertheless, 
SA separately regulates plant growth and immunity through 
different receptors or pathways in some cases. Therefore, 
it seems feasible to disrupt the growth-immunity tradeoff 
to promote defense on the premise of maintaining plant 
growth, or simultaneously enhance plant growth and defense 
via targeted gene editing. In summary, this mini-review 
on the action and mechanism of SA-induced growth 
regulation will provide helpful information for future 
crop improvement.
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