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The detection of plant disease is of vital importance in practical agricultural production. It

scrutinizes the plant’s growth and health condition and guarantees the regular operation

and harvest of the agricultural planting to proceed successfully. In recent decades,

the maturation of computer vision technology has provided more possibilities for

implementing plant disease detection. Nonetheless, detecting plant diseases is typically

hindered by factors such as variations in the illuminance and weather when capturing

images and the number of leaves or organs containing diseases in one image.Meanwhile,

traditional deep learning-based algorithms attain multiple deficiencies in the area of this

research: (1) Training models necessitate a significant investment in hardware and a large

amount of data. (2) Due to their slow inference speed, models are tough to acclimate

to practical production. (3) Models are unable to generalize well enough. Provided

these impediments, this study suggested a Tranvolution detection network with GAN

modules for plant disease detection. Foremost, a generative model was added ahead

of the backbone, and GAN models were added to the attention extraction module to

construct GANmodules. Afterward, the Transformer was modified and incorporated with

the CNN, and then we suggested the Tranvolution architecture. Eventually, we validated

the performance of different generative models’ combinations. Experimental outcomes

demonstrated that the proposed method satisfyingly achieved 51.7% (Precision), 48.1%

(Recall), and 50.3% (mAP), respectively. Furthermore, the SAGAN model was the best

in the attention extraction module, while WGAN performed best in image augmentation.

Additionally, we deployed the proposed model on Hbird E203 and devised an intelligent

agricultural robot to put the model into practical agricultural use.

Keywords: transformer, Generative Adversarial Networks, detection network, deep learning, plant disease

detection, leaf images

1. INTRODUCTION

Agriculture is a milestone and a booster of early human social development. The
substantial advances in science and technology brought about by the prosperity
of human society have been assisting in developing agriculture. In recent decades,
modern technology has empowered humans to produce enough food to feed seven
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billion people (Mohanty et al., 2016). However, many developing
countries face a food crisis (Erokhin and Gao, 2020), suffering
from famine and economic loss. Although political factors
in developing countries, such as social unrest and economic
instability, indeed affect the production and distribution of food,
it is undeniable that those countries lack cutting-edge science
and technology in agriculture.Moreover, food security is typically
threatened by diverse objective aspects, including climate change
(Anderson et al., 2020), plant pests and diseases (Trebicki and
Finlay, 2019), and others. In addition, at the stage of plant’s
leaf quality testing, underdeveloped regions rely mainly on the
workforce to perform leaf classification in terms of quality
or omit this process due to high cost. This decision leads to
stagnation of the agricultural economy in these regions and
further constrains the improvement of the local population’s
living standard. Therefore, developing a positively automated
and low-cost leaf disease detection method is imperative.

Object detection of plant diseases retains a wide range of
application prospects in agriculture, providing timely feedback
on plant conditions, guiding crop cultivation and post-
treatment, and thus significantly declining costs. Thanks to the
blossoming of microcomputers and mobile computing devices,
hardware support has been supplied for plant object detection.
Meanwhile, backpropagation algorithms-based deep learning
methods (especially convolutional neural networks) provide
software support. Accordingly, several researchers have initiated
developing automatic deep learning-based algorithms for plant
disease detection applications.

Mohanty et al. (2016) trained a deep convolutional neural
network(CNN) to recognize 14 crops and 26 diseases (with or
without disease). The trainedmodel achieved 99.35% accuracy on
a reserved test set, reflecting the viability of deep learning in crop
detection. More specifically, Ramcharan et al. (2017) suggested a
deep CNN-based disease detection method, attempting to deploy
the program to mobile devices. Liu and Wang (2020) improved
the existing technique of tomato pest image recognition based
on the YOLO-v3 model (an efficient object detection algorithm
based on CNNs), improve the existing technique of tomato pest
image recognition in the natural. Xu et al. (2022) provided an
approach for data augmentation that can fully utilize data from
non-target regions of sample images to optimize deep learning
models for disease detection. Their method is more applicable
to plant disease detection than common data enhancement
approaches. Zhang et al. (2021b) employed an enhanced CNN
model to detect pear flaws; more precisely, the defect images
were expanded by a deep convolutional adversarial generation
network (DCGAN). On the three thousand validation set, the
detection accuracy reached 97.35% exactly. Besides, various
mainstream CNNs were compared to thoroughly evaluate the
performance of models. Subsequently, the top performed one
was chosen to conduct additional comparative experiments using
traditional machine learning approaches. Agarwal et al. (2020)
suggested a CNN-based approach to detect tomato leaf diseases.
They conceived three convolution-pooling layers and two fully
connected layers. Experimentally, the efficacy of the presented
model outstripped the pre-trained model, namely, MobileNet,
InceptionV3, and VGG16. The classification accuracy fluctuated

between 76 and 100%, and the offered model’s average accuracy
was 91.2% for nine diseases and one healthy category. Pantazi
et al. (2019) utilized one-class classification and local binary
patterns (LBPs) to demonstrate an automated strategy for
identifying crop diseases on multiple leaf images matching
diverse crop species. The suggested methodology employs a
separate one-class classifier for each plant health state. They
tested the algorithms developed on vine leaves in various plants,
finding them highly applicable when applied to other plants.
The 46 plant-condition combinations reached an entire success
rate of 95%. A multi-activation function (MAF) module was
suggested to improve the CNN by Zhang et al. (2021a). The
diseased samples were expanded and supplemented using image
preprocessing measures, and the training speed was raised using
transfer learning and warm-up approaches. The proposed system
could efficiently and correctly detect three types ofmaize diseases,
achieving a 97.41% accuracy rate in the validation set, exceeding
conventional artificial intelligence methods.

Although deep learning has contributed to considerable
progress in plant disease detection, traditional algorithms have
remained the following obstacles that are not neglectable.

1. High model training costs require prodigious amounts of data
and expensive hardware costs and are challenging to deploy to
mobile devices.

2. The inference speed of successfully trained models is relatively
slow, and thus, those models are tricky to be adapted to
practical production.

3. The generalization capability of the models is unsatisfactory,
and a lack of equally effective models for different plant leaves
cannot be overlooked.

Driven by the above impediments, previous studies, and
the vital significance of enhancing the efficiency of object
detection on leaf diseases, this article proposed a high-
performance network for leaf image detection. The network
incorporates the CNN and transformer with GAN modules to
improve mainstream detection networks. This study’s primary
innovations are as follows:

1. We adjusted the transformer to decrease the number of
parameters, accelerating the training and working as a
branch network to improve CNN’s global feature extraction
ability. Tranvolution’s performance is superior to CNN and
ViT with comparable parameter complexity as it inherits
and integrates the structural and global feature extraction
benefits of CNN and visual transformers. It has proved its
extraordinary potential in leaf image detection. Ultimately, the
offered technique achieved 51.7% (Precision), 48.1% (Recall),
and 50.3% (mAP) on the validation set. According to this
experimental outcome, the suggested model surpasses all
comparable models.

2. Given the complexity of the dataset utilized in this
article, various data enhancement methods were employed.
Additionally, this study suggested an original pre-processing
method to remove the leaf vein details for the leaf images.

3. This article encapsulated the proposed model and optimized
the matrix multiplication at the instruction level to run
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efficiently on the Hbird E203 CPU. In addition, an
intelligent agricultural robot was built based on this hardware
platform, allowing the application of the model in real-world
agricultural scenes.

The remaining sections of this study are organized as follows:
Section 2 briefly describes the object detection network’s
development and its recent achievements. Section 3 introduces
the dataset utilized in this article. Section 4 explicitly describes the
Tranvolution detection network with GAN modules. Section 5
defines the experimental setup and evaluation metrics. Section 6
demonstrates and analyzes detection and validation results.
Section 7 operates multiple ablation experiments to prove
the optimized method’s efficiency and discusses the proposed
method’s limitations. Section 8 is a summary of the entire article.

2. RELATED STUDY

Object detection is a vibrant topic in computer vision research
and is a crucial visual content analysis and comprehension.
The benefits in applications such as autonomous vehicles and
medical diagnosis brought by object detection are noticeable.
This section will expound on deep learning techniques applied
to object detection.

Scientists have recognized that CNNs offer an efficient
framework for processing images as a result of AlexNet’s superb
work on ImageNet (Krizhevsky et al., 2012). CNNs are used in
a variety of computer vision tasks due to their flexibility. Object
detection is one of these tasks, whose algorithms can be classified
into anchor-based and anchor-free categories.

2.1. Anchor-Based Object Detection
Algorithms
Anchor-based algorithms have two types: two-stage algorithms
and one-stage algorithms. Typically, two-stage algorithms are
more accurate, whereas one-stage algorithms are faster.

2.1.1. Two-Stage Algorithms
The following shows the steps of two-stage algorithms:

Stage 1: Yield regional suggestions from images.
Stage 2: Create ultimate object edges from region suggestions.
In 2014, Girshick et al. (2014) and Girshick (2015) developed

R-CNN, which used the selective search algorithm to choose
potential object frames from a group of object candidate
frames. Images in these selected frames were then resized to a
certain fixed size and sent to an ImageNet-trained CNN model.
Afterward, extracted features were sent into a classifier, which
predicted if a target would be detected in that object frame and,
if so, to whose category it belongs. Despite the fact that the R-
CNN algorithm has progressed significantly, the computation
of overlapping frames was too redundant, which declined the
entire network’s detection speed. Therefore, to decrease this kind
of unnecessary computation, He et al. (2015) proposed SPP-Net
underlying a distinctive shape, Spatial Pyramid Pooling Layer
(SPP). SPP-Net partitioned an image into diverse blocks, such
as 1, 4, or 8 blocks, and then fused the extracted features of
each block to account for features in different scales. When

applying this network to detect objects, the full image is just
computed once to build the corresponding feature map, avoiding
the redundant convolutional feature map computations. For
classification, SPP-Net used support vector machines (SVMs),
which have a high storage space demand, and merely train the
model for the fully connected layer.

Girshick et al. (2014) and Girshick (2015) improved R-CNN
and SPP-Net and then released Fast R-CNN in 2015. Fast R-
CNN began with an input image fed to the CNN for feature
extraction and returning prospective region ROIs. Subsequently,
the ROIs were subjected to an ROI pooling layer to guarantee
the same size of each region. Finally, the fully connected layer
received these regions’ features for classification. Even though
Fast R-CNN processes an image in 2 s (compared to 14 s
for R-CNN), it is still too slow to be applied in practical
production. For employing CNN models to directly create
candidate frames, Ren et al. (2015) initiated Faster R-CNN—
an end-to-end, closest-to-real-time performance deep learning
detection network. The main contribution of this algorithm was
the proposal of a region selection network for creating candidate
frames, which considerably improved detection frame generation
speed. Inspired by the Faster R-CNN, Lin et al. (2017) proposed a
feature pyramid network (FPN) in 2017. FPN presented a top-
down network structure with lateral connections to construct
high-level semantic information. It vastly increased the accuracy
of the detection network, particularly for datasets containing
huge-scale variations of the objects.

2.1.2. One-Stage Algorithms
YOLO-v1 (Redmon et al., 2016), the first one-stage deep learning
detection algorithm, divides an image into several grids, then
predicts the bounding box for each grid at the same time
and provides the associated probability. Though YOLO-v1 is
significantly faster than two-stage algorithms, it is less accurate,
particularly on small objects. The single shot multibox detector
(SSD) algorithm was then proposed by Liu et al. (2016).
The suggested multi-resolution and multi-reference detection
approaches were the algorithm’s main innovations. The SSD
technique differs from partial earlier detection algorithms in
that some detection algorithms solely detect at the network’s
deepest branch. SSD, on the contrary, possesses several detection
branches that can recognize objects of various sizes. Accordingly,
SSD significantly enhances multi-scale object detection accuracy
and is considerably more feasible for small object detection.
YOLO-v4 (Bochkovskiy et al., 2020) is the YOLO algorithm’s
fourth iteration. To bemore specific, (1) on the input side, mosaic
data augmentation, cross mini-batch normalization (CmBN),
and self-adversarial training (SAT) are employed. (2) YOLO-
v4 introduces new methods on the feature extraction network,
such as dropblock, mish activation function, and CSPDarknet53.
(3) The SPP module is integrated into the detection head. In
conclusion, YOLO-v4 has prominent significance in engineering,
as it introduced the most recent research attainments in deep
learning and realized a considerable leap forward fromYOLO-v3.

The anchor-based object detection algorithms have the
following four drawbacks:
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1. Anchor size, number, and shape significantly impact detection
performance (by varying these hyperparameters, Retinanet
improves AP by 4% on the COCO benchmark), so anchor-
based detection performance is susceptible to the size, number,
and shape of the anchors.

2. These fixed anchors considerably compromise the
generalization capability of the detector, resulting in the
anchor having to be resized and reshaped for different tasks.

3. To match the actual frame, numerous anchors need to be
generated. Nonetheless, most of the anchors are marked as
negative samples during training, so it causes the issue of
extreme sample imbalance.

4. In training, the network needs to calculate the IOU of each
anchor with the actual frame, which consumes plenty of
memory and time.

2.2. Anchor Free Object Detection
Algorithms
Anchor-based detection algorithms are computationally
complicated due to abundant anchors, and multiple
hyperparameters can affect model performance. The recent
anchor-free technique discards anchors and accomplishes
detection by identifying key points, which considerably declines
the number of hyperparameters.

CornerNet is the pioneer of the anchor-free technical route,
which proposes a new object detection method—transform the
detection of the target bounding box by the network into the
detection of a pair of key points (i.e., the lower right and upper
left corners), by detecting objects as pairs of key points without
designing an anchor box as a priority. However, CornerNet
focuses solely on edges and corner points and lacks information
about the target’s interior. Unlike CornerNet, the structure of
CenterNet (Duan et al., 2019) is straightforward. It abandons the
idea of two critical points in the lower right and upper left corners
but directly detects the target’s center point. Furthermore, other
features such as 3D position, size, orientation, and even pose can
be regressed using the image features at the center point location,
which is truly anchor-free. Nevertheless, it is straightforward
to overlap the prediction results when two similar objects are
in close proximity within the image sample. FSAF (Zhu et al.,
2019) proposed a module for training the anchor free branch
in the feature pyramid, allowing each object to automatically
select the most appropriate feature. In this module, the size of the
anchor box no longer determines which features are selected for
prediction, making the size of the anchor an irrelevant variable
and automating the model to learn to select features. The FCOS
(Tian et al., 2019) network is a pixel-by-pixel target detection
algorithm based on FCN, which implements the solution of
anchor free and proposal free and proposes the idea of center
ness. The algorithm avoids complex operations by removing
the anchor, saves a large amount of memory occupation during
training, and reduces the total trainingmemory occupation space
by about two times.

2.3. Transformer Architecture
Transformer architecture for vision tasks has recently been
presented. Visual transformer (ViT) (Han et al., 2020; Sajid
et al., 2021; Truong et al., 2021) establish the possibility

of pure transformer architectures for computer vision tasks
as a pioneering study. Transformer blocks are utilized as
standalone architectures or presented into CNNs for semantic
segmentation, image classification, image generation, image
enhancement, and object detection to manipulate long-range
dependencies. On the other hand, the visual transformers’
particular self-attentive mechanism frequently overlooks local
features. Furthermore, transformers typically surpass CNNs in
terms of all-around performance on massive datasets. Provided
the situations mentioned above—the vast and irreparable
deficit of transformer architectures—this study relates to the
transformer’s conspicuous attention. Subsequently, to suggest
the network in this article, we combine the transformer with a
convolutional network.

3. DATASET

The dataset utilized in this article, PlantDoc, published by
researchers at the Indian Institute of Technology, is a collection of
13 plant species and 27 categories (including 17 types of diseases
such as Bell Pepper Bacterial, Apple Black Rot, Cherry Powdery
Mildew, Blueberry Healthy, Potato Early Blight, CornGray Spots,
Grape Black Rot, and 10 types of healthy plants). The dataset
contains 2,567 images, including 2,328 images in the training set
and 239 images in the test set. The resolution of each image in the
dataset is 416× 416.

3.1. Dataset Analysis
Figure 1 illustrates the following traits of the dataset adopted in
this article:

1 This dataset contains a broad range of plants, and their
diseased and healthy characteristics are more complex than
traditional datasets. The leaves of one healthy plant may retain
the visual characteristics of diseased leaves of another plant.

2. The source of the images in this dataset is complicated,
including (1) images from practical production scenes, as
illustrated in Figure 1E; (2) captured images on solid color
backgrounds, as Figures 1A,I show; (3) and images that have
undergone color channel variation as Figures 1C,G provided;
(4) and even screenshots obtained from electronic documents,
such as Figure 1H.

3. The scale of the images in this dataset varies greatly. There is
only a partial image of one leaf in Figures 1B,D possesses six
leaves, while Figures 1E,F comprise the whole plant with tens
of leaves in total.

3.2. Data Augmentation
The above analysis reflects that although the dataset contains
over 2,000 images, the multiple plant types and lesion types
and the staggering differences in the images make it difficult to
perform feature extraction. Nevertheless, deep learning models,
particularly the CNN model, necessitate numerous data to
undertake the training process. Therefore, it is necessary to
undertake data augmentation on the dataset before performing
feature extraction.
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FIGURE 1 | Dataset visualization. (A,D,I) Images on solid color backgrounds. (B,C,G) Images via color channel variation. (E,F) Images from practical production

scenes. (H) Electronic document image.

3.2.1. Basic Augmentation
In this article, we referred to the method proposed by Krizhevsky
et al. (2012), using image flipping, translation, and scaling for
simple data augmentation. Image flipping and image translation
improve the model’s performance mainly by increasing the
amount of data and enhancing the translation equivariance of
the model. Due to image scaling, the model gains the ability
to recognize different scales of targets, which promotes the
robustness of the model. As mentioned in Section 3.1, the

scales of the same targets are not the same, so it is crucial to
improve the model’s capacity to detect the same target at different
scales. Image affine transformation is a specific implementation
of image scaling.

The width and height of target images are anticipated to be
wtarget and htarget , whereas those of the original image are worigin

and horigin. Formula (1) illustrates that when images are enlarged
and shrunk, the �, which represents the scaling factor, is first
defined. At that moment, we split the width and height of the
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FIGURE 2 | Processing of removal of interferential leaf details.

original image through �. Afterward, we take a fragment inside
the target frame, when the target frame’s center point intersects
with that of the processed image.

� = min{
htarget

horigin
,
wtarget

worigin
} (1)

In parallel with the above-mentioned spatial and scale data
enhancements, basic color channel transformations, such as HSV
channel color variations, are applied in this article to enhance
the recognition performance of the model under different
lighting conditions.

3.2.2. Advanced Augmentation
In addition to the basic data enhancement methods mentioned
above, there are also some advanced augmentation methods to
tackle the problem above.

Removal of interferential leaf details. Considering the
characteristics of the dataset in this article, where many details
in the leaf images will disturb the model. Therefore, erosion
and dilation by Chen and Haralick (1995) were used in data
pre-processing. First, the erosion operation is performed. The
logical operation procedure is shown in Formula (2). Such an
operation can not only remove the leaf details but also change the
characteristics of the lesion, which is the reason why the following
dilation process was necessary. Its logical operation process is
shown in Formula (3). In Formula (2)–(3), A and B represent
the original image of the operator, respectively. The expansion
process can restore the original characteristics of the lesion. The

operation process above is shown in Figure 2.

A⊙ B = {z|(B̂)z ⊆ A} (2)

A⊕ B = {z|(B̂)z ∩ A 6= ∅} (3)

To address the huge memory loss and the network’s suboptimal
sensitivity to adversarial samples, we co-opted theMixupmethod
(Zhang et al., 2017). Mixup aims to solve the network’s enormous
memory loss and the lack of sensitivity to adversarial samples.
Enhancing the sensitivity of the adversarial samples promotes the
precision of the model because our model applied GANmodules.
The method is shown in Formula (4)–(6).

λ = Beta(α,β) (4)

mixed_batchx = λ× batchx1 + (1− λ)× batchx2 (5)

mixed_batchy = λ× batchy1 + (1− λ)× batchy2 (6)

The Cutout (DeVries and Taylor, 2017) method stochastically
removes partial samples and fills them with specific pixels while
maintaining the classification result unaffected. The starting
point of Cutout is identical to the random erasing method,
aiming to enhance the generalizability and simulating masking.
It arbitrarily picks a fix-sized square area and then utilizes all
0 fillings. However, the data should be subjected to a central
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FIGURE 3 | Demonstration of five date augmentation methods. (A) Mixup; (B) Mosaic; (C) CutMix; (D) CutOut.

normalization operation to avoid the influence of filling 0
values on training. Cutout enables CNNs to utilize the image’s
global information rather than local information consisting
of small features.

Unlike Cutout, CutMix (Yun et al., 2019) remove parts of the
sample and fill the removed parts with pixels from other samples.
CutMix improves training efficiency by allowing the model to
detect two objects from a local perspective of an image. It also
helps the model concentrate on areas where distinguishing the
objects is the toughest.

The Mosaic (Bochkovskiy et al., 2020) method can use
more than one image simultaneously, which randomly uses
4 images, arbitrarily scaled, and then arbitrarily distributed
for stitching, significantly augments the dataset, especially the
random scaling adds multiple small objects, rendering the
network more robust. At the same time, it enables the model
to calculate the data of 4 images directly, renders expanding
the mini-batch size unnecessary, and allows one GPU to get
superior outcomes. The downside is that if the dataset itself has
many small targets, thenMosaic data augmentation will cause the
already small targets to become even smaller, resulting in poor
generalization of the model.

Figure 3 displays these explicit effects.

4. TRANVOLUTION DETECTION
NETWORK WITH GAN MODULES

Mainstream one-stage object detection models—YOLO
(Redmon et al., 2016; Redmon and Farhadi, 2017, 2018;
Bochkovskiy et al., 2020) and SSD (Liu et al., 2016; Li and
Zhou, 2017) are frequently utilized in target detection and have
demonstrated outstanding performance on MS COCO (Lin
et al., 2014) and Pascal VOC (Everingham, 2010) data sets.
However, the characteristics of the YOLO series are not suitable
for detecting leaf images.

As mentioned in the analysis of the dataset characteristics,
there are high-density small object detection scenarios in
practical applications. The general approaches to solving
the small object detection problem include: increasing the

resolution of the input image, which increases the computational
complexity, and multi-scale feature representation, which makes
the results uncontrollable. At present, the mainstream detection
network incorporates the Feature Pyramid Network (FPN)
(Lin et al., 2017). After the backbone extracts the features,
the FPN contains the neck network with the fusion of deep
feature maps and shallow feature maps. This structure improves
the network’s detection ability for different scales of objects.
Nevertheless, it also complicates the network and has the
possibility of overfitting. Therefore, this article proposes a multi-
GANs structure, aiming to improve the above problem and
enhance the model performance of the detection network. The
main idea is to add a generative network model in front of
the backbone of the detection network to augment the dataset.
Subsequently, add a feature extractor based on the generative

network model in the backbone of the detection network,

improving CNN’s feature extraction capability. The subsequent
neck network and head network function will work more
satisfactorily and efficiently when enough features are extracted.

Compared with the mainstream object detection models,

including one-stage and two-stage, the main innovation of the

Tranvolution detection network with GANmodules is:

1. Two generative network models are added to the network
to address the inadequate training of CNNs due to small
data sets and improve the ability of deep CNNs to extract
image features.

2. We modified the ViT, by reducing the number of parameters,
and improving the training speed, to improve CNN’s ability
to capture global features as a branch network. Because
it inherits and combines the structural and global feature
extraction advantages of CNN and visual transformers,
the performance of the detection network is significantly
better than CNN and vision transformers with comparable
parameter complexity, showing the great potential capability
in leaf image detection tasks.

3. Using label smoothing techniques and optimizing the loss
function to improve the performance of the network.

4. Improve the NMS algorithm in the detection network by
adding weight coefficients to fuse the bounding boxes.
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FIGURE 4 | Structure of the Tranvolution detection network with GAN modules.

Figure 4 illustrates the structure of the Tranvolution
detection network.

4.1. GAN Modules
Our network comprises two GAN modules: the pre-GAN and
the post-GAN, as shown in Figure 4. Pre-GAN is placed before
the backbone of the one-stage detection network to expand leaf
images. TheGANmodule here can be implemented using various
algorithms. Algorithm 1 shows the process of implementing
pre-GAN using WGAN in the form of pseudo-code.

Another probable implementation of pre-GAN is the
Balancing GAN (Mariani et al., 2018), introduced by IBM, which
is a specific improvement on ACGAN (Odena et al., 2017),
specifically designed to solve the problem of small sample size
in unbalanced datasets.

The post-GAN locates in the attention mechanism module,
as depicted in Figure 4. Its principal function is to add a
noise mask to the feature maps taken from the backbone
to enhance the model’s robustness. The following Section
6 displays that introducing noise can considerably enhance
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Algorithm 1: Algorithm of WGAN. α = 0.00005, c = 0.01,m =
64, ncritic = 5.

1: Input: dataset D
2: Output: dataset D′

3: Require: α, the learning rate. c, the clipping parameter. m,
the batch size. ncritic, the number of iterations of the critic
per generator iteration.

4: Require: ω0, initial critic parameters. θ0, initial generator’s
parameters.

5: while θ has not converged do

6: for t = 0, · · · , ncritic do
7: Sample {x(i)}mi=1 ∼ Pr a batch from the real data.

8: Sample {z(i)}mi=1 ∼ p(z) a batch of prior samples.

9: gw ←▽ω{
1
m

∑m
i=1 fω(x

(i))− 1
m

∑m
i=1 fω(gθ (z

(i)))}
10: ω← ω + α · RMSProp(ω, gω)
11: ω← clip(ω,−c, c)
12: end for

13: Sample {z(i)
m
i=1 ∼ p(z)} a batch of prior samples.

14: gθ ←▽ω
1
m fω(gθ (z

(i)))
15: θ ← θ − α · RMSProp(θ , gθ )
16: end while

model performance. The post-GAN module can be built
in a variety of ways. SAGAN, e.g., is used as indicated
in Figure 5.

These GAN modules enhance the detection network’s
robustness by adding GAN branches to regularize the results.
In order to prevent the gradient from disappearing in the
convolutional layer for inputs data more minor than zero,
we changed the activation function for each block in the
original model from ReLU to LeakyReLU. Meanwhile, e.g., the
normalization layer works more satisfactorily on generative tasks
than the batch normalization layer, the batch normalization
layers of the GAN module were replaced with instance
normalization layers.

It should be noted that the GAN module in the network
is pre-trained and does not participate in the training of the
monitoring network. In fact, since the significance of the GAN in
this article is to add noise to the image, we do not expect the noise
patterns to affect object detection. Therefore, a good criterion
for noise addition is that it can bring appropriate occlusion,
blurring, or interference to the original image but not destroy
the object features. Therefore, we used the original image as the
input and the artificially enhanced image as the training set to
train the GAN. For determining whether the GAN model has
completed training, we referred to the most common metric,
the inception score. In addition, we undertook combination and
comparison experiments to select trained GAN models and the
combination strategy.

4.2. Tranvolution
In 2020, the transformer achieved extraordinary classification,
detection, and segmentation results. However, the drawbacks
are apparent:

1. Its training time is exceedingly long;

2. It is not conducive to deployment acceleration;
3. It requires a vast dataset;

Therefore, in this article, we referred to the idea of a
transformer and design it as a branch network, which exploits its
ability to extract global features and relies on the CNN backbone,
avoiding its training time from being too prolonged.

As Figure 4 depicts, CNN backbones still utilize the feature
pyramid structure. Moreover, the feature map’s resolution
decreases as the depth of the network increases while the
number of channels increases. The transformer branch network
is responsible for providing global features to the backbone.
First, the input image is divided into patches, and then
mainly undertake transformation for each patch as a flattening
operation. For instance, assuming the input image size is 256 ×
256, if it is divided into 64 patches, each is 32 × 32 in size. The
original Transformer encoder is composed of alternating multi-
heads self-attention and multi-layer perceptron. Nevertheless, in
this article, to reduce the number of parameters and training
time, this part is transformed into the identical mechanism
as the attention module in the backbone, i.e., attention based
on post-GAN optimization. After being processed through
the layer norm layer, all the features are pooled and sent to
the CNN backbone.

4.3. Loss Function
The detection network’s loss function is composed of three
portions: regression box loss, CIoU loss, and classification
loss. The calculation process is shown in Formula (7)–
(10). Box coordinate error (xi, yi) denotes the predicted
box’s center position coordinate, and (wi, hi) is its width

and height. (x̂i, ŷi) and (ŵi, ĥi) denote coordinates and size
of the labeled ground truth box, respectively. Furthermore,
λcoord and λnoobj are constants. K × K represents the grids’
amount. M expounds the predicted boxes’ overall amount.

Besides, I
obj
ij is one when the ith grid detects a target and

zero otherwise.

Loss = Lossbounding_box + Lossciou + Lossclassification (7)

Lossbounding_box =λcoord

K×K∑

i=0

M∑

j=0

I
obj
ij (2−wi × hi)[(xi−x̂i)

2 + (yi−ŷi)
2]+

λcoord

K×K∑

i=0

M∑

j=0

I
obj
ij (2− wi × hi)[(wi − ŵi)

2 + (hi − ĥi)
2]

(8)

Lossciou =

K×K∑

i=0

M∑

j=0

I
obj
ij [Ĉilog(Ci)+ (1− Ĉilog(1− Ci))]+

λnoobj

K×K∑

i=0

M∑

j=0

I
noobj
ij [Ĉilog(Ci)+ (1− Ĉilog(1− Ci))]

(9)

Lossclassification =

K×K∑

i=0

I
obj
ij

∑

c∈classes

[p̂i(c)log(pi(c))

+ (1− p̂i(c)log(1− pi(c))]

(10)
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FIGURE 5 | Flow chart of SAGAN.

4.4. Fusion Method for Bounding Boxes
We proposed a new fusion algorithm for bounding
boxes that gave up the NMS solution of removing
bounding boxes with low confidence and adopted
the method of fusing different bounding boxes of the
same object. In fact, the weight coefficients s were
introduced in the fusion process, and the weight
coefficients of each bounding box were calculated as shown
in Formula (11).

Cs = α × As + (1− α)× Bs (11)

The alpha represents the sub-network weights of the
generative sub-network, and by adjusting the size of α,
we can control the degree of influence that the generative
sub-network on the main detection network; (x1, y1), (x2, y2)
represent the top-left and bottom-right coordinates of a box,
respectively; c represents the confidence level of a bounding
box. So the higher the c box is, the larger s is, and it
contributes more to the process of generating a new box. The
shape and position of the new box are closer to boxes with
larger weights.

Cx1 =
Ax1 × As + Bx1 × Bs

As + Bs
(12)

Cy1 =
Ay1 × As + By1 × Bs

As + Bs
(13)

Cx2 =
Ax2 × As + Bx2 × Bs

As + Bs
(14)

Cy2 =
Ay2 × As + By2 × Bs

As + Bs
(15)

Formula (12)–(15) shows how to get the fused
bounding box C by using two bounding boxes
A and B.

5. EXPERIMENT

5.1. Evaluation Metrics
This study uses five metrics to validate the performance of our
model, including Precision (P), Recall (R),mAP, IoU, and FPS.

Precision (P) denotes the proportion of the number of actual
positive samples in the correct prediction sample (True Positive,
TP) to the number of all positive samples (True Positive, TP and
False Positive, FP). Precision is calculated as:

P =
TP

TP + FP
(16)

Recall (R) denotes the proportion of the number of actual
positive samples in the correctly predicted sample (True Positive,
TP) to the number of actual positive samples (True Positive, TP
and False Negative, FN). The Recall is calculated as:

R =
TP

TP + FN
(17)

Intersection over Union (IoU) is a criterion for measuring the
accuracy of detecting corresponding objects in a given dataset.
IoU can be used for any task that yields a prediction range
(bounding boxes) in the output. Given a set of images, IoU
presents the similarity between the predicted and ground-truth
regions of the objects present in the image and is defined by the
following equation:

IoU =
|A ∩ B|

|A ∪ B|
=

TP

TP + FP + FN
(18)

where A presents the ground truth region and B expounds
the predicted part. The value of IoU ranges in the interval
0 to 1 (inclusively). More specifically, 0 means that the
predicted region and the ground-truth region have no overlap;
1 means that the predicted region and the ground-truth region
overlap entirely. Meanwhile, when the value of IoU ≥ 0.5, this
situation is regarded as a true positive; otherwise, it is a false
positive situation.
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Neither Precision nor Recall alone is a good criterion of a
model’s performance, and in reality, generally, if Accuracy is
high, Recall will be relatively low, and vice versa. So finding a
balance between Precision and Recall is significant. One way is
to draw a Precision-Recall curve (PR curve) with Recall on the
horizontal axis and Precision on the vertical axis. The area under
the Precision-Recall curve is used to measure, and the value is
called Average Precision (AP).

In practice, the IoU of an image’s predicted and ground-truth
regions is calculated foremost. The outcome can be concluded to
be TP or FP in terms of the threshold of the IoU. Subsequently,
sort the confidence of each predicted region from high to low
and then attain Precision and Recall under different confidence
thresholds. According to these sets of Precision and Recall values,
draw the corresponding PR curve and calculate the AP value.

Average Precision measures the effectiveness of one detection
category, and mean Average Precision (mAP) assesses the
detection effectiveness of multiple categories. The mAP is
obtained by averaging the AP values of all classes.

The number of Frames Per Second, also referred to as FPS, is
a measure of the amount of information used to save and display
dynamic video. The more frames per second, the smoother
the action displayed will be. In a deep learning model for
object detection, FPS is used to represent the inference speed
of the model.

5.2. Experiment Setting
A personal computer (CPU: Intel(R) i9-10900KF; GPU: NVIDIA
RTX 3080 10 GB; Memory: 16 GB; OS: Ubuntu 18.04, 64 bits) is
used to carry out the entiremodel training and validation process.
The Adam optimizer with an initial learning rate, a0 = 1e−4 is
selected in this article, and the learning rate increment is adjusted
using the method specified in Section 5.4.

5.3. Label Smoothing
Usually, there are a small number of mislabels in machine
learning samples, which can affect the prediction effect, especially
when the sample size is small. Therefore, in this article, we
adopted the label smoothing technique to improve the situation,
which is based on the following solution: to avoid “over-trusting”
the labels of training samples by assuming that some of the labels
may be incorrect at the time of training.

At each iteration, instead of inputting (xi, yi) directly into the
training set, an error rate ǫ is set, and (xi, yi) is substituted into the
training with probability 1− ǫ, and (xi, 1− yi) is substituted into
the training with probability ǫ. In this way, the model is trained
with both correct and incorrect label inputs, and it is conceivable
that the model so trained will not match every label “to the fullest
extent” but only to a certain extent. This way, the model will be
less affected if there are indeed incorrect labels.

When we use cross-entropy to describe the loss function, for
each sample i, the loss function is:

Lossi = −yi × P(ŷi = 1|xi)− (1− yi)× P(ŷi = 0|xi) (19)

After randomization, the new labels have the same probability of
1 − ǫ as yi and a different probability of ǫ, i.e., 1− yi. Therefore,

when the randomized labels are used as training data, the loss
function has the same probability of 1 − ǫ as the above equation
and the probability of ǫ as:

Lossi = −(1− yi)× P(ŷi = 1|xi)− yi × P(ŷi = 0|xi) (20)

After weighted averaging Formula (19) and (20) by probability,
having y′i = ǫ × (1− yi)+ (1− ǫ)× yi, we can obtain:

Lossi = −(1− y′i)× P(ŷi = 1|xi)− y′i × P(ŷi = 0|xi) (21)

Compared with the original cross-entropy expression, only yi
is replaced with y′i, while everything else remains the same.
This is actually equivalent to replacing each label yi with y′i and
then performing the regular training process. Therefore, in this
article, randomization was not conducted before training except
by replacing each label accordingly.

5.4. Training Strategy
Warm-up (He et al., 2016) is a training strategy. The exp
warm-up method is examined in this article, which involves
linearly accelerating the learning from a minuscule value to the
predefined learning speed and then fading in terms of the exp
function law. This article also tried cos Warm-up. According to
the cos function law, the learning rate increased linearly from a
minimal value to a preset value and then decayed. The principle
of cosine decay is shown in Formula (22).

ηt = ηimin +
1

2
(ηimax − ηimin)(1+ cos(

Tcur

Ti
π)) (22)

Among it, i represents the number of iterations, ηimax and ηimin
represent the maximum and minimum values of the learning
rate, respectively, Tcur represents the number of epochs currently
executed. In contrast, Ti represents the overall number of epochs
in the number i step.

6. RESULTS

In this section, the model introduced in Section 4 was
implemented for object detection in leaf images. We trained
the datasets with three input sizes, 300 × 300, 416 × 416,
and 608 × 608, which are the suggested input resolutions for
the YOLO model.

6.1. Validation Results
In this section, a comparison of various models and different
pre-training parameters is provided, whereMolileNet and Faster-
RCNN’s data are acquired from PlantDoc (Singh et al., 2020).
Table 1 illustrates the statistical results. The best results of the
index are marked red.

As demonstrated in Table 1, YOLO v5 (Jocher, 2020) has the
best speed, with FPS reaching 97, although it possesses the highest
resolution. The mAP of MobileNet, the pre-training parameters
fetched by adopting COCO and PVD, is 22.4%, which is the worst
performance of all models. These P, R, andmAP of YOLO v5 are
the most excellent among all YOLO series, reaching 45.0, 38.6,
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TABLE 1 | Comparisons of different detection networks’ performance (in %).

Model Input size Pretrained weights Precision Recall mAP (at 50% IoU) FPS

MobileNet 416× 416 COCO - - 32.8 Singh et al., 2020 -

MobileNet 416× 416 COCO + PVD - - 22.4 Singh et al., 2020 -

Faster-RCNN-Inception-ResNet 416× 416 iNaturalist - - 36.1 Singh et al., 2020 -

Faster-RCNN-Inception-ResNet 416× 416 COCO - - 38.9 Singh et al., 2020 -

SSD 300× 300 COCO 37.9 39.4 38.3 44

FSSD 300× 300 COCO 39.7 36.3 37.6 39

RefineDet 300× 300 COCO 34.4 38.3 35.9 43

EfficientDet 416× 416 COCO 42.1 39.2 39.7 35

YOLO v3 608× 608 COCO 39.7 39.4 39.5 88

YOLO v4 608× 608 COCO 41.4 39.5 38.1 87

YOLO v5 608× 608 COCO 45.0 38.6 41.7

50.3

97

Ours 416× 416 COCO 51.7 48.1 37

The red values annotate the evaluation metrics of our model and represent they are the best among all of the models.

and 41.7% to be exact. Meanwhile, this performance exceeds any
other comparable models. The most similar model to YOLO v5
is EfficientDet, with P, R, and mAP of 42.1, 39.2, and 39.7%,
respectively. Nevertheless, its inference speed is significantly
lower than YOLO v5, reaching only 36% of the latter. That
is probably due to the stronger performance of the attention
extraction module in YOLO v5. SSD series’ performance, on
the whole, lags behind the YOLO series and EfficientDet, and
the YOLO series are the best models among the comparisons.
For the backbone part of the proposed model, we selected the
pre-training parameters obtained based on ImageNet. Moreover,
its Precision, Recall, and mAP are superior to other comparable
models. However, our model fails to be superior in inference
speed (only 38% of YOLO v5). The complexity of the GAN
modules and Transformer branch cause it. As depicted above,
the Tranvolution detection network with GAN modules reflects
the best detection performance on the validation set, according
to the results.

6.2. Detection Results
For further comparison, we extracted nine images from the test
set, which is identical to the nine images shown in Figure 1. The
reason for using these nine images for this presentation is that
these images show as many detection scenarios as possible in
the dataset. Figures 6–10 depicts the detection results. Figure 6
denotes the ground truth; the red boxes in the rest of the images
denote the predicted bounding boxes.

It can be witnessed that the SSD series performs very poorly in
these nine images, while EfficientDet and YOLO series perform
relatively well and detect lesions accurately. However, when the
detected objects are too tiny, all models’ performance decreases,
and part of the models even have some unlabeled detected
objects. This situation is probably related to the attention
extractionmodule in these networks. Ourmodel outperforms the
previous models by highly accurate object detection, even when
detecting moderately dense objects. Although there is still room
for improvement, it has outperformed other models. On the one
hand, we augment the image with the WGAN model before it

is fed into the backbone. On the other hand, we add the SAGAN
model to the attention extraction module, which can significantly
improve the model’s robustness.

7. DISCUSSION

7.1. Ablation Experiment of GAN Modules
This article uses GAN modules in backbone and attention
extraction modules, while GANmodels have many branches and
focus. The primary purpose of the pre-GAN module in front
of the backbone is to enhance the model input. In contrast, the
post-GAN module in the attention extraction module generates
an attention mask to enhance the model’s robustness. Therefore,
for the two GAN modules with different purposes, different
GAN models are implemented in this article, including WGAN,
BAGAN, SAGAN, and SPA-GAN. Several ablation experiments
are conducted, and the experimental results are shown inTable 2.

Table 2 reflects that using WGAN and SAGAN to implement
pre-GAN and post-GAN, respectively, can optimize the model
performance, with the three primary metrics reaching 51.7, 48.1,
and 50.3%. As a comparison, WGAN is better than BAGAN
in the choice of pre-GAN. Regardless of the implementation of
the post-GAN, this is probably because BAGAN uses a different
formula from WGAN in computing the difference between the
generated data and the original data, failing to maximize the
generator’s and discriminator’s performances. In addition, as
revealed in the experiments, the inference speed of the model
is almost the same regardless of the combination type of GAN
modules used. More precisely, the inference speed is only 10 ms
slower compared to the baseline. However, it is apparent that the
GANmodules can significantly improve themodel’s performance
regardless of the implementation approaches. Therefore, we
argue that although the addition of GAN modules slows
down the model, the optimization is reasonable considering
performance improvement.

Moreover, Self-Attention Generative Adversarial Networks
(SAGAN) contain an attentionmechanism, and the transformer’s
structure is also for feature extraction; both network models have
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FIGURE 6 | The ground truth in the dataset.

the same effect on the model in this respect. As shown in the table
above, the model with the combination of WGAN + SAGAN
has the best performance, which is probably related to the self-
attention mechanism in SAGAN. The self-attention mechanism
has been widely used in the field of machine translation, and
the transformer was first used in the field of natural language
processing. The incorporation of transformer and SAGAN with
self-attention also achieved the best performance in the object
detection task in this article, which made us quite excited. We
will further explore how these two mechanisms work specifically
in computer vision later. We tried to visualize the mask of noise
generated by two post-GANs, as shown in Figure 11.

As Figure 11 depicts, although the feature maps generated by
the two post-GAN implementing approaches differ dramatically,
the resulting highlights are essentially the same. It is difficult

to comprehend in the traditional human style of thinking and
reading as noise mask affects feature maps. Yet, the noise
generation area is nearly identical because the noise mask can
substantially increase the model’s performance. We hypothesize
that the post-GANmodule can improve the model’s resilience by
adding noise to the object area.

7.2. Ablation Experiment of Pre-processing
Methods
To verify the effectiveness of the various pre-processing
methods proposed in Section 3.2.2. The ablation experiments
were performed on our model. The experimental results are
shown in Table 3.

Table 3 indicates that the CutOut method and CutMix
method are the most effective for data enhancement. In contrast,
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FIGURE 7 | The detection results of YOLO v3 in the dataset.

the CutMix method does not appear to have a more positive
effect than the above combinations, because themodel works best
merely when three data enhancement methods—the CutOut,
CutMix, and Mosaic method—are used.

7.3. Hardware Deployment Application
To deploy the model proposed in this article into a practical
application scenario, the model is packaged and deployed
in conjunction with the Hbrid E203 RISC-V processor. The
main reason for choosing this hardware is that it depends
on an open-source RISC-V platform and can be highly
customized. However, considering its computational power,
there is still a need to optimize the computational process
of the model in this article. In this article, we borrowed

Strassen’s (Strassen, 1969) optimization idea to optimize the
matrix multiplication because the convolutional layer in CNN
uses a lot of matrix multiplication operations, so optimizing the
efficiency of matrix multiplication operations can significantly
improve the model inference speed. This scheme has the
following contributions:

1. We encapsulate themodel proposed in this article and save the
parameters of the trained model so that the inference process
runs locally;

2. We use Strassen’s algorithm to optimize the matrix
multiplication method;

3. We developed on the Hbird E203 platform, and the model
hardware is deployed.
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FIGURE 8 | The detection results of SSD in the dataset.

As shown in Algorithm 2, the time complexity
of the convolution operation using the conventional
matrix multiplication is θ(n3), where n is the
matrix dimension.

To accelerate the inference speed of the model, we used
the Strassen algorithm, which is essentially a partitioning

method with time complexity θ(nlog
7
2 ), to optimize the

matrix multiplication operation. The procedure is shown
in the Algorithm 3.

Figure 12 displays the intelligent agricultural robot based
on the above chip and algorithm, which can realize the self-
tracing function and leaf disease detection through the infrared
distance measurement and camera on the bottom of the
vehicle body.

7.4. Limitation
Although the model proposed in this article has surpassed other

comparative models in both evaluation metrics and detection
results, it still has limitations. As shown in Figure 10, our model’s

defects are pronounced in the task of small-scale object detection.
Therefore, we analyzed the model performance on different
subclasses of the dataset, as shown in Table 4.

Table 4 reflects that our model does not perform well when
there are too many objects, and there is some mislabeling.
However, this result is perfectly acceptable in practical
application scenarios when comparing and referring to specific
images. Moreover, considering that the dataset is annotated
from the web, some leaves are not annotated manually, but
our model annotates them. Although this is only a minimal
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FIGURE 9 | The detection results of EfficientDet L2 in the dataset.

number of mislabeling cases, it can be seen that our model
cares more about whether all of them are detected, so some of
them are mislabeled. In the plant protection scenario, we think
the loss caused by mislabeling is much lower than that caused
by detection missing. In summary, we will further improve
the performance of our model in object-intensive scenarios in
the future.

8. CONCLUSION

Considering agriculture’s irreplaceable significance in human
social development, and with the cutting-edge technology’s
progress in object detection, plant disease detection has
become an increasingly more vibrant task in the field of

computer vision research. Even though detecting plant diseases
occupies a vital position in practical agricultural production,
drawbacks of typical algorithms in deep learning should
never be overlooked: (1) The training model requires a high
expenditure on hardware, and a massive number of data
are necessary. (2) Models are problematic for adapting to
practical production due to the low inference speed. (3)
Models lack sufficient generalization capability. In addition
to the algorithm itself, there are various constraints in
detecting plant diseases: (1) The quality of the acquired
leaf dataset is influenced by objective factors, such as
illumination and leaf growth stage. (2) In an image with
multiple leaves, the leaves blocking each other will affect the
object detection.

Frontiers in Plant Science | www.frontiersin.org 16 May 2022 | Volume 13 | Article 875693

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhang et al. Automatic Plant Disease Detection Method

FIGURE 10 | The detection results of our model in the dataset.

TABLE 2 | Results of different implements of GAN modules (in %).

Method Precision Recall mAP FPS

No GAN (baseline) 39.3 37.8 38.5 63

WGAN + SAGAN 51.7 48.1 50.3 37

BAGAN + SAGAN 49.8 49.1 49.3 37

WGAN + SPA-GAN 51.9 47.6 49.7 37

BAGAN + SPA-GAN 48.1 46.3 46.6 37

Therefore, this article proposed a Tranvolution
detection network with GAN modules, aiming to
tackle these mentioned above problems. The following
demonstrates primary innovations of the model proposed in
this article:

1. GAN modules: First and foremost, a generative model is
added in front of the backbone to expand the input leaf
images, which aims to alleviate the general problem of
small sample size datasets. Second, GAN models are added
to the attention extraction module to generate attention
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FIGURE 11 | Illustration of noise mask generated by different GAN models. (A) Feature maps generated by WGAN. (B) Feature maps generated by SAGAN.

TABLE 3 | The ablation experiment results from different pre-processing methods (in %).

MixUp CutOut CutMix Mosaic Precision Recall mAP

X X X X 51.7 48.1 50.3

X X X 51.2 48.9 50.5

X X X 50.4 48.3 49.8

X X X 50.4 48.4 49.8

X X X 51.7 48.2 50.3

Algorithm 2:Matrix multiplication algorithm.

1: input: matrix A, matrix B
2: output: matrix C
3: n = A.rows
4: create a new n× nmatrix C
5: for i = 1 to n
6: for j = 1 to n
7: Cij = 0
8: for k = 1 to n
9: Cij = Cij + Aik · Bkj
10: returnmatrix C

masks. Figure 11 shows the effect of adding GAN models
on feature maps, and the results of the experimental part
also illustrate that this approach can effectively improve the
robustness of the model. Ultimately, on the validation set, the
proposed method reaches 51.7, 48.1, and 50.3% on Precision,
Recall, and mAP, respectively. This experimental result
demonstrates that the proposed model outperforms all the
comparison models.

Algorithm 3: Strassen algorithm.

1: input: matrix A, matrix B
2: output: matrix C
3: n = A.rows
4: create a new n× nmatrix C
5: if n == 1
6: C11 = A11 · B11
7: else

8: devide matrix A into r sub-matrices A11,A12,A21,A22

9: devide matrix B into r sub-matrices B11,B12,B21,B22
10: devide matrix C into r sub-matrices C11,C12,C21,C22

11: C11 = Strassen(A11,B11)+ Strassen(A12,B21)
12: C12 = Strassen(A11,B12)+ Strassen(A12,B22)
13: C21 = Strassen(A21,B11)+ Strassen(A22,B21)
14: C22 = Strassen(A21,B12)+ Strassen(A22,B22)
15: returnmatrix C

2. We modified the Transformer, by reducing the number of
parameters, and improving the training speed, to improve
CNN’s ability to capture global features as a branch network.
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FIGURE 12 | Intelligent agricultural robot, with infrared distance measurement

and multiple cameras deployed on the bottom.

TABLE 4 | Comparisons of our model performance on different leaf size

sub-dataset (in %).

Leaf size Precision Recall mAP (at 50% IoU)

Small 38.9 32.7 47.8

Medium 73.8 67.5 70.6

Large 95.1 88.3 89.4

Because it inherits and combines the structural and global
feature extraction advantages of CNN and visual transformers.
The performance of Tranvolution is significantly better than
CNN and vision transformer with comparable parameter
complexity, showing the great potential capability in plant
disease detection tasks.

3. In order to verify the effectiveness of various implementations
of GAN modules, in Section 7, we validated the performance
of different combinations of generative models. The
experimental results reveal that the model obtained by the
combination of WGAN + SAGAN has the best performance.

4. Based on the model proposed in this article, we optimized
it at the command level, deployed it on Hbird E203,
and created an intelligent robot that works with actual
agricultural scenarios.

Although the proposed model has surpassed the comparison
model, limitations still exist. Based on the shortcomings
proposed in Section 7.4, the authors of this article will work on
redesigning the model’s loss function in the future to address the
imbalance of the data set and further optimize the model from
the perspective of loss function design.
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