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Plants evolve diverse mechanisms to eliminate the drastic effect of biotic and abiotic
stresses. Drought is the most hazardous abiotic stress causing huge losses to crop
yield worldwide. Osmotic stress decreases relative water and chlorophyll content
and increases the accumulation of osmolytes, epicuticular wax content, antioxidant
enzymatic activities, reactive oxygen species, secondary metabolites, membrane lipid
peroxidation, and abscisic acid. Plant growth-promoting rhizobacteria (PGPR) eliminate
the effect of drought stress by altering root morphology, regulating the stress-
responsive genes, producing phytohormones, osmolytes, siderophores, volatile organic
compounds, and exopolysaccharides, and improving the 1-aminocyclopropane-1-
carboxylate deaminase activities. The use of PGPR is an alternative approach to
traditional breeding and biotechnology for enhancing crop productivity. Hence, that can
promote drought tolerance in important agricultural crops and could be used to minimize
crop losses under limited water conditions. This review deals with recent progress
on the use of PGPR to eliminate the harmful effects of drought stress in traditional
agriculture crops.

Keywords: soil microbes, microbiome, drought, endosphere, rhizosphere

INTRODUCTION

Water is the most indispensable requirement for the growth and development of agricultural crops
(Javed et al., 2016). The term drought generally implies a lower supply of irrigation water than
the demand (Ali et al., 2016). Osmotic stress has been ranked as the most harmful environmental
stress factor worldwide (Marchin et al., 2020). Changing climatic conditions have triggered drought
stress in several parts of the world (Javed et al., 2016; Naumann et al., 2018). An increase in
drought-prone areas has adversely affected the productivity of agricultural crops. By 2050, water
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shortage is expected to cause serious plant growth problems in
arable lands and affect the two-thirds population of the world
(Naumann et al., 2018). This problem is being addressed on
priority by changing and improving the genetic makeup of crop
plants (Awan et al., 2015; Ilyas et al., 2020).

Five different types of soil microbes, namely, bacteria,
actinomycetes, fungi, protozoa, and nematodes, play an
important role in increasing plant and soil health (Ali et al., 2019;
Msimbira and Smith, 2020). Microbial presence in plant soil
depends on the soil’s temperature, pH, availability of water, and
nutrients. A symbiotic relationship exists between plants and
beneficial soil microorganisms wherein the microbes help the
plants in nitrogen acquisition, water uptake, and survival during
stress (Msimbira and Smith, 2020; Xiong et al., 2021). According
to estimates, rhizobia contribute to 50% of the biological
nitrogen fixation on earth (Msimbira and Smith, 2020). Various
functions performed by beneficial soil microorganisms include
accumulation and cycling of organic compounds, stimulation
of nutrient mineralization, and production of plant growth
hormones. Plants release carbon in their root systems by
rhizodeposition in the form of root exudates that sustain the
soil microbiome in plant roots (Khan et al., 2020). Studies have
reported that 5–21% of the carbon fixed during photosynthesis is
released into the rhizosphere, which can be defined as the area
of soil under the biochemical influence of plant roots (Hartman
and Tringe, 2019; Gontia-Mishra et al., 2020), and constitutes
an important nutrient source for soil microbial community
(Xiong et al., 2021).

Plants growing in the soil develop a close relationship with
soil microbes residing around, on, or inside the plant roots.
Certain soil microbes, including bacteria, archaea, fungi, and
oomycetes, colonize the root surface and inner root tissues
(Gouda et al., 2018), thus playing an important role in inducing
drought stress tolerance in host plants (Hartman and Tringe,
2019). The selection of microbes with greater resistance could
be useful in developing abiotic resistance in important crop
plants. A few bacterial and fungal species that provide a better
response during stress conditions have already been identified.
Although no definitive spatial boundary has been defined for
the rhizosphere, it is estimated to extend approximately 1–
5 mm from the root surface to the surrounding soil (Hartman
and Tringe, 2019). Rhizospheric microbiomes contain abundant
bacterial and fungal communities that play a key role in
relation to soil and plants (Danish et al., 2020; Lin et al.,
2020). Common inhabitants of the rhizosphere include beneficial
plant-growth-promoting microorganisms, root pathogens, and
root-feeding insects (Barnawal et al., 2017; Lin et al., 2020).
Diversity in the rhizosphere creates ecological niches and
micro-environments for different microbial species to perform
beneficial interactions (Saleem et al., 2018). Other functions
of beneficial rhizosphere microbes include organic matter
decomposition, nitrogen fixation, phosphorus solubilization,
transportation, and biocontrol of root pathogens (Danish et al.,
2020; Gontia-Mishra et al., 2020).

This review aims to understand the effects of drought stress
on the morphological, physiological, and molecular traits of
plants. Moreover, we discuss how soil microbial communities are

useful in minimizing or reducing the effects of drought stress
in various plants. In this review, we explore the recent progress
achieved by researchers in understanding the interaction between
plant growth-promoting rhizobacteria (PGPR) and crop plants
under drought stress conditions. We also explore several useful
aspects of PGPR and crop plants, such as developmental stages,
genotypes, and climatic variables, which have not been covered
in detail earlier. We conclude the review with a discussion on
technical challenges and limitations in recent research methods
with regard to drought stress and soil microbe interactions along
with future directions and suggestions.

Effects of Drought Stress on Plant Life
Impaired germination along with poor stand establishment is the
basic and foremost effects of dehydration stress on plants (Javed
et al., 2016; Lin et al., 2020). It has been reported that inadequate
availability of irrigation water causes closure of stomata, reduced
production of biomass, and stunted growth and development in
crop plants (Ilyas et al., 2020; Marchin et al., 2020). In response
to drought stress, plants reduce the root, shoot, and leaf growth,
as well as water uptake, leaf water potential, transpiration rate,
and turgor presser, leading to decreased relative water content
(RWC) and cell turgor, along with damage to the plant cell
(Ali et al., 2016; Javed et al., 2016). Different morphological,
physiological, and transcriptional responses to drought stress on
plants are shown in Figure 1. Researchers observed a negative
impact of water stress on plant height and leaf area index in wheat
and maize (Javed et al., 2016; Ilyas et al., 2020). Drought stress
increases the temperature of the plant owing to dehydration in
the cells (Ilyas et al., 2020) and also causes injury by interrupting
the water balance of the plant body. However, the adverse effect of
osmotic stress depends on its severity and duration, as well as on
the growth stage of an individual crop. Moreover, drought stress
has different impacts on the plant roots and leaves; root growth
is favored over leaf growth in such conditions owing to rapid
osmotic adjustment, which allows partial turgor recovery and
reestablishment of osmotic gradients for water uptake (Marchin
et al., 2020; Zhang M. et al., 2020). Any further decrease in the
loosening ability of the cell wall allows the roots to resume their
growth under drought conditions. Drought stress reduces the
RWC, transpiration rate, and leaf water potential in plants while
increasing the leaf temperature (Ferreira et al., 2019). Exposure of
wheat plants to drought stress resulted in reduced plant height, a
number of tillers, flag leaf area, and biological yield (Ahmed et al.,
2011; Javed et al., 2016). Reduced plant germination was reported
under dehydration stress in maize and sorghum (Ferreira et al.,
2019; Ilyas et al., 2020). In contrast, leaves exhibited less osmotic
adjustment under similar stress conditions and maintained their
wall loosening ability, which led to growth inhibition (Javed et al.,
2016; Ilyas et al., 2020). Water use efficiency is also an important
feature that determines the limited water stress in plants and can
be enhanced by improving agriculture practices that encourage
curtailed water evaporation (Hatfield and Dold, 2019). Improved
water use efficiency under drought has been reported in wheat
(Javed et al., 2016), maize (Ilyas et al., 2020; Lin et al., 2020), and
sorghum (Ferreira et al., 2019).
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FIGURE 1 | Morphological, physiological, and molecular response to drought stress in plants.

Although drought stress does not affect photochemical
activities at the initial stage, it reduces the maximum quantum
yield from photosystem II at an advanced stage; however,
the yield can be completely recovered after 3 days of re-
watering (Ferreira et al., 2019; Ilyas et al., 2020). Variation in
photosynthesis rates under drought stress has been observed
in several crops (Pinheiro and Chaves, 2011; Blum, 2017).
Photosynthetic inhibition and downregulation during osmotic
stress interact with the production, growth, and survival of crop
plants (Ferreira et al., 2019; Khan N. et al., 2019). A strong
association has been reported between stomatal conductance and
photosynthetic rate in plants subjected to drought stress (Blum,
2017; Bo et al., 2017).

Long prevailing drought reduces stomatal conductance,
stem conductivity, and carbon dioxide (CO2) assimilation
leading to reduced ribulose biphosphate activity. This is
because metabolic impairment decreases the photosynthetic rate
in plants, ultimately resulting in the reduction of ribulose
biphosphate synthesis. Water stress restricts the photosynthetic
assimilation of CO2 because of closed stomata and restricted
diffusion of CO2 under water stress; second, it inhibits the
metabolism of CO2 (Blum, 2017; Marchin et al., 2020). It has
been further reported that the reduced CO2 assimilation under
drought conditions is caused not by increased CO2 concentration
in the environment (Marchin et al., 2020) but by the closure
of stomata that minimizes water loss by reducing internal CO2

levels (Awan et al., 2015). It has been observed that drought-
stressed plants disrupt the carbohydrate flow and increase the
accumulation of epicuticular waxes and soluble sugars in stressed
leaves (Pour-Aboughadareh et al., 2017). Drought stress reduces
sucrose and starch contents in wheat grains (Lu et al., 2019).
The application of drought stress influenced the accumulation
of amylopectin, amylose, sucrose, and total starch contents
(Lu et al., 2019).

Plant Growth-Promoting Rhizobacteria
and Their Formulations
Species, such as Pseudomonas fluorescens, Pseudomonas putida,
Pseudomonas aeruginosa, Bacillus subtilis, and other Bacillus
sp., are widely used for the commercial production of
PGPR. Various fermentation technologies have been used to
formulate potential PGPR isolates using organic and inorganic
carriers. Ideal formulations should possess characteristics, such
as long shelf life, satisfactory water solvency, tolerance to
adverse environmental conditions, compatibility with other
agrochemicals, and non-phototoxicity. Research has proved that
mixed strain formulations yield better results than individual
strains because mixed strain formulations can help in combating
multiple stresses and diseases in addition to promoting plant
growth and development. In addition to the formulation, the
method used for delivering the PGPR to the plants is also
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important to achieve the desired results. Usual delivery methods
include bio-priming, seed treatment, foliar application, foliar
spray, fruit spray, soil application, and seeding dip.

Role of Plant Growth-Promoting
Rhizobacteria in Growth and
Development of Plants Under Drought
Stress
The role of PGPR in nutrient management, biocontrol activity,
plant growth, and development is well established (Gouda
et al., 2018; Fabiańska et al., 2019). These rhizosphere-inhabiting
microbes help the plants in their growth and development
through diverse mechanisms (Gouda et al., 2018). Currently,
research on their role in tolerating biotic and abiotic stresses
is gaining importance (Meenakshi et al., 2019; Woo et al.,
2020). Osmotic stress strongly affects plant growth, development,
and soil microbial activity (Gowtham et al., 2020). Various
pathways involved in rhizosphere microbe-mediated osmotic
stress tolerance in crop species have been studied (Gouda
et al., 2018; Fabiańska et al., 2019). These mechanisms
include alteration in root architecture, phytohormonal activities,
osmolyte accumulation, antioxidant defense, and transcriptional
response to defense (Hartman and Tringe, 2019). Soil microbes
have been intensively incorporated in agriculture production
systems owing to their potential to promote plant growth,
abiotic stress resistance, and management of plant diseases
(Goswami and Deka, 2020). These microbes play a vital
role in plant growth through the production of bacterial
phytohormones, exopolysaccharides (EPSs), and associated
metabolites by increasing the nutrient availability in the
rhizosphere and protecting the plants from abiotic stresses
(Naseem et al., 2018; Goswami and Deka, 2020). However, the
reaction of bacteria to drought stress varies depending on stress
duration, intensity, growth stage, and plant species (Naseem
et al., 2018). Water stress directly affects the soil processes in
several ways, including stressing the microorganisms (Goswami
and Deka, 2020). Under drought conditions, soil microbes adjust
their osmotic conditions and try to maintain their hydration
by accumulating solutes for retaining water in their cells
(Shirinbayan et al., 2019). An indirect effect of drought stress on
soil processes is the alteration in the supply of substrates to the
rhizosphere bacteria through dissolution, diffusion, and transport
(Shirinbayan et al., 2019). Plant growth-promoting bacteria are
involved in accelerating flowering, early senescence, and seed set
stages (Gowtham et al., 2020), and the early flowering strategy is
associated with the drought escape mechanism (Meenakshi et al.,
2019). Diazotrophic bacteria are linked with agave roots under
drought stress and can enhance plant growth under drought
conditions (Zarei et al., 2019; Abbasi et al., 2020). Similarly, the
role of bacteria in plant growth under limited water conditions
has been demonstrated in previous studies (Meenakshi et al.,
2019); for example, bacterial inoculation improved the water
use efficiency, root and shoot biomass, RWC, and membrane
stability index, thereby reducing the adverse effect of drought
stress in wheat and tomato plants (Meenakshi et al., 2019;
Abbasi et al., 2020). P. fluorescens DR7 enhanced plant growth

under drought stress conditions by increasing the soil moisture
in foxtail millet (Niu et al., 2018). Enhanced plant growth
after inoculation with plant growth promoter regulators, that
is, P. putida, Azospirillum lipoferum, P. fluorescens P1, and
P. fluorescens P8 has been reported in maize when drought-
subjected plants were compared with non-treated ones (Sandhya
et al., 2010; Khan and Bano, 2019; Zarei et al., 2019). Research has
confirmed that endophytic bacterial strains MKA2, MKA3, and
MKA4 mitigate drought stress in wheat plants (Meenakshi et al.,
2019). Application of plant growth-promoting bacterial strain
B. subtilis SF48 enhanced growth and RWC in tomato plants
under drought stress conditions compared with that in control
plants (Gowtham et al., 2020; Table 1).

Mechanisms Employed by Plant
Growth-Promoting Rhizobacteria for
Drought Stress Tolerance
With the help of root-associated bacterial communities, plants
adopt various mechanisms to tolerate drought stress. There
are two main mechanisms adopted by PGPR to overcome
osmotic stress in plants: direct and indirect. Direct mechanisms
are phenomena occurring inside the plant and affect the
plant metabolism directly, whereas indirect mechanisms occur
outside the plants (Vurukonda et al., 2016). The major
mechanisms adopted by PGPR to overcome drought stress
include alteration in root morphology and production of
osmolytes, antioxidants, phytohormones, extracellular polymeric
substance (EPS), and volatile organic compounds (VOCs),
siderophores, and 1-aminocyclopropane-1-carboxylate (ACC)
deaminase. The various mechanisms are presented in detail in
Figure 2. These mechanisms may be direct or indirect depending
upon the host plant, as well as the biotic and abiotic stress factors
(Gouda et al., 2018).

Change in Structure and Morphology of
Plant Root System
The term root morphology/architecture encompasses the root
depth, root angle, density, root volume, and biomass (Saleem
et al., 2018). Plants dynamically modify their root morphology
to manage drought stress. Water stress is directly correlated
with root morphology because a long and more extensive
root architecture allow the plants to uptake more amount of
water from the soil (Saleem et al., 2018; Mishra et al., 2020).
Drought-tolerant plants tend to have greater rooting depth,
density, root volume, and weight (Jochum et al., 2019). Although
plants prefer root growth overshoot growth under drought
stress conditions, even that is hindered under severe stress
(Vurukonda et al., 2016; Barnawal et al., 2017). Variations in root
morphology under limited water conditions are species-specific
(Mishra et al., 2020).

Root-associated microorganisms play an important role
in maintaining the health of the host plant. However, the
existence of these microorganisms depends on soil chemistry,
perturbations in the surrounding abiotic environment, as well
as plant genotype and phenotype. Further, it has been noted
that the composition of soil microorganisms varies at different
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TABLE 1 | Alteration in root morphology, plant growth, and development by PGPR under drought stress.

Soil microbe/Strain Plant species Effect under drought References

Azospirillum brasilense Tomato Enhanced lateral root and root hair development Molina-Favero et al., 2008

Azospirillum brasilense Az39 Rice Improved root growth and mitigated osmotic stress Cassán et al., 2009

Paenibacillus polymyxa Wheat Enhance plant survival and biomass production under osmotic stress Arzanesh et al., 2011

Azospirillum brasilense Sp245 Wheat Increased growth and expansion of xylem in the coleoptile of inoculated plant
for easy conduction of water

Timmusk et al., 2014

Paenibacillus polymyxa B2 Arabidopsis Induction of early response to dehydration stress Timmusk et al., 2014

B. thuringiensis NEB17 Soybean Modification of root structure, root length, root ABA Prudent et al., 2015

Bacillus megaterium BOFC15 Arabidopsis Alter root architecture system Zhou et al., 2016

P. putida FBKV2 Maize Encouraged root and shoot growth, dried biomass weight and reduced
stomatal conductance in the plant

Vurukonda et al., 2016

Azospirillum brasilense SP-7 Maize Higher drought tolerance, higher biomass production and chlorophyll contents Curá et al., 2017

H. seropedicae Z-152 Maize Higher drought tolerance, higher biomass production and chlorophyll contents Curá et al., 2017

Azospirillum sp. Az19 Maize Improve the growth and productivity of the plant under water stress García et al., 2017

O. pseudogrignonense RJ12,
Pseudomonas sp. RJ15,
B. subtilis RJ46

Mungbean Increase root length, shoot length, plant dry weight and root recovery intension Saikia et al., 2018a

B. subtilis Maize, Common bean Improved water use efficiency and growth de Lima et al., 2019

M. luteus 3.13 and 4.43 Sunflower Enhanced the weight, area, volume, length, diameter, and surface Namwongsa et al., 2019

V. paradoxus RAA3
O. anthropic DPC9
P. palleroniana DPB13
P. fluorescens DPB15
P. palleroniana DPB16

Millet Improve the growth and nutrient concentrations in plant leaves under drought
conditions

Chandra et al., 2019

B. subtilis GOT9 Arabidopsis, Canola Drought stress tolerance, growth, and development of lateral roots Woo et al., 2020

Pseudomonas lini and Serratia Bizio
plymuthica

Jujube Improve plant height, RWC, root, and shoot dry weight Zhang Y. et al., 2020

Bacillus licheniformis FMCH001 Maize Improved water use efficiency and increased root dry weight Akhtar et al., 2020

rooting depths because soils exhibit specific patterns of bacterial
communities at specific depths (Zhang et al., 2018); furthermore,
rhizospheres from root sections obtained at different depths
have distinct microbiota (Jochum et al., 2019; Gontia-Mishra
et al., 2020). The plant root system affects the health, fitness,
and productivity of plants by changing the root length, surface
area, density, volume, and biomass. Rhizospherical microbial
communities influence these phenotypic traits by altering the
processes occurring in the soil (Goswami and Deka, 2020;
Lin et al., 2020). Hence, enhanced root development improves
nutrient uptake from the soil and the water absorption capacity
of plants (Lin et al., 2020). During water stress, bacteria change
the elasticity of the root cell membrane, which is the foremost
step in enhancing drought tolerance (Dimkpa et al., 2009; Lin
et al., 2020). Altered root metabolites play an important role
in the selection of certain species (Mahdi Dar et al., 2018;
Xu et al., 2018). A positive correlation has been observed
between increased carbohydrates in roots and carbohydrate
transporters in Actinobacteria (Xu et al., 2018). During drought
stress, the rhizosphere microbial community increases the root
surface area and fine root production on one hand and reduces
stress-associated volatile emissions on the other, leading to
a marked improvement in plant performance (Saleem et al.,
2018). Inoculation of maize plants with P. putida improved the
leaf water potential, RWC, and plant biomass when exposed
to drought stress (Sandhya et al., 2010). Bacterial inoculation
in wheat plants improved the formation of lateral roots and

enhanced root growth, thereby increasing the water uptake under
drought conditions (Mahdi Dar et al., 2018). Inoculation with
Bacillus thuringiensis and Azospirillum brasilense improved the
specific root area and length along with the root projection area
in common beans (Armada et al., 2014; Mahdi Dar et al., 2018).
Inoculation with Ochrobactrum spp. strain NBRISH6 improved
the root length, dry weight, and hairs in maize under water stress
regimes (Mishra et al., 2020).

Production of Osmolytes
Plants initiate metabolic changes for survival during drought
stress, leading to the accumulation of compatible osmolytes,
such as proline, glycine betaine (GB), polyamines, sugars
(trehalose, polyols), polyhydric alcohols, and dehydrins. Plant
growth-promoting microorganisms (PGPMs) introduce osmotic
stress by increasing the accumulation of osmolytes in the host
plant (Gontia-Mishra et al., 2020). Recent research reported
that Azospirillum spp. is responsible for the accumulation
of such compatible solutes under limited water conditions
(García et al., 2017).

Proline content is directly linked with drought stress, and it
increases proportionately with the severity of the stress (Ortiz
et al., 2015; Abdela et al., 2020). High proline content is involved
in cell membrane protection and maintenance of cell water
status during limited water supply (Ortiz et al., 2015). Therefore,
assessing proline content is important for evaluating drought
stress tolerance and sensitivity in crop plants (Abdela et al.,
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FIGURE 2 | Various mechanisms are adopted by PGPR to eliminate drought stress.

2020). Application of P. putida strain GAP-P45 improved the
accumulation of proline in maize plants subjected to drought
stress (Sandhya et al., 2010). Inoculating B. thuringiensis in
maize plants under water stress increased their shoot proline
content when compared with that in control (Armada et al.,
2014). The application of Paenibacillus polymyxa on tomato
cultivars caused higher proline secretion to overcome the drought
stress (Ghosh et al., 2019). Inoculation with Streptomyces spp.
and Mesorhizobium ciceri spp. increased the proline contents
in tomatoes (Abbasi et al., 2020) and chickpeas (Abdela et al.,
2020), respectively.

Upregulation of GB content under drought stress may be
attributed to certain key enzymes of gene expression (Zhang et al.,
2010). Enhanced accumulation of GB content, which is a major
cause of reduced water loss, was reported in plants subjected
to PGPR inoculation under drought conditions (Nadeem et al.,
2010; Bashan et al., 2014). Similarly, drought-stressed plants
inoculated with B. subtilis and Pseudomonas spp. exhibited
higher GB content than non-treated plants (Sandhya et al.,
2010). Endogenous accumulation of proline and GB has been
observed in mung beans when plants were inoculated with P.
aeruginosa (Sarma and Saikia, 2014). Trehalose is an important

signaling molecule in plants and plays an important role in
drought stress tolerance. As a non-reducing disaccharide, this
osmoprotectant stabilizes the cell membrane by modulating
the antioxidant enzyme activity (Barnawal et al., 2017). The
application of even a minute amount of trehalose to maize
roots is sufficient to generate the stress tolerance signal pathway.
Inoculation with A. brasilense in maize plants upregulated
the trehalose-producing genes, leading to enhanced drought
tolerance and biomass production (Rodríguez-Salazar et al., 2009;
Curá et al., 2017).

Choline is also an important osmolyte that plays a role in
overcoming the drought stress by accumulating GB, thereby
enhancing the dry matter and leaf water contents. Further,
increased choline contents in maize and wheat enhanced
the nutritional value of food additives (Zhang et al., 2010;
Iqbal, 2018).Various studies have demonstrated the evident
role of soil microbial communities in the accumulation of
choline as a precursor of GB metabolism (Rocha et al., 2019).
Polyamines are another type of osmolytes associated with root
growth under drought stress. The introduction of A. brasilense
strain A39 helped rice plants accumulate polyamines in the
seedlings under osmotic stress conditions (Cassán et al., 2009).
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Another research reported that inoculation of cowpea plants
with Rhizophagus irregularis enhanced both chlorophyll and
carotenoid contents under severe water stress (Rocha et al., 2019;
Table 2).

Extracellular Polymeric Substance
Production
Extracellular polymeric substances (EPSs) are high-molecular-
weight, biodegradable polymers composed of monosaccharide
residues and their derivatives and are biosynthesized by a
wide range of bacteria, algae, and plants (Sanalibaba and
Cakmak, 2016). EPSs play a central role in maintaining water
potential, aggregating soil particles, ensuring obligate contact
between plant roots and rhizobacteria, and sustaining the host
under stress or pathogenic conditions, thus bearing direct
responsibility for plant growth and crop production (Naseem
et al., 2018). EPSs play an important role in protecting
land plants from drought stress by maintaining the plant-
microbes interaction (Khan and Bano, 2019) and are extremely
useful in various industries, owing to their bioremediation,
stabilizing, thickening, coagulating, gel-developing, suspending,
and film-forming properties. PGPR could be effectively used
to overcome the drastic effects of water stress by increasing
the production of EPSs and forming rhizosheaths around the
roots, protecting them from dehydration. Application of EPS-
producing PGPR can prove helpful in mitigating water deficiency
and consequently increasing global food security (Khan and
Bano, 2019); however, the outcome of PGPR application to
osmotic stress depends not only on the stress intensity and
duration but also on the plant species and its growth phase
(Table 3).

Production of EPSs by PGPR significantly affects the
plant growth, development, and drought tolerance capacity
(Subramaniam et al., 2020) as these microbes can survive under
low-moisture soils through nodule formation. EPSs can provide
a micro-environment that dries very frequently in comparison
with the surrounding soil but stays hydrated by holding water and
thus protecting the bacteria and plant roots against desiccation
(Subramaniam et al., 2020). EPS production by bacteria enhanced
and improved the ability of soil in balancing the water potential
and sustaining soil aggregation, thereby improving the nutrient
uptake and resulting in the enhanced growth and development
of the plants and protection from dehydration (Subramaniam
et al., 2020). The EPS produced by PGPR, such as Rhizobium
leguminosarum, Agrobacterium vinelandii, Bacillus drentensis,
Enterobacter cloacae, Agrobacterium spp., Xanthomonas sp., and
Rhizobium sp., are vital for nourishing the soil and maintaining
crop production (Mahmood et al., 2016). The role of PGPR
in enhancing desiccation tolerance in plants through EPS
production was observed in Arabidopsis (Ghosh et al., 2019),
maize (Khan and Bano, 2019), and sunflower (Sandhya et al.,
2009). Inoculation with EPS-producing R. leguminosarum LR-
30, M. ciceri CR-30, and CR-39, and Phaseolus phaseoli MR-
2 demonstrated their mutual interactions with wheat during
drought conditions. Bacterial strains Proteus penneri Pp1,
P. aeruginosa Pa2, and Alcaligenes faecalis AF3 can produce EPS

and maintain soil moisture, contents, biomass, root and shoot
length, and leaf area of the plants (Naseem et al., 2018).

1-Aminocyclopropane-1-Carboxylate
Deaminase Activity
Plant growth-promoting microorganism can synthesize
ACC in plants under drought stress (Chandra et al., 2019;
Danish et al., 2020). On exposure to drought stress, the plant
hormone ethylene endogenously regulates plant homeostasis
and restrains root and shoot growth along with leaf expansion,
ultimately restricting the plant growth (Li et al., 2017). ACC
is an immediate precursor of ethylene (Danish et al., 2020;
Gowtham et al., 2020); the bacterial ACC deaminase enzyme
converts the ACC to ammonia and α ketobutyrate and inhibits
ethylene production in plants (Danish and Zafar-ul-Hye,
2019; Jochum et al., 2019). High ACC deaminase activity of
Pseudomonas strains under drought stress has been observed
in millet (Niu et al., 2018; Chandra et al., 2019). Recent
studies suggested that under drought stress, inoculation with
ACC deaminase-producing rhizobacteria can improve the
negative effects of reactive oxygen species (ROS), which is
beneficial for plant survival (Chandra et al., 2019; Danish
et al., 2020). Oxidative stress on tomato and pepper plants
was alleviated by ACC deaminase, and their fresh and dry
weight increased when compared with that of the plants of the
control treatment (Gupta and Pandey, 2019; Gowtham et al.,
2020). The effect of ACC deaminase-producing rhizobacteria
under drought stress conditions has been reported in wheat
(Chandra et al., 2019), maize (Danish et al., 2020), millet
(Chandra et al., 2019), rice (Zhang Y. et al., 2020), mint
(Asghari et al., 2020), and tomato (Gowtham et al., 2020).
ACC deaminase-producing bacteria B. Subtilis Rhizo SF 48
protects tomato plants against drought-induced oxidative
damage (Gowtham et al., 2020). Improvement in maize growth
and yield under drought conditions was observed because
of the accumulation of ACC deaminase by E. cloacae and
A. xylosoxidans (Danish et al., 2020). The adverse effect of
drought stress on growth and productivity was eliminated
by ACC deaminase-producing bacteria in pea plants (Arshad
et al., 2008). Similarly, inoculation with ACC deaminase-
producing Achromobacter piechaudii ARV8 in tomato and
pepper significantly reduced the production of ethylene
under drought stress (Mayak et al., 2004; Gowtham et al.,
2020).

Improved water uptake efficiency and longer root growth
under drought stress have been achieved by inoculation with
ACC deaminase-producing P. fluorescens in pea plants (Zahir
et al., 2008). Axenic studies demonstrated that inoculation
with ACC deaminase-producing rhizobacteria increased
root–shoot length, root–shoot mass, and the lateral number
of roots of wheat plants compared with that of the control.
Better development of roots helped the plants acquire water
and nutrients resulting in improved growth and yield under
drought stress (Ilyas et al., 2020). Co-inoculation with ACC
deaminase-producing Bacillus isolate 23-B and Pseudomonas
6-P in conjunction with M. ciceri for mitigation of drought
stress and plant growth promotion under drought conditions
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TABLE 2 | Photosynthetic pigments and osmolytes produced by PGPR to mitigate drought stress.

Soil microbe/Strain Plant species Effect under drought References

Azospirillum brasilense Maize Trehalose translocated to the maize roots and triggered stress
tolerance pathways in the plants

Rodríguez-Salazar et al., 2009

A. lipoferum Maize Increase gibberellins synthesis and alleviate drought stress Cohen et al., 2009

P. putida GAP-P45 Maize Accumulation of proline improved plant biomass, relative water
content, and leaf water potential

Sandhya et al., 2010

B. subtilis GB03 Arabidopsis Enhance metabolic level of choline and gerbilline, improve leaf RWC
under drought stress

Zhang et al., 2010

P. aeruginosa JHA6 Pepper Increased biomass production as well as chlorophyll content of
inoculated plants and nutrient uptake

Gupta et al., 2019

Bacillus amyloliquefaciens ROH14 Pepper Increased biomass production as well as chlorophyll content of
inoculated plants and nutrient uptake

Gupta et al., 2019

P. putida H-2–3 Soybean Secretion of gibberellins and improved plant growth Kang et al., 2014

P. aeruginosa GGRJ21 Mungbean Accumulation of proline and GB under drought stress Sarma and Saikia, 2014

P. putida
B. thuringiensis

White clover Decreased stomatal conductivity, electrolyte leakage, and proline
content

Ortiz et al., 2015

B. aquimaris S 4.43 Sunflower Improved the chlorophyll level and photosynthesis rate under drought Namwongsa et al., 2019

Rhizophagus irregularis Cowpea Enhanced chlorophyll and carotenoid contents under drought stress Rocha et al., 2019

B. velezensis 5113 Wheat Higher chlorophyll contents, plants survival under drought stress Abd El-Daim et al., 2019

P. chinense (P1), B. cereus (P2),
P. fluorescens (P3)

Wheat Enhanced production of proline, antioxidant enzymes, and lipid
peroxidation

Khan N. et al., 2019

Pseudomonas sp. N66 Sorghum Production of proline, glutamic acid, and choline Carlson et al., 2020

A. xylosoxidans Maize Enhances photosynthetic rate, stomatal conductance, chlorophyll a,
total chlorophyll, and carotenoids contents

Danish et al., 2020

Mesorhizobium ciceri CP41
P. fluorescens G.

Chickpea Improved relative water content, proline, total soluble sugar, total
chlorophyll, and carotenoid contents

Abdela et al., 2020

TABLE 3 | Mitigation of drought stress through EPSs produced by PGPR.

Soil microbe/Strain Plant species Effect under drought References

P. putida
GAP-P45

Sunflower Alleviation of drought stress and exopolysaccharide production Sandhya et al., 2009

P. putida
GAP-P45

Maize Improve water holding capacity and exopolysaccharide production Sandhya and Ali, 2015

Proteus penneri (Pp1),
P. aeruginosa (Pa2),
Alcaligenes faecalis (AF3)

Maize Improve EPS production, leaf area, and plant biomass Naseem et al., 2018

Bacillus amyloliquefaciens
HYD-B17,
Bacillus licheniformis HYTAPB18,
B. subtilis RMPB44

Arabidopsis Enhanced EPS production under drought Vardharajula and Ali Sk, 2014

Bacillus amyloliquefaciens
FZB42

Arabidopsis Exopolysaccharide production and induce systemic drought tolerance Lu et al., 2018

B. methylotrophicus
5.18

Sunflower Enhanced EPS production along with other drought tolerance traits Namwongsa et al., 2019

P. chinense P1
B. cereus P2

Wheat Improved production of EPS, enhanced plant growth, and drought
tolerance

Khan and Bano, 2019

P. aeruginosa ZNP1
B. endophyticus J13

Arabidopsis Exhibited increased EPS production under osmotic stress Ghosh et al., 2019

in chickpea significantly improved germination, root and
shoot length, and the fresh weight of plants. Among the
treatments, co-inoculating 23-B with M. ciceri was efficient
under drought stress (Palika et al., 2013). Similarly, inoculation
with ACC deaminase-producing Bacillus licheniformis K11
alleviated drought stress in pepper (Lim and Kim, 2013;
Table 4).

Production of Phytohormones
Phytohormones are small, endogenous, lower molecular-weight
molecules responsible for activating an effective defense response
against biotic and abiotic stresses. A group of ten interconnected
phytohormones, such as abscisic acid (ABA), indole 3 acetic
acid (IAA), auxin, cytokinin (CK), gibberellin (GA), ethylene
(ET), salicylic acid (SA), strigolactones (STs), jasmonate (JA), and
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TABLE 4 | Improved ACC deaminase activity and reduced ethylene production by PGPR under drought stress.

Soil microbe/Strain Plant species Effect under drought References

A. piechaudii Tomato Reduce the Ethylene production Mayak et al., 2004

B. thuringiensis AZP2 Wheat High Phosphate solubilizing efficiency, ACC deaminase activity, improved crop growth
and biomass

Timmusk et al., 2014

Paenibacillus polymyxa B Wheat High Phosphate solubilizing efficiency, ACC deaminase activity, improved crop growth
and biomass

Timmusk et al., 2014

P. fluorescens DR7 Millet Promote plants growth under drought stress, ACC deaminase activity Niu et al., 2018

B. Brevibacterium S91 Tea Improved ACC deaminase activities and IAA production Borah et al., 2019

Pseudomonas sp. N66 Sorghum Lower the ethylene level by improving the ACC deaminase activities Carlson et al., 2020

E. aerogenes Rice Improves rhizosphere health under mild drought stress through ACC deaminase activity Zhang Y. et al., 2020

brassinosteroid (BRs), help plants in their defense mechanism
(Raheem et al., 2018). Among these plant hormones, ABA, JA,
SA, and ET are considered abiotic stress response hormones
(Raheem et al., 2018). Phytoproducts excreted from plant
roots control the soil microbial community by altering the
rhizospheric soil chemistry (Jochum et al., 2019). Possible reasons
for the rhizobacteria-mediated plant drought tolerance include,
(1) development of phytohormones, such as ABA, GA, CK,
and IAAs; (2) reduced ethylene levels in roots because of
ACC deaminase; (3) mediated systemic tolerance by bacterial
compounds; and (4) bacterial EPSs (Vurukonda et al., 2016;
Table 5).

In addition to the production of phytohormones, such as
IAA, GA, CK, and ethylene, the solubilization of phosphates,
nitrogen fixation, and generation of siderophores are all direct
mechanisms of drought effect mitigation (Gontia-Mishra et al.,
2020; Gowtham et al., 2020), which stimulates root proliferation,
increasing the absorption of nutrients, and thus promoting the
plant growth (Raheem et al., 2018). Phytochromes, such as IAA,
GA, ethylene, ABA, and CK, produced by plants are essential
for their growth and development (Andreozzi et al., 2019; Borah
et al., 2019). Phytohormones help plants avoid or survive abiotic
stress in stressful environments (Andreozzi et al., 2019; Borah
et al., 2019). In addition, PGPR can synthesize phytohormones
that promote the growth and division of plant cells that are
resistant to abiotic stresses (Ghosh et al., 2019).

Indole 3 acetic acid is an auxin that is physiologically involved
in plant growth and development. Increased root growth and
formation of lateral and root hairs for higher water and nutrient
uptake were reported in various plant species after inoculation
with IAA to manage drought stress (Dimkpa et al., 2009; Vandana
et al., 2020). IAA increases plant resistance to drought stress
because it produces Azospirillum (Dimkpa et al., 2009). Bacterial
hormone production and their ability to stimulate endogenous
hormones play an important role in enhancing drought tolerance
(Ghosh et al., 2019). In tomato plants, A. brasilense produces
nitric oxide gas, which functions as a signaling molecule in
the IAA-inducing pathway and helps in the development of
adventitious roots (Creus et al., 2005; Molina-Favero et al., 2008).
Maize seedlings inoculated with A. brasilense increased their
relative and absolute water quality in comparison with non-
inoculated plants under drought stress (Danish et al., 2020).
Although microbial treatment in plants lowered their water

potential, it enhanced the root production, biomass, foliar area,
and leaf and root proline accumulation (Vurukonda et al., 2016).
Inoculation with A. brasilense Sp245 in wheat under drought
conditions resulted in high grain yield and mineral quality
(Mg, K, and Ca), with improved relative and absolute water
content, water capacity, and apoplastic water fraction and lower
volumetric cell wall elasticity, suggesting that “elastic change” is
crucial during increased drought status. Similarly, Azospirillum
introduced to wheat induced a decreased water potential and
increased water quality of leaves because plant hormones, such
as IAA, secreted by the bacteria enhanced the general and lateral
root growth by increasing the water and nutrient consumption
under drought conditions (Arzanesh et al., 2011). Production
of phytohormones, such as IAA, improves maize growth with
the help of PGPM, including E. cloacae and A. xylosoxidans
(Danish et al., 2020; Table 6).

Bacillus thuringiensis-assisted Lavandula dentata plants grew
under drought conditions because of bacteria-produced IAA,
which enhanced the plant nutrition, physiology, and metabolic
activity (Armada et al., 2014). Soybean plants inoculated
with the gibberellin-secreting rhizobacterium P. putida H-2–3
demonstrated increased plant growth under drought conditions
(Kang et al., 2014). ABA and GA production by A. lipoferum
reduced the drought effect in maize plants (Cohen et al., 2009).
Cellular dehydration caused ABA (a stress hormone) biosynthesis
during drought stress (Kaushal and Wani, 2016). ABA is involved
in water loss through regulation of the stomatal closure and the
transduction tract of the following stresses. Arabidopsis plants
inoculated with A. brasilense Sp245 had higher levels of ABA
than the non-inoculated plants (Cohen et al., 2009). In Brassica
napus, Phyllobacterium brassicacearum STM196 isolated from the
rhizosphere increased osmotic stress in inoculated Arabidopsis by
elevating ABA content, thereby decreasing the leaf transpiration
(Bresson et al., 2013; Table 7).

Production of Secondary Metabolites,
Antioxidant Activities, and Accumulation
of Reactive Oxygen Species
Secondary metabolites (SMs) are chemical compounds produced
by plant cells during metabolic pathways. Major SMs include
alkaloids, terpenoids, steroids, saponins, flavonoids, glycosides,
phenol, and glucosinolates. Studies have been conducted
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TABLE 5 | Improvement in phytohormone production by PGPR under drought stress.

Soil microbe/Strain Plant species Effect under drought References

P. brassicacearum STM196 Arabidopsis Enhanced ABA decreased leaf transpiration Bresson et al., 2013

G. diazotrophicus PAL5 Sugarcane Inoculation activated the ABA-dependent signaling genes conferring drought
resistance

Vargas et al., 2014

Azospirillum sp. Wheat IAA enhanced root growth, lateral roots formation, and increased uptake of
water and nutrients

Hosseini et al., 2017

Bacillus amyloliquefaciens S-134 Wheat Higher IAA production under water stress Raheem et al., 2018

M. luteus S4.43 Sunflower Enhanced the IAA production under drought Namwongsa et al., 2019

H. huttiense RCA24 Rice IAA producer under drought stress Andreozzi et al., 2019

B. endophyticus J13
B. tequilensis J12

Tomato Stress-induced increase in the levels of phytohormones, gibberellic acid, auxin,
and cytokinin

Ghosh et al., 2019

B. subtilis DHK Maize Production of IAA and stimulates the transcription of ACC synthase enzyme Sood et al., 2020

TABLE 6 | Improvement in phytohormone/enzyme production by PGPR under drought stress.

Soil microbe/Strain Plant species Effect under drought References

P. fluorescens Green gram Production of catalase enzyme Saravanakumar et al., 2011

B. thuringiensis Maize Improved nutrient content and water transport protein as well as reduce
lipid oxidation in the stressed plant

Armada et al., 2014

B. phytofirmans PsJN Wheat Reduced oxidative stress and increased mineral components of wheat. Naveed et al., 2014

Bacillus megaterium BOFC15 Arabidopsis Scavenges ROS, Upregulates ABA biosynthesis Zhou et al., 2016

O. pseudogrignonense RJ12,
Pseudomonas sp. RJ15, B. subtilis
RJ46

Mungbean Elevated production of ROS scavenging enzymes and cellular
osmolytes

Saikia et al., 2018b

B. subtilis Maize, common bean Decreased antioxidant activities under drought stress de Lima et al., 2019

Pseudomonas sp. Strains DPB13,
DPB15, and DPB16

Wheat Improved plant growth and significantly enhanced antioxidant
properties of the plants

Chandra et al., 2019

Bacillus amyloliquefaciens 54 Tomato Decrease the malondialdehyde concentration and improved antioxidant
activities

Wang et al., 2019

Bacillus megaterium STB1 Tomato Biosynthesis of CK, auxins as well as modulation of polyamines Nascimento et al., 2020

Pseudomonas lini
Serratia Bizio plymuthica

Jujube Decreased malondialdehyde, ABA and increased antioxidant enzyme
activities

Zhang M. et al., 2020

A. chroococcum,
Azospirillum brasilense

Mint Higher ABA, proteins and soluble sugars, phenolic, flavonoid, and
oxygenated monoterpenes contents

Asghari et al., 2020

B. Subtilis Rhizo SF 48 Tomato Enhance plant growth, Enhance SOD, APX and ACC deaminase activity
and

Gowtham et al., 2020

Pseudomonas sp. Strain N66 Sorghum Augmented antioxidant capacity under drought Carlson et al., 2020

Bacillus licheniformis FMCH001 Maize Regulates the ROS level and increase CAT activities in root Akhtar et al., 2020

B. subtilis DHK and B1N1 Maize Increase antioxidant enzymatic activities and decrease reactive oxygen
species

Sood et al., 2020

TABLE 7 | Improvement in phytohormone/enzyme production by PGPR under drought stress.

Soil microbe/Strain Plant species Effect under drought References

Bacillus megaterium XTBG34 Arabidopsis Production of VOC (pentyl furan) and promoting of plant growth Zou et al., 2010

P. fluorescens SS101 Production of VOCs 13-tetradecadien-1-01, 2-methy-n-1-tridecene, and 2-butanone Park et al., 2015

B. subtilis SYST2 Tomato Decrease ethylene level, increase auxin, gibberellin, and cytokinin Tahir et al., 2017

Microbacterium sp. EC8 Arabidopsis and tomato Increased root and shoot biomass Cordovez et al., 2018

previously to verify the role of plant SMs against environmental
stresses that lead to enhanced production of these metabolites
in plant cells through various in vivo and in vitro growth
mechanisms. It has been observed that plants exposed to drought
stress exhibit higher production of SMs, such as terpenes,
phenols, flavonoids, and alkaloids (Badri et al., 2013). Plant
metabolites and exudates, including carbohydrates, amino acids,

and other nutrients, are altered in response to drought stress
(Blum, 2017). Changes in the plant metabolite profile also
correlate with changes in the bacterial community, with root
community composition in Arabidopsis demonstrated to be
dependent on the exudate profiles of the host plant (Badri
et al., 2013). During drought, an increase in hydrolytic enzymes
responsible for breaking down complex carbohydrates, such
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as lignin, cellulose, and other plant metabolites within the
microbial communities, has been reported. Additionally, bacteria
can alter ethylene production within the plant through ACC
deaminase activity (Arshad et al., 2008), which in turn alters
the plant growth and metabolite profiles to the benefit of plants
and microbes (Mayak et al., 2004; Zhang et al., 2018). Not
only the host plant can alter its exudate profile to recruit
organisms but also the microbial community can influence
the compounds being exuded, potentially creating a reciprocal
relationship between the community and exudate profile. The
extent to which the exudate profiles are a plant-driven process
and the microbial community can influence that process is
currently unknown.

Drought affects plant metabolism through the accumulation
of ROS, including superoxide anion radicals (O2−), hydrogen
peroxide (H2O2), hydroxyl radicals (OH), singlet oxygen
(O12), and alkoxy radicals (RO), which can cause damage to
membranes, DNA, and proteins (Vurukonda et al., 2016). These
ROS also react with proteins, lipids, and DNA causing oxidative
damage and impairing the normal functions of a plant cell
(Vurukonda et al., 2016; García et al., 2017). Production of
ROS has been demonstrated to be the key process in plant
physiological response to drought, with progressive oxidative
damage, stunted growth, and eventual cell death when the
ROS level reaches a certain threshold (Asghari et al., 2020).
ROS metabolism has been reported to be a general change
across species, omics levels, and compartments in drought
and exerts an impact beyond that of Actinobacteria (Abrahám
et al., 2003; García et al., 2017). ROS metabolism and defense
response transcription are correlated during drought with a
variety of taxa, including R. irregularis and nematodes (Garcia
et al., 2018). The ROS have been demonstrated to modulate
the host microbiome, including the mitigation of nematode
infection in soybeans and tomatoes (Prudent et al., 2015; Asghari
et al., 2020). Generally, drought stress induces overproduction
of ROS and destroys normal cell metabolism via oxidative
damage of membrane proteins, DNA, and lipids (Kaushal
and Wani, 2016). The MDA plays an important role in
membrane lipid peroxidation. Previous studies have revealed
that beneficial microbes can reduce MDA content, prevent
ROS accumulation, increase antioxidant enzyme activities, and
maintain plant growth under drought stress (Silambarasan
et al., 2019). Inoculation of jujube with Pseudomonas lini,
Serratia Bizio plymuthica, or their mixture significantly reduced
the MDA content under drought stress (Zhang M. et al.,
2020). Inoculation with the three bacterial treatments has
been suggested to decrease the detrimental effects of oxidative
damage caused by ROS production under stress conditions
(Zhang Y. et al., 2020). Plants utilize a ROS scavenging
system to remove excessive amounts of ROS to protect
themselves. Host ROS metabolism genes have been reported
to be associated with Streptomyces (a genus of Actinobacteria)
in populus leaves, potentially demonstrating a high universal
drought association between the host and its phytobiome
(Garcia et al., 2018).

Superoxide dismutase and POD are the notable components
that catalyze the dismutation of O2− to oxygen and H2O2

(Sarker and Oba, 2018). POD plays a significant role in catalyzing
hydrogen peroxide to water and oxygen (Liu et al., 2020). During
environmental stress, increased ROS and MDA accumulate in
plants owing to the transcription of genes, such as PgRboHD and
PgFE, between the cells. Inoculation with PGPR enhanced the
expression of antioxidant genes and consequently the quality of
antioxidant enzyme activities (Marchin et al., 2020). The increase
in enzyme activities shielded chloroplast from ROS and removed
superoxides (Sarker and Oba, 2018). A study revealed that
inoculated jujube seedlings exhibited notably higher superoxide
dismutase (SOD) and peroxidase (POD) activities than non-
inoculated seedlings and the enzyme activities increased with
increased water stress (Zhang M. et al., 2020). Hence, we can
conclude that treatment with the three bacteria enhanced the
ability of jujube to scavenge and regulated the expression of
antioxidant genes; thus, enhancing the SOD and POD activities
under water stress and reducing the MDA content (Zhang Y.
et al., 2020). Soil microbes enhance drought tolerance by
improving the cell membrane stability through the activation
of the antioxidant system (Singh et al., 2020). PGPR eliminates
the oxidative damage from drought stress by manipulating
the antioxidant enzymes (Singh et al., 2020). A popular plant
species, basil, inoculated with a rhizobacterial consortium of
Pseudomonas spp., Brachypalpoides lentus, and A. brasilense
helped improve the chlorophyll content and antioxidant activity
in plants under drought stress, resulting in the synthesis of
useful substances instead of producing stress (Gowtham et al.,
2020). Among the fixers of atmospheric nitrogen to plants
for its nutritional needs, Azospirillum is a farmers’ friend that
contributes to the enrichment of the soil and enables the plants
to thrive under abiotic stress. A closer look at the biosynthesis
of siderophores by Gordonia rubripertincta CWB2 suggests
that the GorA gene under expression in E. coli results in the
production of GorA hydroxylase enzyme (Esuola et al., 2016).
It was observed that maize inoculated with drought tolerance-
promoting species like Pseudomonas spp. strains, namely,
Pseudomonas entomophila, Pseudomonas stutzeri, P. putida,
Pseudomonas syringae, and Prochoreutis montelli displayed the
significantly lower activity of antioxidant enzymes compared
with non-inoculated plants when exposed to drought stress
(Sandhya et al., 2009). Pseudomonas spp. DPB16 enhanced
the growth of wheat plants and also modified its antioxidant
properties (Chandra et al., 2019). Tomato plants inoculated with
B. subtilis Rhizo SF 48 increased the antioxidant activities of SOD
and APX enzymes (Gowtham et al., 2020). Streptomyces strains
increased the MDA, H2O2, and total sugar content along with
APX activity while decreasing the CAT and GPX activities under
stress conditions in tomatoes (Abbasi et al., 2020).

Accumulation of Volatile Organic
Compounds
Plant growth-promoting rhizobacteria-mediated VOCs play a
potential role in stimulating plant growth and induced systemic
resistance (ISR) against various biotic and abiotic stresses.
However, the study of the interaction between VOC with
plant growth-promoting phytohormones is at a preliminary
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level. The earliest reported plant growth-promoting VOCs
were 2,3-butanediol, acetoin, and pentyl furan (Ryu et al.,
2003; Zou et al., 2010). A few VOCs described subsequently

include 13-tetradecadien-1-01, 2-methy-n-1-tridecene, and
2-butanone produced by P. fluorescens SS101 in tobacco plants
(Park et al., 2015). The VOCs formed by biocontrol strains not

TABLE 8 | Plant growth-promoting rhizobacteria and siderophore production under drought stress.

Soil microbe/Strain Plant species Effect under drought References

Bacillus sp. KB122, KB129, KB133, and KB14 Sorghum Production of siderophore IAA and solubilization of phosphate. Grover et al., 2021

A. chroococcum 67B Tomato Siderophore synthesis, N2-fixing activity Viscardi et al., 2016

B. phytofirmans PsJN Arabidopsis Biosynthesis and transport of siderophore genes Zhao et al., 2016

Bacillus amyloliquefaciens FZB42 Arabidopsis Effect the formation of biofilm under drought Lu et al., 2018

O. pseudogrignonense RJ12,
Pseudomonas sp. RJ15,
B. subtilis RJ46

Black gram Synthesis of siderophore and phosphate solubilization Saikia et al., 2018b

A. aneurinilyticus WBC1,
Aeromonas sp. WBC4,
Pseudomonas sp. WBC10

Wheat Production of siderophore Kumar et al., 2018

Pseudomonas sp. Q6B, Q14B, Q7B, Q1B, and
Q13B

Tomato Phosphate solubilization, production of ammonia and
siderophore

Qessaoui et al., 2019

Azotobacter sp. Az63, Az69, and Az70 Maize Enhanced siderophore production along with phosphate and
potassium solubilization

Shirinbayan et al., 2019

Bacillus amyloliquefaciens 54 Tomato Enhanced the biofilm-forming ability Wang et al., 2019

V. paradoxus RAA3,
O. anthropi DPC9,
Pseudomonas sp. DPB13
Pseudomonas sp. DPB15
Pseudomonas sp. DPB16

Wheat Synthesis of siderophore and phosphate solubilization Chandra et al., 2019

P. aeruginosa JHA6
Bacillus amyloliquefaciens ROH14

Pepper Synthesis of siderophore, ACC deaminase activity and IAA
production.

Gupta and Pandey, 2019

Rhizobacteria sp.
AV-1, AV-2, and AV-7

Pulses Siderophore production Andy et al., 2020

TABLE 9 | Upregulation of stress-responsive genes by PGPR under drought conditions.

Soil microbe/Strain Plant species Effect under drought References

Bacillus amyloliquefaciens 5113 Wheat Upregulation of stress related genes APX1, SAMS1, and HSP17.8 Kasim et al., 2013

P. chloroaphis O6 Arabidopsis Transcription of JA biosynthesis (VSP1, pdf-1.2) and salicylic acid
regulated gene (PR-1)

Cho et al., 2013

Bacillus licheniformis K11 Pepper Inoculation increased the expression of stress responsive genes Cadhn,
VA, sHSP, and CaPR-10

Lim and Kim, 2013

Azospirillum brasilense SP-7,
H. seropedicae Z-152

Maize Upregulation of ABA biosynthesis gene ZmVP14 Curá et al., 2017

P. putida Chickpea Activation of ethylene, salicylic acid (PR1) and jasmonate (MYC2)
biosynthesis genes under drought

Tiwari et al., 2016

B. subtilis LDR2 Wheat Upregulate the expression of TaCTR1/TaDREB2 TFs under drought
stress

Barnawal et al., 2017

P. flourescens Pf1 Rice The activations of ABA mediated signaling pathway genes like bZIP1,
AP2-EREBP, and Hsp20

Saakre et al., 2017

B. subtilis strain SYST2 Tomato Enhanced the expression of auxin (SlIAA1. SlIAA3), gibberellin
(GA20ox-1), CK (SlCKX1), expansion (Exp2, Exp9. Exp 18), and
ethylene (ACO1) biosynthesis genes

Tahir et al., 2017

Bacillus amyloliquefaciens FZB42 Arabidopsis Expression of drought defense related genes such as RD29A, RD17,
ERD1, and LEA14

Lu et al., 2018

Bacillus amyloliquefaciens Tomato Elevated expression of stress responsive genes, i.e., lea, tdi65, and
ltpg2, increased in

Wang et al., 2019

Streptomyces sp. Tomato Modulate the expression of TF ERF1 and WRKY70 under drought stress Abbasi et al., 2020

F. crocinum HYN0056 Arabidopsis Upregulation of drought responsive genes RD29A and RAB18 Kim et al., 2020

Trichoderma sp.
Pseudomonas sp.

Rice Over expression of water permeability (OSPiP), drought adaptation
(DHN) and dehuderation genes (DREB)

Singh et al., 2020
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only help in plant growth but also prevent pathogens of bacterial
and fungal nature along with nematodes while promoting
resistance against phytopathogens in plants (Cordovez
et al., 2018). Genera of specific bacterial species, including
Pseudomonas, Bacillus, Arthrobacter, Stenotrophomonas, and
Serratia, can produce VOCs that influence plant growth. Two
very active VOCs, 2, 3-butanediol, and acetoin, produced
by Bacillus spp. not only constrain fungal growth but also
enhance the plant biomass (Massalha et al., 2017; Backer
et al., 2018). VOCs are factors for provoking plant ISR
stated that the VOCs from PGPR strains regulate disease
resistance, abiotic stress tolerance, and plant growth (Tahir
et al., 2017). Production of VOCs, comprising cyclohexane,
2-(benzyloxy) ethanamine, benzene, methyl, decane, 1-(N-
phenylcarbamyl)-2-morpholinocyclohexene, dodecane, benzene
(1-methylnonadecyl), 1-chlorooctadecane, tetradecane, 2,6,10-
trimethyl, dotriacontane, and 11-decyldocosane, has been
reported for various soil microorganisms; however, their
concentrations and uniqueness varies among the species (Tahir
et al., 2017; Cordovez et al., 2018).

Siderophore Production
Iron deficiency is the major limiting factor causing chlorosis
in plants, and it ultimately affects crop quality and yield. The
use of synthetic chelates to overcome the deficiency is not
feasible mostly because of their poor biodegradability (Ferreira
et al., 2019). Siderophores, minor organic molecules produced
by microorganisms and a few gramineous plants under iron-
deficient conditions, enable the plants to uptake iron from the
surrounding environment even in reduced iron availability (Saha
et al., 2016; Prabhakar, 2020). They are important compounds for
phytostabilization under unfavorable circumstances and provide
metal coalescence, improve plant growth, and reduce metal
bioavailability in the soil (Qessaoui et al., 2019). Research on
siderophores during the previous decade has demonstrated their
ability to extract iron ions (Saha et al., 2016; Kumar et al.,
2018). PGPR, such as Pseudomonas sp., uses the siderophores
produced by other microbes in the rhizosphere to meet their
essential ion requirements (Qessaoui et al., 2019). Similarly,
P. putida has been reported to accumulate and use heterologous
siderophores produced by other microorganisms to overcome
their iron deficiency by increasing the level of iron offered in
the natural habitat (Gouda et al., 2018). The ferric-siderophore
complex, an extremely strong siderophore, plays a vital part
in the uptake of iron by plants in the presence of other
metals, such as nickel and cadmium (Beneduzi et al., 2012).
Research on siderophores and their capability to enhance the
iron uptake ability of plants is still inadequate, and extensive
studies are required to understand their behavior and mode of
action (Prabhakar, 2020). Consequently, finding environment-
friendly and appropriate siderophores with precise action, as
well as usability as iron enrichers, is a challenge. Among various
compounds, siderophores are receiving greater attention because
of their role as iron chelators and the positive characteristic of
biodegradability over synthetic APCAs (Fazary et al., 2016).

Three bacterial species, Bacillus megaterium, B. subtilis, and
A. vinelandii expressed the maximum iron-chelating capacity,

suggesting their potential to help overcome the iron deficiency
in plants (Ferreira et al., 2019). Recent research described
synthetic compounds, including catecholate and hydroxamate
groups, as probable iron-chelating compounds that can provide
nourishment and growth to plants (Martins et al., 2018; Ferreira
et al., 2019). The use of siderophores in agriculture is practically
limited because of their complex structure and difficulty to
produce owing to a multistep but low yielding process (Leydier
et al., 2008; Martins et al., 2018; Table 8).

Transcriptional Response of Plant
Growth-Promoting Rhizobacteria to
Drought Stress
Gene expression studies are useful to understand and compare
the responses of an organism to its environment (Azeem
et al., 2018). Gene expression under drought stress was
recently characterized using molecular approaches, and their
physiological roles were studied with respect to tolerance
induced by PGPR (Ghosh et al., 2019). At the transcriptional
level, PGPR-enhanced plant tolerance to drought was observed
after inoculation with P. polymyxa B2, with enhanced drought
tolerance in Arabidopsis thaliana (Timmusk et al., 2014). RNA
display revealed that the mRNA transcription of a drought-
response gene ERD15 was augmented as an early response
to dehydration in inoculated plants compared with that in
non-inoculated plants (Timmusk et al., 2014). Using two-
dimensional polyacrylamide gel electrophoresis and differential
display polymerase chain reaction, six differentially expressed
stress proteins were identified in pepper plants inoculated with B.
licheniformis K11 under drought stress. Among them, drought-
specific genes sHSP and CaPR-10 exhibited a greater than 1.5-fold
increase in treated plants compared with that in control plants
(Lim et al., 2013). Using real-time PCR, upregulation of stress-
related genes apx-1, sams-1, and hsp 17.8 in wheat leaves and
increased activity of enzymes involved in the plant ascorbate
glutathione redox cycle, conferring drought tolerance in wheat,
were identified when primed with Bacillus amyloliquefaciens
5113 and A. brasilense NO40 (Kasim et al., 2013). Using
microarray analysis, a set of drought-signaling response genes
were downregulated in the Pseudomonas chlororaphis O6-
colonized A. thaliana compared with those without bacterial
treatment under drought stress. Although the transcripts of the
JA-marker genes vsp-1 and pdf-1.2, SA regulated gene PR-1, and
ET-response gene HEL, were upregulated in colonized plants,
they differed in their responsiveness to drought stress (Cho et al.,
2013). PGPR contains several functional genes, such as IAA
production (iaaM), nitrogen fixation (nifU), spermidine (speB),
and siderophore (sbnA) biosynthesis, which facilitate plant
growth and tolerance under stress conditions (Xiong et al., 2019;
Table 9).

Interactive Effect of Drought and Other
Stresses
Drought and other abiotic stresses, including salinity,
temperature extremes, biotic stress, and malnutrition, mostly
occur simultaneously. The combination of drought and
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other stresses causes a severe inhibition of physiochemical
activities and growth in food crops. For example, plants
demonstrate identical physiochemical and morphological
symptoms when subjected to drought and salt stress (Ahluwalia
et al., 2021). Higher salt concentration favors the occurrence
of drought stress because salt-related solutes reduce the
uptake of water, resulting in reduced leaf water content (Sagar
et al., 2022). Plants in association with PGPR alleviate salt
stress by improving their antioxidative machinery, reducing
the level of lipid peroxidation and ROS, enhancing the
synthesis of biomolecules and phytohormones, regulating
osmosis, and increasing gas exchange attributes (Nadeem
et al., 2010; Akram et al., 2019). Similarly, halotolerant PGPR
modulates gene expression and osmolyte production to
improve salinity tolerance and growth in Capsicum annum
(Yasin et al., 2018a; Khan M. A. et al., 2019; Sagar et al.,
2022).

The joint stress caused by heat and drought in arid, semiarid,
and tropical regions reduces photosynthetic activity, stomatal
conductance, and CO2 assimilation in plants. The interactive
effect of heat and drought stress reduces RuBisCO, photosystem
II, and chlorophyll biosynthesis activities while enhancing the
foliage temperature (Raja et al., 2020). It was observed that
the synergistic effect of heat and drought stress restricted
the development of pollen, pistil, and ovule in grain crops
(Ahmad et al., 2021). The increased synthesis of ROS in plants
subjected to heat and drought stress denatures the proteins,
declines plant nutrition, reduces membranous stability, and
deteriorates the antioxidant defense system, leading to decreased
growth and biomass production in crop plants (Ahluwalia et al.,
2021). However, the increased synthesis of osmoregulators and
improvement in the antioxidative system because of PGPR
assisted the stressed plants to enhance their tolerance by
reducing the level of MDA, ROS, and other toxic elements that
may decrease plant growth (Shah et al., 2021a; Tariq et al.,
2021).

Drought may enhance the chances of pathogenic attack
and infection in crop plants. Drought-stressed plants will
close their stomata to reduce water loss through transpiration.
Nevertheless, pathogen-infected plants enhance their rate
of transpiration (Aung et al., 2018). The toxins produced
by Uromyces phaseoli, which causes leaf rust in R. phaseoli,
decrease the stomatal openings, leading to conciliated drought
resistance (Duniway, 1976). Although a gentle drought
triggers the plant defense system to reduce the pathogen
infection, severe drought causes enhanced pathogen virulence
because plant cells discharge nutritious compounds on their
apoplast, which supports the growth and pathogenicity of
the plant pathogens (Ahmad et al., 2020; Singh et al., 2020).
Wheat plants infected by Fusarium culmorum, which causes
seedling blight and root rot disease in wheat, exhibited
reduced plant growth and biomass production owing to
enhanced levels of MDA content under drought stress
regimes (Lastochkina et al., 2020). Several PGPR strains
trigger the defense systems of plants to combat diseases.
Inoculation with Bacillus and Pseudomonas bacterial strains
may induce disease resistance in crop plants through the

modulation of antioxidant enzymes and osmoregulators
(Yasin and Ahmed, 2016).

Plants growing in areas with metal pollution exhibit curtailed
routine physiochemical and molecular activities (Yasin et al.,
2018b; Shah et al., 2021b). The interactive effect of drought
and metal stress imposes highly pronounced negative effects
on the physiology, morphology, growth, and yield of crop
plants (Yasin et al., 2018c). However, several PGPR strains are
capable of mitigating metal toxicity. Catharanthus roseus plants
inoculated with Bela fortis 162 exhibited improved root and
shoot growth in addition to oxidative stress tolerance under
chromium exposure (Yasin et al., 2018d). Similarly, P. fluorescens
RB4 and B. subtilis 189 mitigated the combined stress induced
by Cu and Pb in assisted plants (Khan et al., 2017a). Inoculation
with Bacillus spp. and B. megaterium MCR-8 in plants growing
under nickel stress improved their antioxidative potential and
gas exchange attributes (Khan et al., 2017b). In addition to the
individual effect of PGPR in stress alleviation, these microbes may
enhance the efficacy of exogenously applied stress ameliorants,
including nanoparticles, plant nutrients, and phytohormones.
The interaction of B. subtilis FBL-10 and silicon reduced the effect
of lead toxicity in eggplant (Shah et al., 2021b). The synergistic
effect of iron oxide nanoparticles and B. subtilis S4 alleviated
arsenic toxicity in Cucurbita moschata (Mushtaq et al., 2020).
Application of Bradyrhizobium japonicum EI09 and selenium
improved chromium stress tolerance in C. annum (Nemat
et al., 2020). Similarly, B. thuringiensis IAGS 199 and putrescine
alleviated cadmium-induced phytotoxicity in C. annum (Shah
et al., 2020). Furthermore, synergism between Enterobacter
sp. CS2 and ethylenediaminetetraacetic acid exhibited positive
effects on the growth of plants subjected to Ni stress (Yasin et al.,
2018d).

CONCLUSION

Thus, drought stress not only affects the morphological and
physiological characteristics of plants, leading to a loss in
crop production but also affects the soil microbe interactions.
We discussed the ways that PGPR adopt to enhance drought
stress resistance. Soil microorganisms associated with the root
system of a plant change the cell membrane elasticity of the
roots, which eventually increases the drought tolerance capacity.
However, during drought stress conditions, plant growth can
be improved by the rhizosphere microbial community via
an increase in the root surface area and root production.
We also enumerated various crop data to demonstrate the
way PGPR are involved in managing the metabolic changes,
EPS production, 1-aminocyclopropane-1-carboxylate deaminase
activity, phytohormone production, antioxidant activities, ROS
accumulation, siderophore production, and transcriptional
response to drought stress.
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