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Recent years have seen an increased effort in the detection of plant stresses and diseases

using non-invasive sensors and deep learning methods. Nonetheless, no studies have

been made on dense plant canopies, due to the difficulty in automatically zooming into

each plant, especially in outdoor conditions. Zooming in and zooming out is necessary to

focus on the plant stress and to precisely localize the stress within the canopy, for further

analysis and intervention. This work concentrates on tip-burn, which is a plant stress

affecting lettuce grown in controlled environmental conditions, such as in plant factories.

We present a new method for tip-burn stress detection and localization, combining both

classification and self-supervised segmentation to detect, localize, and closely segment

the stressed regions. Starting with images of a dense canopy collecting about 1,000

plants, the proposed method is able to zoom into the tip-burn region of a single plant,

covering less than 1/10th of the plant itself. The method is crucial for solving the manual

phenotyping that is required in plant factories. The precise localization of the stress within

the plant, of the plant within the tray, and of the tray within the table canopy allows to

automatically deliver statistics and causal annotations. We have tested our method on

different data sets, which do not provide any ground truth segmentation mask, neither for

the leaves nor for the stresses; therefore, the results on the self-supervised segmentation

is even more impressive. Results show that the accuracy for both classification and self

supervised segmentation is new and efficacious. Finally, the data set used for training

test and validation is currently available on demand.

Keywords: tip-burn detection and localization, self supervised segmentation, plant disease classification,

segmentation of large canopies, indoor farming

1. INTRODUCTION

Plant stress detection is a long-standing research field and, among the stresses, tip-burn affecting,
particularly, lettuce has been intensively studied, refer for example Termohlen and Hoeven (1965),
Lutman (1919), Cox et al. (1976), and Gozzovelli et al. (2021).

Nowadays, the combination of new methods arising from computer vision and deep learning,
the availability of new low-cost sensors together with increased attention on the transparency,
quality, and healthiness of the farm to fork process is making plant stress analysis a challenging
research topic.

Classification of plant diseases is becoming a relevant topic thanks to a number of new data sets,
such as PlantLeaves (Chouhan et al., 2019), PlantsDoc (Singh et al., 2020), PlantsVillage (Hughes
and Salathe, 2016), Plantae-K (Vippon Preet Kour, 2019), Cassava (Mwebaze et al., 2019), Citrus
leaves (Rauf et al., 2019), etc. made available as tensorflow datasets at tensorflow.org. Examples from

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.874035
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.874035&domain=pdf&date_stamp=2022-05-12
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pirri@diag.uniroma1.it
mailto:fiora@deepplants.com
https://doi.org/10.3389/fpls.2022.874035
https://www.frontiersin.org/articles/10.3389/fpls.2022.874035/full


Franchetti and Pirri Tip-Burn Localization and Detection

these datasets are shown in Figure 1. These new datasets and
their ease of accessibility have thrived the research improving
deep learning models for stress detection applications.

A limit of the currently available datasets is their
inadequateness for stress analysis in Controlled Environment
Agriculture (CEA) and specifically in plant factories, where
plants are grown indoors under artificial lights, densely packed
together, and stacked on multiple layers. In such a highly densely
growing conditions, the plants are compacted on tables of
trays, and stress problems need to be studied from this specific
perspective, as shown in Figure 2.

The detection and localization of stress in plant factories
have to deal with complex surfaces agglomerating several plants,
where the single leaf shape is not specifically relevant, and at
the same time, stresses, such as tip-burn, occur on the leaf tip.
Moreover, typically plants affected by tip-burn are few, sparse,
and hidden in the canopy of other healthy leaves. The underlying
cause of tip-burn is a lack of calcium intake by the plants.
This, however, is a result of multiple factors, such as lack of
airflow, high humidity, excessive lighting, inadequate watering,
and nutrient supply. A key advantage of growing plants indoors is
the possibility to control all aspects of the plant growth including
the light recipe and climate, thereby providing the optimal
mix of conditions to optimize plant development and quality.
However, high-density crop production, limited dimensions, lack
of natural ventilation, and the need for artificial lighting for
photosynthesis makes plants grown in plant factories, especially,
vulnerable to tip-burn. Consequently, tip-burn has become a
metric for the healthiness of the plants, and being able to monitor

its advent is extremely relevant in indoor growing conditions.
By automatically detecting tip-burn, the vertical farm control
software can adjust the growing recipes in real time to provide

the plants with the optimal growing conditions.
In this work, we propose a novel model for tip-burn detection

in lettuce that fills the gap between already explored techniques
of deep learning applied to plant stress detection and their

practical implementation in plant factories. Our work includes

the realization of an adequate dataset made of real and generated
images. Yet, to emphasize the generality of our contribution we
have also tested our model on PlantLeaves (Chouhan et al., 2019),
PlantsVillage (Hughes and Salathe, 2016), and Citrus leaves (Rauf

FIGURE 1 | Images from the plant disease classification datasets: Cassava (Mwebaze et al., 2019), Citrus leaves (Rauf et al., 2019), PlantLeaves (Chouhan et al.,

2019), and PlantVillage (Hughes and Salathe, 2016). The images clearly illustrate the difference with the proposed task of stress detection on large canopies. (A)

Cassava, (B) Citrus leaves, (C) PlantLeaves, and (D) PlantVillage.

et al., 2019) and compared with other works, whose results have
a state of the art.

2. RELATED WORKS ON DISEASE
DETECTION

Plants disease detection is nowadays a quite impressive research
field collecting methods and studies on a good diversity of
diseases, crops, plant species, conditions, and contexts. In
particular, most of the recent studies are based on deep learning
methods, yet consider different cameras and datasets.

Disease detection. A number of approaches are based
on dedicated sensors, such as hyperspectral cameras, or
generate their own datasets. For example, Nagasubramanian
et al. (2018) studied charcoal rot disease identification in
soybean leaves by implementing a 3D Deep-CNN on data
collected by a hyperspectral camera. Zhang et al. (2019)
carried out a similar study using high-resolution hyperspectral
images to detect the presence of yellow rust in winter wheat.
Refer to Terentev et al. (2022) for a recent overview of
hyperspectral approaches.

On the other hand, the publicly available datasets designed for
disease classification, such as those introduced above, have played
a crucial role in most of the deep learning methods.

Approaches exploiting the publicly available datasets have
obtained very high accuracy for classification. For example,
Agarwal et al. (2020) trained a CNN on tomato leaves images
taken from the PlantVillage dataset obtaining 91.20% accuracy
on 10 classes of diseases. On the other hand, on the same set of
tomato classes, Abbas et al. (2021) obtained 97.11% accuracy with
DenseNet121 + Synthetic images.

Patidar et al. (2020) obtained 95.38% accuracy in diseases
classification on the Rice Leaf Disease Dataset (Prajapati et al.,
2017) from the UCI Machine Learning Repository. Mishra
et al. (2020) achieved 88.46% accuracy on corn plant disease
detection, at the same time, obtaining real-time performance
of a deep model capable of running on smart devices. Saleem
et al. (2020) experimented a number of deep networks on the
Plant Village dataset, proposing a comparative evaluation study
between multiple CNNs and optimizers for the task of plant
disease classification, in order to find the combination with the
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FIGURE 2 | Large canopies of plants grown in Plant Factories (A). In (B) we see the operators controlling the canopy to visually detect tip-burn, on the rolling tables.

best performances, obtaining quite challenging results. Sharma
et al. (2020) obtained 98.6% accuracy on PlantVillage bymanually
segmenting a subset of the images. Hassan andMaji (2022) obtain
significant results on three datasets: 99.39% on PlantVillage,
99.66% on Rice, and 76.59% on imbalance cassava. Syed-Ab-
Rahman et al. (2022) obtained 94.37% accuracy in detection
and an average precision of 95.8% on the Citrus leaves dataset,
distinguishing between three different citrus diseases, namely
citrus black spot, citrus bacterial canker, and Huanglongbing.

Overall, results on the publicly available datasets are saturating
toward super human performance, showing that new steps for
diseases detection need to be taken.

Other digital images based deep learning approaches have
experimented with their own datasets. Examples are DeChant
et al. (2017) and Shrivastava et al. (2019). DeChant et al. (2017)
consider the classification of the Northern Leaf Blight in maize
plants, taking images of leaves in the field. While (Shrivastava
et al., 2019) studied the strength of transfer learning for the
identification of three different rice plant diseases. A recent
review on computer vision and machine learning methods for
disease detection is done in Barbedo (2019a), Abade et al. (2020),
and Lu et al. (2021).

Large canopies and tip-burn studies. Tip-burn studies date
back long ago (Lutman, 1919; Termohlen and Hoeven, 1965;
Cox and McKee, 1976), essentially exploring causes induced
by lack of nutrients absorption, such as in Son and Takakura
(1989) and Watchareeruetai et al. (2018). As far as we know,
only (Shimamura et al., 2019) conducted tip-burn identification
in plant factories using GoogLeNet, for binary classification of
single lettuce images. They check frommanually collected images
of a single plant whether it has tip-burn or not.

Similarly, in Gozzovelli et al. (2021), a dataset for tip-burn
detection on large dense canopies of indoor grown plants is
generated with specific attention to cover the data imbalance.
To cope with the imbalance, a huge amount of data were
generated with Wasserstein Generative Adversarial Network
(GANs) and verified using the realism score of Kynkäänniemi

et al. (2019). Classification was performed with two class-
classifier architecture highly inspired fromDarkNet-19, YOLOv2
backbone (Redmon and Farhadi, 2016), while the tip-burn region
was identified preparing a ground-truth with a conditional
random field, further generalized with a U-Net (Noh et al., 2015).

GANs were already used in Giuffrida et al. (2017) to generate
Arabidopsis leaf using the number of leaves as the label. Similar
to Gozzovelli et al. (2021) in Douarre et al. (2019), the authors
explore segmentation at the canopy level, of apple scab. They
augment the segmentation training set with conditional GANS.

Plants stress and disease segmentation. Segmentation for
enhancing plant stress and disease detection has been explored
by the works of Tian and LI (2004) and Zhang and Wang (2007).
Most of the methods, even recently, tend to use image processing
methods, such as filtering, thresholding, Gaussian mixtures, and
color transforms to segment the disease or part of the leaf.
Barbedo (2017) noted that when the disease symptoms show
a difference in color with respect to surrounding areas, then
ROI segmentation can be easily exploited. This observation has
led to the study of the improvements in disease classification
led by segmentation. This indeed was the choice in Gozzovelli
et al. (2021) and Sharma et al. (2020), despite in the latter,
segmentation is done manually. A leaf segmented version of
Plant Village is used by Abdu et al. (2018) to introduce an
automatic extended region of interest (EROI) algorithm for
simplified detection. The segmentation of the disease is obtained
by thresholding while the leaf segmentation is not treated and
segmented leaf images are provided as a dataset. Following the
work of Abdu et al. (2018) in Abdu et al. (2019), an extended
EROI version is provided to study individual diseased segments,
still based on a segmented version of PlantVillage, provided
as a dataset.

In Douarre et al. (2019), the authors segment a canopy apple
leaves extending the manual training set with cGAN (Mirza
and Osindero, 2014) generated images. Sodjinou et al. (2021)
propose a segmentation method to separate plants and weeds,
based on initial semi-manual preprocessing, using cropping and
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thresholding, further U-Net semantic segmentation refines the
segmentation and, finally, the results are post processed with a
subtractive clustering algorithm.

As a matter of fact, despite the observation of Barbedo (2017),
better and more generalized results can be obtained using deep
learning methods that do not rely on specific image processing
practices to come out with a segmentation result, as shown in
other application fields.

Weakly Self Supervised segmentation. As far as we know,
no method has so far explored self-supervised segmentation of
plants disease, based on the class annotation only. Our work is the
first one providing both the leaf segmentation (for PlantLeaves
and PlantVillage, and Citrus Leaves) and the tip-burn stress
segmentation without any manual annotation of pixel labels for
segmentation.

We recall that weakly self-supervised segmentation (WSSS) is
self-supervised segmentation using only image-level annotation.
This means that only the information of the category in the
image (e.g., “diseased” or “healthy”) is used to segment the
object(s) of interest. Namely, the method consists of predicting
a pseudo-label mask of the objects belonging to the class of
interest, only relying on the image class label. Recent research
has dedicated significant attention to the problem, introducing
new methods based on weakly supervised learning, such as self
training (Zou et al., 2018; Gu et al., 2020; Wang et al., 2020),
domain adaptation (Pan et al., 2020; Yang and Soatto, 2020),
noisy label learning (Xie and Huang, 2021) and class activation
maps (CAM). CAM, introduced by Zeiler and Fergus (2014) and
Zhou et al. (2016) localize the object of interest only relying on
the image classes and backpropagating the probability to layers
before the logits. The CAM-based methods have motivated a
huge amount of works, such as Sun et al. (2020), Chan et al.
(2021), Araslanov and Roth (2020), Yao and Gong (2020), and
Wang et al. (2020). The method we propose in this work is WSSS
using only the image class label, to segment the plants’ lesions.
The only available knowledge is whether the image represents a
stressed or not-stressed region. Our method works on domains
where the task is to generate pseudo label masks of quite small
high-deformable shapes. Despite our elective application domain
being large canopies of plants grown in plant factories, it can be
used for other applications, as we show applying our method to
publicly available datasets.

3. MATERIALS AND METHODS

3.1. Data Collection
Since tip-burn manifests on the leaves tip, it is mandatory to
acquire images with a top view of the whole table. We do so by
taking images with an HR digital camera fixed above the rolling
table shown in Figure 2. A table is a base on which plants are
grown. Each table assembles intomultiple trays, which in turn are
further divided into multiple cells where plant seeds are placed.

We collected images of size 4.64E + 3×6.96E + 3×3 of the
tables, using a camera Canon32.5 APS-C of 32.5 megapixels
located above the rolling tables (shown in Figure 2). The whole
set is made of 43 images, 30 for training and 13 for validation and
testing. Images were collected in a period of tip-burn spread. As a

tip burn is about 5×5 pixels in the camera image, we have devised
a splitting process that allows to zoom into the table image. We
split the 43 images of size 4, 640×6, 960×3 into smaller images of
size 64×64×3, with an interface we have prepared for the task,
and collected 2,127 images of tip-burn. We have automatically
selected the same number of images of healthy plants, ensuring
to be healthy by correlated with the stressed images from the
same table. The images collected by splitting the original table
images have been then augmented to finally obtain a training
set of 16,323 images of tip-burn stressed and healthy plants, a
validation set of 5,596 images and a test set of 1,399 images.

For the purpose of illustrating our method on other datasets,
we used the PlantVillage, PlantLeaves, and CitrusLeaves datasets
available on Tensorflow.org.

3.2. Method
Preliminaries. The main practicality of weakly-supervised
semantic segmentation methods (WSSS) is to avoid the resource-
demanding manual labeling of each pixel of the categories of
interest in an image, which is an impossible task for large
canopies. Indeed, WSSS transforms the semantic segmentation
task into the much less demanding effort of image-level class
annotations. The problem is ill-conditioned and difficult, and
a large literature is dedicated to the solution of it starting
from Zeiler and Fergus (2014) and Zhou et al. (2016), up to
most recent contributions (Chang et al., 2020; Sun et al., 2020,
2022; Wang et al., 2020; Wu et al., 2021; Zhang et al., 2021).
Semantic segmentation is critical for detecting tip-burn on large
canopies due to the difficulty of both identifying it on a dense
set of plants and to individually localizing each tip-burned
plant within the canopy, as shown in Figure 3. To ensure both
identification and localization, we develop a new method for
weakly-supervised semantic segmentation for the tip-burn stress
(and for the visible disease in plants disease datasets) by defining
a network pipeline using attention-based splitting, classification,
and graph convolution.

A crucial aspect of our model is that we adopt the same
classifier for both the image and the patches, suitably resized.
For this idea to work, it is required that feature properties are
shared between the image of the object as a whole and the image
of sub-parts of the object. For example, any subset of the image
of a canopy shares similar features with the image as a whole.
See Figure 4, last image of the upper strip captioned as ‘input
image’. Similarly, a leaf and part of a leaf have the same feature
properties. This often occurs in natural images, though it is not
true, for example, for a tree, which has different features for the
trunk and the crown. We define this characteristic of an object
feature property as the principle of decomposition. In this work,
we show that this principle is valid for both stress detection and
segmentation on large canopies and for disease detection and
segmentation for leaves (from the cited datasets), which is the
domain of interest in this work.

We consider a classification model fℓ(C|X,Y , θ), where C
indicates the class a sample image X belongs to, Y = {1, . . . , c}
is the vector of training labels, ℓ indicates the size of the images
accepted by the network, and θ are the network parameters. The

classification model maps each sample X to p
[C]
X , which is the
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FIGURE 3 | The problem: given the image of a large canopy find all regions with tip-burn. Because tip-burn regions are very small and maybe each other close,

segmentation is better than simple localization with bounding boxes. We propose a novel method for weakly supervised semantic segmentation, with only image

class-labels annotations (classification accuracy 97.3%).

FIGURE 4 | Main idea of the tip-burn semantic segmentation requiring only image-level class annotation: decompose table canopy images up to an image X of size

352×576×3. Split X into overlapping patches of size 64×64×3 and use classification trained on these patches to obtain an attention map. Use the attention map as

supervision for training a convolutional graph transferring probabilities on similar patches. Finally, results are automatically merged together forming the segmentation

map of the canopy.

probability vector for the class C given X, as estimated by the
softmax activation.

Let X be an N×M×d tensor specifying an image, and X⋆

be any connected sub-tensor of it of size n×m×d, with m ≤
M and n ≤ N, where connected means that chosen row and
column elements n and m from X are consecutive. We say that
X enjoys the principle of decomposition if, given a deep classifier
fM×N(C|X,Y , θ) with probability p of correctly classifyingX, with
respect to classes C, we expect that it correctly classifies S(X⋆)
with approximately the same p. Here, S is a suitable scaling

transformation, including appropriate filtering, transforming X∗

to X⋆′ having the same size as X.
Pre-processing and classification model for tip-burn

on large canopies. Tip-burn pre-processing exposes three
components. The first component is splitting the canopy image
into two images of size (4.64E + 3×6.96E + 3×3) representing
half-table, then into all the sub-trays, and further each tray into
16 input images of size 352×576×3. The second component is
the augmentation of the training images of size 64×64×3, by
random rotation between 0 up to 90 degrees, flipping up and
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down and left to right, color quantization to 8 colors, zooming
in by scaling and cropping, zooming out by padding, and finally
by Gaussian blurring with random variance σ ∈ (0.5, 2). For
the classification model, we have used as backbone Resnet50V2,
trained on ImageNet 1000 and fine tuned with Global Average
Pooling, drop-out (to introduce stochasticity in the training) and
dense layers.

Pre-processing and classification model for the single leaf

image datasets. For classifying the single leaf images of datasets,
like PlantVillage, CitrusLeaves, and PlantLeaves, we used the
same backbone as for the tip-burn. On the other hand, for weakly
supervised semantic segmentation, we have also used a multi
layer perceptron (MLP) to separate the background from the
foreground. Profiting from the simple arrangement of a single
leaf on a background of these datasets, we have automatically
sampled from each image a patch of size 8×8×3 from each
corner, labeling them background, and 6 patches of the same size
from the image center as foreground and gave these data to the
MLP to learn to separate the background from the foreground.

Local attention by splitting with hard strides. The main
interest of splitting an image into patches with hard strides is to
obtain the attention map, in a way similar to how the human gaze
glimpses a scene focusing on interesting regions. Here, by hard
strides, we intend strides that allow for a significant overlapping
of the patches or, more specifically, strides that have a dimension
much lower than the patch size.

Most of the work for attention estimation is done by the
overlapping induced by the strides like when the gaze goes back
to an interesting region of the scene several times. Yet, this kind
of attention is local, as it does not capture the whole context. To
obtain the context, we shall refine this spitting-based attention
with spectral graph convolution, described in the next paragraph.

The splitting process and patch classification. Breaking
an image into patches is a well-known technique (see Nowak
et al., 2006; Zhou et al., 2009; Dong et al., 2011), requiring
only algebraic manipulations of tensors. Consider the image
X of size M×N×d. The splitting operation, along the spatial
dimension, extracts from X patches of dimension (px, py, d).
Here, the splitting combined with strides allows for overlapping
the neighbors’ patches according to the stride values (sx, sy). In
some sense, it is like taking the inner product of X with the lower
and upper shift matrices A, A′, and their transposed A⊤ and
A
′⊤ with suitable shifts, and then cropping the non-zero values.

Or, similarly, convolving X with a shifting kernel and cropping
the non zero elements. The number of obtained patches and
their configuration depends on the sizes M,N of the image, the
number of channels d, the patch sizes (px, py, d), and the spatial
stride (sx, sy). k1 and k2 are obtained like in the convolution
output, though here we do not consider padding:

k1=⌈(M−px)/sx⌉+1 and k2=⌈(N−py)/sy⌉+1 (1)

We denote CO as a configuration of k1×k2 patches, each of size
px×py×d. Namely, it is the shaping of k1 patches on a row and k2
patches on a column, shown in Figure 5.

Given X∈RM×N×d, the configuration CO, and a patch Xj in
CO, with 0≤j≤k1·k2, the patch Xj is resized as Sℓ(Xj) (including

required filtering modes), where ℓ indicates the size of input
images accepted by the network fℓ(C|X,Y , θ). The value of ℓ

changes according to the considered dataset. For the plants,
disease datasets, the classification entry corresponds to the size of
the image in the dataset, may be reduced as for PlantLeaves, while
a patch is proportional to the image size. This shows the extreme
flexibility of the splitting process followed by classification which
is adaptable to several kinds of backbones.

For each patch in the configuration CO, obtained by splitting
the original image, the probability that it belongs to the class of
interest (e.g., tip-burn) is estimated by the network fℓ resizing the
patch to the input size ℓ accepted by the classification network fℓ.

The estimation amounts to the softmax applied to the logits
of the classifier fℓ(C|X,Y , θ), here we used Resnet50V2 as
a backbone. After each patch, probability to belong to C is
estimated, a configuration of probabilities (CoP) is obtained,
as shown in Figure 5. CoP has the same configuration as CO,
though each patch π is defined by repeating at each pixel, the
probability p computed by the softmax on classifying the patch.
When we indicate the probability pr,c of the patch located at
indexes (r, c), we mean the probability p.

A mapping h from CoP to the reconstructed attention
map (RAM) is defined by collapsing the patches in CoP
into the corresponding pixels of the matrix RAM. Note
that while the whole size of CoP is k1·px×k2·py, namely
(M·⌈px/sx⌉)×(N·⌈py/sy⌉), with sx ≪ px and sy ≪ py, RAM has
the same spatial dimension as the original image, namely M×N.
Given a patch πr,c in row r and column c in CoP, and a pixel at
location (i, j) in πr,c, the tuple ((r, i), (c, j)) is mapped by h to the
pixel (x, y) in RAM, as follows:

(x, y)RAM = (h(r, i), h(c, j)) = ((i+ r·sx), (j+ c·sy))

for πr,c∈CoP and (i, j)∈πr,c. (2)

Given Equation (2), we also obtain a matrix Aoverlap by counting
all times a pixel from CoP hits the corresponding pixel of RAM.
Indeed, this matrix specifies how many overlapping patches
contribute to a pixel in RAM:

Aoverlap((h(r, i), h(c, j)))
(t) = Aoverlap((h(r, i), h(c, j)))

(t−1) + 1.
(3)

The matrix Aoverlap is used to count the accuracy of the
classification at the pixel level, and it allows to suitably average
RAM. The averaged RAM is obtained as follows:

RAM⋆ = RAM/Aoverlap (4)

Figure 5 shows an example of CO representation, of CoP, of the
matrix Aoverlap, of RAM given a random image X with tip-burn
highlighted. Where, here and from now on, we denote RAM⋆

RAM.
We can see that the accuracy of RAM is determined by

the strides. For example, if the stride is sx=sy=10, we have an
accuracy at the level of a region of size 10×10, and if the stride is
sx=sy=1, the accuracy is at the pixel level allowing to effectively
label each pixel. Clearly reducing the stride increases the number
of patches of the same image. The average increase of the number
of pixel is by a factor of 9.
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FIGURE 5 | The figure illustrates the splitting process and patch classification taking as an example an image X∈RM×N×3, with M=160 and N=195. The first plate

above shows the configuration CO obtained by splitting X into patches of size px×py×d and a stride (sx , sy ) with px=py=64, d=3 and sx=sy=8. In the example, CO

has a configuration of k1×k2 patches, with k1=13 and k2=17. The plate on the upper-right shows the configuration of probabilities CoP obtained via the softmax by

classifying each patch in CO. CoP has the same shape as CO, by fine-tuning Resnet50V2. The plates below, on the right of the image X, show the matrix

Aoverlap ∈ R
M×N, collecting the number of times patches overlap on a pixel when collapsing the configuration into the reconstructed image, according to the stride. The

Reconstructed Attention Map (RAM) is obtained by collapsing CoP, and it has the same size as X.

Refining by graph convolution. The RAM results in
pseudo segmentation masks for the tip-burn stressed leaves
found in the RGB image, following the pipeline splitting-
classification-reconstruction. Differently from CAM (Zeiler and
Fergus, 2014; Zhou et al., 2016), RAM highlights in the same
map all objects of interest quite accurately. Moreover, while
in CAM the result is obtained by the gradient of the softmax
outcome, with respect to the last feature map, which has
very low resolution, thus requiring significant resizing inducing
blurring, here we do not need any resizing, as we can obtain
the original image by a single step merging, according to
Equation 2. Despite classification accuracy for tip-burn is 98.3%,
and for the other datasets is no less than 96%, there is still
noise on the attention map because classification is done on
Sℓ(X), namely on the resized patch, given the decomposition
principle.

Comparing the size of a patch in CoP and the size of
the probabilities highlighted in RAM in Figure 5, we can
note they have different sizes. This is due to overlapping and
projection, which augment the resolution of the probability
from uniform in a patch of size 64×64 to uniform on a
patch of size 8×8. Indeed, the RAM probability resolution
is 8×8. Having in RAM a higher probability resolution, we
re-propose the splitting into sub-patches with size (sx, sy, d),
namely of size 8×8×d, d ∈ {1, 3}, for both the RGB
image of size 352×576×3 (see the paragraph above, on
Preprocessing and Classification, and Figure 6) and the RAM
of size 352×576×1. A schema of this further splitting

follows:

COnew ← size = 42×72×3, sub-patch size = 8×8×3,

num of sub-patches = 3168 (5)

CoPnew ← size = 42×72×1, sub-patch size = 8×8×1,

num of sub-patches = 3168

The goal is to use CoPnew as supervision for training a
convolutional graph network (GCN) improving the semantic
segmentation accuracy obtained by classifying the patches. This
further splitting step obtains a COnew and a CoPnew, as specified
in Equation (5), from which we obtain the features and the labels
for the GCN. The softmax of the GCN classifies the nodes of
the GCN, inducing an effective semantic segmentation for tip-
burn for each image in the dataset, and similarly for the other
datasets.

Following Kipf and Welling (2016), a number of approaches
have experimented with graph convolution (GCN), especially on
non grid structures. Though, recently, an increasing interest is
devolved to apply graph convolution on images, for segmentation
and attention purposes, such as Li and Gupta (2018) and Hu
et al. (2020). Here, we apply an unsupervised node classification,
conditioning the graph model both on the data and on the
adjacency matrix via graph convolution. As a matter of fact, we
are going to generate the adjacency matrix for the graph G =

(V, E), fully unsupervised. We construct a graph for each RGB
input image X of size 352×576×3, fixing the size of the nodes, so
as to put the graphs in a batch.
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FIGURE 6 | Overview of the weakly supervised semantic segmentation process of tip-burn leaves stress supervised with image-level class annotation only. Above,

the splitting process starts at images X ∈ R
M×N×3, M=4, 640,N=6, 960. Note that starting from patches of size 352×576×3 the splitting process plays with

overlapping patches of size 64×64×3 with a hard stride of 8 pixels. The classification is trained to detect tip-burn stresses, and via the softmax to predict a probability

for each patch to belong to the class tip-burn. After classification, a reconstruction step obtains the Reconstructed Attention Map (RAM) for patches of size

352×576×3. These are again split into patches 8×8×3 and used to supervise the Graph Convolutional network (GCN). Namely, the GCN features nodes are the

flattened 8×8×3 patches and the labels are one hot encoded vectors obtained from the classification predictions, see the plate with the GCN, The GCN estimates a

refined semantic segmentation of pixels. A final reconstruction does the inverse splitting process reconstructing the table canopies from patches.

We take the patches as node features, labeling them with a
one hot encoding vector obtained by thresholding the score pc,r
in CoPnew of patch πc,r∈COnew. More precisely, we flatten each
mini-patch of size 8×8×3 into a vector x ∈ R

k, k=192 and
stack all the flattened patches into a matrix Xϕ∈R

n×k, n=3168.
To obtain a corresponding ordering, we use an index function
idx:(r, c)→ i, idx(r, c)=w(c−1)+r=iwithw the number of rows,
r and c the row and column indexes in COnew and in CoPnew,
respectively, and i the corresponding index in Xϕ . Xϕ is the input
matrix to the network. At each layer of the network, a feature
matrix is generated, starting with Xϕ .

To connect subsets of nodes, based on their feature similarity,
we generate the adjacency matrix Adj, which is symmetric and
of size n×n, as follows. We keep the indexing idx to maintain
the correspondence between COnew and Xϕ and between CoPnew
and the labels. For each sub-patch, we estimate a non-parametric
probability by computing the histogram using both the RGB and

the HSV color transformation of the sub-patch and collapsing the
64·3·2 vector into a histogram with 64 bin-edges. For each pair of
histograms qi, qj, we compute the Shannon-Jensen divergence:

JSD(qi‖qj) = 0.5KL(qi‖m)+ 0.5KL(qj‖m)
with
m = 0.5(qi + qj) and KL(qi‖m) =

∑
x∈X qi(x) log(qi(x)/m(x))

(6)
The choice of JSD is required by the need of the adjacency
matrix Adj to be symmetric. Then, two nodes vi, vj feature
vectors xi and xj are similar, hence connected by an edge ei,j∈E
if JSD<β , we have chosen β=0.005 for the tip-burn dataset.
Given the n nodes in V, the diagonal degree matrix D adds for
each node the number of its connected ones. The normalized
graph Laplacian matrix is Lnorm = In − D−

1
2Adj D−

1
2 =

U3U⊤. Here, 3 is the matrix of the eigenvalues and U is the
orthogonal eigenvectors. The graph convolution gθ (Lnorm) ⋆ Xj
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using Lnorm is the spectral convolution, based on obtaining
parameter filters from the eigenvectors of Lnorm in the Fourier
domain. Several simplifications have been proposed, we refer the
reader to Defferrard et al. (2016) for spectral convolution in the
Fourier domain and the approximation of the L eigenvectors by
Chebyshev polynomial up to the K-th order. Kipf and Welling
(2016) obtain a GCN by a first-order approximation spectral
graph convolution. They define K=1 and reduce the Chebyshev
coefficients to a matrix of filter parameters.

The feed forward propagation of the GCN is recursively
defined as:

H(t+1)=σ (ÂH(t)W(t)), with H(0) = Xϕ (7)

Here σ is an activation function, H(t)={h
(t)
1 , . . ., h

(t)
n } are the

hidden vectors of the t-th layer, with h
(t)
i the hidden feature

vector of the node vi. Â is defined as follows. A = Adj + In,
to include self loops, since nodes are self similar, D̃ii =

∑
j Aij

and Â = D̃−
1
2AD̃−

1
2 , so as to be normalized, In is the identity

matrix of size n×n. The role of Â is to aggregate information
from connected nodes. W(t) is the weight matrix to be learned.
The dimensions are as follows:

Â ∈ R
n×n,H(t)∈Rn×ut ,W(t)∈Rut×ut+1 (8)

Here, ut and ut+1 are the sizes of the hidden layers. A 3 layer GCN
has the form:

Z = g(Xϕ |Â,W) = softmax(G) (9)

Where the softmax is applied row-wise and

G = Â ReLU(Â(ReLU(ÂH(0)W(0))W(1))W(2)) (10)

The optimization of the GCN uses cross-entropy loss on all
labeled nodes (Kipf and Welling, 2016), where here the labels are
the one hot encoded values obtained from RAMnew. Let us denote
by I the indexes of the nodes and by Yi,l an indicator which has
value 1 if node vi has label l:

L=−
∑

i∈I

n∑

l=1

Yi,l logZi,l (11)

According to the number K of layers, a GCN convolves the K-
hop neighbors of a node, essentially clustering similar nodes,
according to their probability labels and features. We use simple
3 layers GCN, since in the end tip-burn stresses on leaves are very
small and rare. An overview of the whole learning process is given
in Figure 6.

The GCN adjusts the RAM by looking at the context, going
beyond the localized estimation of splitting plus classification.
GCN estimates the probability that a node, corresponding to
features of a patch 8×8×3, belongs to tip-burn or not, by
updating the belief that two patches are similar. At the end of the
training, CoPnew is updated with the new distribution. In Table 2,
in Section 5, we show the advantages of the GCN by ablation.

Reconstruction. Given the initial image of the dense canopy,
the question to be explored is "which plant suffers tip-burn stress
and where it is?" including counting would not be so useful.
Consider that when tables are unrolled, from the position of
the plant on the table, it is possible to go back to the cell the
plant comes from, and possibly revise its growing conditions, or
make useful statistics. It is therefore pivotal to localize the stress
segment on the table image. It turns out that by the proposed
model it is extremely easy.

In fact, as noted in the paragraph on splitting, reconstruction
is automatically done by projecting back a pixel in CoP into a
pixel in RAM by Equation (2). Obviously, it can be done for any
image, not only for the maps but also for RGB images.

Reconstruction is done both when the stride sx>1 and sy>1,
that is when the splitting generates sub-images that overlap and,
obviously, when they do not overlap. This, in fact, can be done for
all the steps of splitting, from the table canopy up to Ramnew and
for its dual RGB image, and again back to the large table canopy.

The back process requires preserving just the patches size
for the maps and the scores, at each layer of the splitting.
Then, the process is simply recursively applied to go from the
patch up to the image of the whole canopy. Note that for
the semantic segmentation, we need only to preserve the score
vectors estimated by GCN. An image of a partial reconstruction
of the half table is given in Figures 4, 6.

4. APPLICATION OF THE MODEL TO
OTHER DATASETS

As gathered in the introduction, we have collected three datasets,
namely PlantLeaves (Chouhan et al., 2019), PlantsVillage
(Hughes and Salathe, 2016), and Citrus leaves (Rauf et al.,
2019), to evaluate our approach. Usually these datasets are tested
for classification, which has nowadays obtained striking results.
Here, instead, we consider the semantic segmentation of the
leaves lesions using only images class-labels, which is actually the
only information available for these datasets.

Our goal here is to discuss mildly classification and most of all
the whole pipeline we used to segment both the leaves and the
disease spots and lesions. Clearly, segmenting the disease is more
difficult when the leaf is almost completely covered by the disease
spots, which are discolored regions or dark necrotic spots. As we
shall see, the best results are actually obtained for CitrusLeaves
and PlantLeaves, where the disease spots are localized.

From each dataset, we have chosen a class of diseases
and the corresponding healthy images, for segmentation. For
PlantVillage, we used the whole dataset, but we have chosen only
Pepper Bell bacterial and Pepper Bell healthy for segmentation.
Consider that the only burden for classification once the model is
defined is to load the data. In turn, the model is just a fine-tuning
of an already existing model, such as Resnet50V2. All parameters
and accuracies for each network model available for fine-tuning
classification are provided on the Keras Application page.

PlantLeaves consists of 4,502 images of healthy and diseased
leaves divided into 22 categories including species and disease.
From this dataset, we have chosen Pomegranate (P9) both
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diseased and healthy. There are 272 images of diseased
Pomegranate (P9) and 287 healthy ones.

PlantVillage consists of 54,303 images of healthy and diseased
leaves divided into 38 categories including species and disease.
It is possible to download either the augmented or the non
augmented set of images. As gathered above we have considered
the whole dataset for classification, PepperBell healthy and
PepperBell Bacterial spot for segmentation. PepperBell Bacterial
spot are 998 images, and PepperBell healthy are 1,478 images.

CitrusLeaves consists of 594 images of healthy and diseased
leaves with 4 diseased categories and one healthy. We have
chosen healthy and Canker. Canker contains 163 images, while
healthy contains 58 images.

The model for the above indicated datasets, from splitting up
to segmentation, is similar to the tip-burn stress segmentation,
starting from splitting. Yet, the preprocessing is quite different.
Preprocessing, for the three datasets consists of removing the
background and tightening the image within its bounding
box. This last step is crucial for complying with the principle
of decomposition, discussed at the beginning of the method,
and also for avoiding overfitting due to background. We
have automatically sampled from each image, the four corners
with 8×8×3 pixels and 6 patches of the same size from the
image center. We have then defined a MLP that could accept
sub-patches of the size 8×8×3 to separate background and
foreground. Some results, compared with the original image are
shown in Figure 7. Note that the background has a value (0, 0, 0),
thus not influencing the CNN classification.

Being the image of PlantLeaves of size 4E + 3×6E + 3, we
reduce them to 264×400 after automatic cropping with the MLP.
On the other hand, we resize both CitrusLeaves and PlantLeaves
to their original size 256×256, after automatic cropping with
MLP. We do augmentation by flipping up and down, left and
right, and blurring with a Gaussian filter with random variance
σ ∈ (0.5, 2), for both CitrusLeaves and PlantLeaves. We have not
augmented PlantVillage, since it comes already augmented.

Also, differently from the model for tip-burn stress detection,
for these datasets, we do the first splitting to a size of 70×70,
with the same stride of sx=sy=8, for tip-burn, and then we
resize each patch to the original image size for classification. For
classification, we have fine-tuned Resnet50V2, as for tip-burn
data. The remaining of the model, from further splitting up to
the GCN and the reconstruction, here just for the leaves, follows
the same steps, which are the relevant novelties.

5. EXPERIMENTS AND RESULTS

5.1. Setup
Thewholemodel is implemented in Tensorflow 2.5, on aGeForce
RTX 3080, 300 HZ. For the ResNet50V2, we use the Keras API
in Tensorflow. We used the Keras functional API for fine tuning
the model, with all the provided advances, such as early stopping,
and learning rate decay. For early stopping we used patience 4,
with delta 0.001. For reducing the initial learning rate when on
a plateau, we used a factor of 0.2 and a minimum learning rate
of 0.001 starting with an initial learning rate of 0.1. For the loss,

we used categorical cross entropy with Adam as the optimizer
(Kingma and Ba, 2014).

For the splitting and reconstruction, we use Tensorflow
GradientTape, as the gradient computes both Aoverlap and the
mapping between CoP and RAM for both Equations (2) and (3).

We have implemented a good part of the GCN including the
adjacency matrix, the features vectors and the joining step, to
transfer probabilities, in Tensorflow. We used much intuition
from DGL, an open-source graph library introduced by Zheng
et al. (2021), though DGL is implemented in PyTorch. We also
get inspired by Spektral of Grattarola and Alippi (2021), an open-
source Python library, for building graph neural networks with
TensorFlow and Keras interface. As specified in the Method
Section, we have been using cross entropy loss and Adam
optimizer like in the classifier together with early stopping.

5.2. Comparison With State of the Art
The main contribution of our work is weakly-supervised
semantic segmentation with the only supervision being the image
class labels, whether there is tip-burn or not. For classification,
we have been using Resnet50V2, because it is quite flexible, and
fine-tuned it. As we have already mentioned, we expect that if
f is a classifier that classifies correctly X with probability p, if
the classifier generalizes well, it would classify the resized X,
namely S(X), approximately with the same probability p. This
is shown to be correct for tip-burn and plant disease datasets
CitrusLeaves, PlantLeaves, and PlantVillage, according to the
principle of decomposition.
Stress and disease detection. For training tip-burn CNN
classification, we used 30 out of 43 images and compared our
work with Gozzovelli et al. (2021), where DarkNet was used.
For classification of the plant disease datasets, we considered
the following recent works: Sujatha et al. (2021), Khattak et al.
(2021), and Syed-Ab-Rahman et al. (2022) for CitrusLeaves;
Mohameth et al. (2020), Mohanty et al. (2016), Chen et al. (2020),
Agarwal et al. (2020), and Abbas et al. (2021) for PlantVillage;
for PlantLeaves, we expose only our approach as there are
no recent contributions.

Results are shown in Table 1, considering validation accuracy,
as usual. The best accuracy in class is highlighted in bold.
We note that for a number of species in PlantVillage, we
obtained a validation accuracy of 1.0, in few epochs. Since
we use early dropping, this was not caused by overfitting,
as shown in Figure 8, where it can be observed that for all
datasets we have a small number of epochs. Note that we have
also removed the background because, according to Barbedo
(2019b), accuracy drops without the background. It seems
possible that the background induces overfitting. In Figure 8, we
show some results motivated by changing the patience value in
early stopping.

We split the leaves datasets 70/30% between train and
validation plus test as in Mohanty et al. (2016). As shown by
Mohanty et al. (2016), GoogleLeNet is the best backbone for plant
disease detection, and we recall that the assessed performance
of Resnet50V2 on the Imagenet validation set is 0.760 on Top-1
accuracy and 0.930 on Top-5 accuracy.
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FIGURE 7 | Preliminary leaves segmentation for PlantLeaves, PlantVillage, and CitrusLeaves, from left to right in the order.

TABLE 1 | Tip-burn stress and plant disease detection.

References Method Tip-Burn CitrusLeaves PlantVillage PlantLeaves

Acc F1 Acc Acc F1 F1 Acc F1 Acc

Canker Healthy Canker Healthy Whole Pommg.

Our approach Resnet50V2 (fine t.) 0.978 0.983 0.964 0.975 0.981 0.963 0.989 0.958 0.984

Gozzovelli et al., 2021 DarkNet 0.961 0.960

Sujatha et al., 2021 InceptionV3/ 0.937 0.965

VGG16

Khattak et al., 2021 Own method 0.945

Syed-Ab-Rahman et al., 2022 Faster R-CNN 0.945

Mohanty et al., 2016 AlexNet 0.993 0.972

GoogleLeNet

Chen et al., 2020 Own Method 0.918

Mohameth et al., 2020 Resnet50

InceptionV3

MobileNet

Agarwal et al., 2020 VGG16 0.912

Abbas et al., 2021 DensNet121 + 0.971 0.97

Synthetic Images

Sharma et al., 2020 Own method 0.986

Best results are highlighted in bold.

FIGURE 8 | The first graph on the left shows the validation accuracy and the loss for Tip-burn, PlantsVillage, CitrusLeaves, and PlantLeaves, with patience 4 for both

early stopping and for updating the learning rule. We can observe that the maximum number of epochs is 13 for PlantsVillage. In the central graph, we see a paradox,

validation hits 1% before training, for the grape class in PlantsVillage. On the right, we observe the convergence for tip-burn at 6 epochs.

5.3. Tip-Burn Segmentation and Plant
Datasets Segmentation
Testing accuracy bymanually labeling ground-truth. Typically,
accuracy metrics for segmentation are F1, in the context of

segmentation referred to as Dice similarity coefficient, and
Intersection over Union (IoU), both required to compute the

corresponding pixels (true positive), the exceeding pixels (false

positives) or lacking pixels (false negative) between the ground
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FIGURE 9 | Qualitative results of the weakly supervised semantic segmentation of tip-burn stress and of disease spot and lesions on PlantVillage, PlantLeaves, and

CitrusLeaves.

truth mask and the estimated masks. Because, in none of the

available datasets, we have ground truth masks available, we
introduce the patch-based method that is not too demanding
to obtain an approximate Dice coefficient. Here, approximate
means that instead of computing the pixels we compute the
super-pixels and also it means that we use a reduced number of
test samples.

We consider 1 test image from the table canopy images and
20 test images for each of the plant disease datasets. Note that 1
test image is the half image of a table canopy, and it amounts to
346,464 images of size 64×64×3, that is 2, 406·16·9.

Now, assuming that we have segmented the test images,
by the automatic decomposition and recomposition process,
by definition of the model, we have made available all the
patches that contribute to the final estimated segmentation.
These patches are actually vectors Z holding the probability that
the corresponding RGB vector is of class tip-burn or not, as
estimated by the GCN and similarly, for the other datasets. At
the same time, according to the described model, there is a one to
one correspondence between the patches in CoPnew and COnew

and there is a correspondence, by Equation (2), between the
patches and the attention map RAM, hence the image, and the
final segmentation map estimated. So, it is enough to choose the
patches in COnew. The manually chosen patches are immediately
aligned with CoPnew and the final segmentation. That is, suppose
we have chosen a patch Xj which will be of size 8×8×3, by
definition of the model, then we have automatically selected
64 pixels, and the process is significantly sped up. Once the
patches are selected, we know the corresponding value in the
segmentation map and can compute both the Dice similarity

TABLE 2 | Segmentation and ablations.

Similarity metrics Tip-burn Citrus leaves PlantVillage PlantLeaves

Segmentation by thresholding the Attention Map RAM

Dice similarity

coefficient (DSC/F1)

0.7827 0.6996 0.6799 0.7326

Intersection over union

(IOU)

0.6430 0.5380 0.5150 0.5780

2 Layers GCN

Dice similarity

coefficient (DSC/F1)

0.8386 0.7277 0.6868 0.7908

Intersection over union

(IOU)

0.7220 0.5720 0.5230 0.6540

3 Layers GCN

Dice similarity

coefficient (DSC/F1)

0.8499 0.7326 0.6292 0.7974

Intersection over union

(IOU)

0.7390 0.5780 0.4590 0.6630

Doubling the number of nodes in the graph

Dice similarity

coefficient (DSC/F1)

0.7797 0.7105 0.6217 0.7021

Intersection over union

(IOU)

0.6540 0.551 0.4511 0.541

coefficient at sub-patch or super-pixel level, instead of pixel
level, and the IoU. Let X = {Xj|Xj ∈ selected}, where each
selected patch has value 1, and Y the corresponding patches
in COP′new with value Z computed by the GCN, the DSCpatch=
2(X ∩ Y)/(|X| + |Y|), with | · | the cardinality.
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Table 2 gives the results for the approximate meanIoU
and F1 (Dice similarity coefficient), computed according to
sub-patches (super-pixels) in place of pixels, and according
to a limited subset of the test images. We give some
ablation too.
Ablation.Consider first the segmentation using just thresholding
of the attentionmap RAM. Introducing the CGNwith two layers,
we observe an improvement for all models. Extending the GCN
to three layers, we observe that accuracy improves for all models
but for PlantVillage. It is interesting to note also that doubling the
number of nodes in the GCN lowers the accuracy for all models,
which is reasonable because we have to choose patches with lower
probability of being tip-burn.

In Figure 9, we provide some qualitative results
facilitating an understanding of the extremely good results of
the model.

6. CONCLUSION

In this paper, we have introduced a new method for detection
and localization of tip-burn stress in large plant canopies grown
in plant factories. The idea is very simple to implement, and the
only supervised step is a classification of the image, namely just
knowing the class in the image. We have shown that the method
obtains quite nice refined weakly self-supervised segmentation
for tip-burn stress.

We have tested ourmethod both on publicly available datasets,
such as PlantVillage, PlantLeaves, and CitrusLeaves, and in
operating conditions inside a plant factory showing the flexibility

of our model. The results show that plant stress detection

and localization can be done automatically in Controlled
Environment Agriculture conditions.
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