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The number of wheat spikelets is an important phenotypic trait and can be used to

assess the grain yield of the wheat crop. However, manual counting of spikelets is

time-consuming and labor-intensive. To develop a cost-effective and highly efficient

phenotyping system for counting the number of spikelets under laboratory conditions,

methods based on imaging processing techniques and deep learning were proposed

to accurately detect and count spikelets from color images of wheat spikes captured at

the grain filling stage. An unsupervised learning-based method was first developed to

automatically detect and label spikelets from spike color images and build the datasets

for the model training. Based on the constructed datasets, a deep convolutional neural

network model was retrained using transfer learning to detect the spikelets. Testing

results showed that the root mean squared errors, relative root mean squared errors, and

the coefficients of determination between the automatic and manual counted spikelets

for four wheat lines were 0.62, 0.58, 0.54, and 0.77; 3.96, 3.73, 3.34, and 4.94%; and

0.73, 0.78, 0.84, and 0.67, respectively. We demonstrated that the proposed methods

can effectively estimate the number of wheat spikelets, which improves the counting

efficiency of wheat spikelets and contributes to the analysis of the developmental

characteristics of wheat spikes.

Keywords: wheat spikelet, spike, annotation, deep learning, computer vision

INTRODUCTION

Breeding of high-yield wheat (Triticum aestivum L.) cultivars is crucial for ensuring food safety, as
wheat is a staple food in the world. Researchers have reported that wheat yield is highly associated
with several phenotypic traits, such as spike number per unit area (SNA), grain number per spike
(GNS), and thousand-grain weights. It is broadly agreed that improving the SNA and GNS of
wheat is important to increase the wheat yield (Vahamidis et al., 2019). A wheat spike consists
of many spikelets and a rachis, and each spikelet contains two or more florets. In general, only 1–3
florets can become fertile florets and develop into grains. Improvements in spikelet and floret (floret
primordia and fertile floret) numbers contribute significantly to an increment in GNS (García et al.,
2014). In addition, the number of spikelets, fertile florets, and grains would enable the calculation
of the spikelet fertility, fertile floret proportion, and grain/fertile floret ratio to further assess the
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spike characteristics (Guo et al., 2018). Therefore, counting the
number of spikes, spikelets, and florets during the breeding
process is of great importance for screening high-yield wheat
cultivars. However, conventional methods for the manual
phenotyping of wheat spike traits are time-consuming and labor-
intensive, which in turn delays progress in breeding programs.
Consequently, it is urgent to develop an efficient method
to accurately and quickly acquire phenotypic traits of wheat
spikes. Recent advances in computer vision technology provide
innovative ways to assess phenotypic traits of wheat spikes, and
techniques like color, X-ray, and computed tomography (CT)
imaging have been investigated.

Color imaging has been widely applied to measure the
phenotypic traits of crops (Qiu et al., 2018).With respect to wheat
spikes, many researchers focused on the automatic detection and
counting of spikes. The color features (e.g., red, green, and blue),
texture features (e.g., gray level co-occurrence matrix), and image
features (e.g., contour and edge) were selected or combined to
train a model (e.g., support vector machine and neural network
models) using supervised learning, to facilitate the detection of
wheat spikes (Li et al., 2017; Zhou et al., 2018; Xu et al., 2020).
In addition, Genaev et al. (2019) analyzed wheat spike images in
the laboratory and estimated the morphometric traits of spikes,
such as spike length, width, and circularity. Liu et al. (2017),
Kaya and Saritas (2019) developed a real-time sorting system and
an application program, respectively, to identify each grain and
count the number of wheat grains. However, color imaging has
not been adequately exploited for the detection and counting of
wheat spikelets. Researchers have also explored the usefulness of
deep learning techniques for measuring spike phenotypic traits.
Concerning target detection, deep convolutional neural network
(DCNN) models have been widely implemented. The Faster
Region-based Convolutional Network (RCNN) model (Madec
et al., 2019) and Mask RCNN model (Qiu et al., 2019) were
retrained to detect wheat spikes from color images captured in
field conditions. Pound et al. (2017) developed a DCNN model
and presented the Annotated Crop Image Dataset (ACID) to
count wheat spikes and spikelets. Besides, Khoroshevsky et al.
(2021) developed a deep neural network to detect and count
the number of spikelets per spike in a field. Chen et al. (2021)
proposed a method to train deep networks on data with reduced
numbers of annotations to count wheat spikelets. TasselNetv2
(Xiong et al., 2019b), SpikeletFCN (Alkhudaydi et al., 2019),
SpikeSegNet (Misra et al., 2020), and DeepCount (Sadeghi-
Tehran et al., 2019) were also developed to detect and count
wheat spikes or spikelets in the field and laboratory. These
studies revealed that deep learning techniques are promising for
detecting and counting wheat spikes and spikelets. However, one
of the current challenges is to obtain a large number of labeled
datasets to train the deep learning models. Manual labeling is a
heavy burden. Furthermore, some researchers applied adversarial
learning to leaf and spikelet countings with unsupervised training
(Giuffrida et al., 2019; Hu et al., 2019; Ayalew et al., 2020), but the
models are difficult to train.

Furthermore, X-ray and CT imaging have been explored to
non-destructively measure phenotypic traits of wheat spikes.
Both X-ray and CT imaging can measure the inner structures

of spikes and acquire information on grains (Duan et al., 2011;
Xiong et al., 2019a; Yu et al., 2021), which can be further used to
distinguish and count the filled spikelets (Zhou et al., 2021). As
for CT imaging, it can reconstruct spikes in three dimensions as
well. Thus, wheat spike and grain traits, including spike height,
grain number, grain width, height, and depth, can be extracted
andmeasured (Hughes et al., 2017; Xiong et al., 2019a). Although
X-ray and CT imaging can provide considerable inner and spatial
information about wheat spikes, they are expensive and the
imaging systems are complicated, which limits their application.

Currently, color images are easily acquired at a low cost, and
most studies focus on the automatic measurement and counting
of wheat spikes using color imaging. But studies regarding
the automatic detection of wheat spikelets have not been well
reported, and the usefulness of color imaging for counting
spikelets needs to be further investigated. Deep learning has
been proved very helpful for the phenotyping of wheat spikes.
However, manual annotation is a laborious and tedious process.
Therefore, this study focuses on detecting and counting spikelets
using color imaging and deep learning techniques. Four common
wheat lines were selected as the objects of this study, and the
color images of their spikes were collected in the laboratory.
The objectives of this study were to (1) develop an unsupervised
learning-based method to automatically detect and label spikelets
from spike color images and build the datasets for DCNN
model training and (2) train a DCNN model that can detect
and count spikelets. The counting results of spikelets will be
compared with manual countings to evaluate the performance of
the proposed methods.

MATERIALS AND METHODS

The counting system mainly included the following steps: image
collection, image annotation, spikelet detection and counting,
and performance evaluation. Several algorithms were used and
developed to detect spikelets and build datasets in the section
of image annotation, and a DCNN model was trained using a
deep learning method to detect spikelets in the section of spikelet
detection and counting. Each step is described in detail in the
following sections. A desktop computer with AMD R5-2600
CPU, NVIDIA GeForce GTX 1070, 8G RAM, and Windows 10
64-bit system was utilized to process the images of wheat spikes
and test the proposed methods. Image annotation and spikelet
detection and counting were conducted using Matlab R2021b
software and Tensorflow, respectively.

Image Collection
The experiment was conducted in a field station in the city of

Hengshui (38◦21
′

N, 115◦65
′

E), Hebei Province, China. The
cultivated wheat lines were Shiyou 20, Shannong 25, Liangxing
99, and Shenmai 818, which were largely cultivated in the North
China Plain. Their wheat spikes with awns have different shapes
and colors. Wheat spike samples for each wheat line were
randomly selected and collected on May 18, 2021, and most of
the wheat spikes were at the grain filling stage of development.
At this stage, the wheat spikelets have basically been formed,
wheat awns and glumes have not begun to senesce, and the
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FIGURE 1 | Schematic diagram of wheat spike image capturing system and

captured images. (A) Image capturing system and (B) a spike image. A spike

example of Shiyou 20 was used in Figures 1–4 to explain our work.

FIGURE 2 | Schematic diagram of region of interest.

color contrast of spikelet and awn is great (Qiu et al., 2019).
The collected wheat spikes were transferred to the laboratory on
the same day. Wheat spikes were placed on a flat board, and a
HUAWEI Honor 9X PRO smartphone was used to capture spike
images, as illustrated in Figure 1A. A spike was captured twice
by rolling 180◦ to acquire its images on two sides. The captured
spike images (Figure 1B) have a 4,000× 3,000 pixel resolution in
a JPEG (Joint Photographic Experts Group) compressed format.
In the image, the apical spikelet is located on the top of the spike,
other spikelets are located on both sides of the spike rachis, and
the glumes of spikelets are clear. Spikelets can be counted by
detecting the glumes in the spike image. Finally, more than 300
spike images for each wheat line were collected.

FIGURE 3 | Spike segmentation. (A) Gray (S component) image of wheat

spike and (B) segmentation results of wheat spike.

Image Annotation
In this study, an unsupervised learning method based on
the watershed algorithm was developed to annotate the spike
images. In addition, a DCNN model was trained to optimize
the annotation. The method contains several steps, which are
described in detail in the following sections. The proposed
labeling method was implemented to process the collected spike
images of four wheat lines.

Image Preprocessing
The color images of raw spike have high resolution, which is
not conducive to the subsequent image processing. Therefore, a
region of interest (ROI) was set to the color images of the wheat
spike, to reduce the computation. The ROI is shown in Figure 2,
and the whole spike was extracted following the steps depicted
in the figure. Moreover, the extracted images were downsampled
using the bicubic method to reduce image resolutions. The scale
factor was set to 0.3, and the spike images were reshaped to 256
× 1,021 pixel resolution.

Spike Extraction
It is of significance to segment spikes from the spike images
in advance, to minimize detection areas and improve the
detection efficiencies and precision of spikelets. Although the
color characteristics of the spike and background in the spike
images are different, the color characteristics of spikes for
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FIGURE 4 | Spikelet annotation. (A) Gray (Cb component) image of wheat spike, (B) segmentation results of watershed algorithm, (C) MER for all candidate spikelet

regions, and (D) optimized MER for candidate spikelet regions.

TABLE 1 | The number of spikelets labeled by the watershed algorithm for training

and validation datasets.

Wheat line Training Validation SUM

Shiyou 20 1,097 267 1,364

Shannong 25 1,142 265 1,407

Liangxing 99 1,095 269 1,364

Shenmai 818 1,304 333 1,637

SUM 4,638 1,134 5,772

different wheat lines are not uniform in RGB (Red, Green, and
Blue) color space, which makes it difficult to apply RGB color
features to segment and extract spikes. After tests, HSV (Hue,
Saturation, and Value) color space was applied to process the
reshaped images after image preprocessing. S component of
the spike in the color image was calculated using the function
“rgb2hsv” provided by Matlab to generate the gray image to
represent the color characteristics of the spike, as shown in
Figure 3A. The contrast between spike and background is stark
so that the spike can be detected and extracted accurately. Otsu’s
algorithmwas implemented to process the gray image of the spike
and generate its binary image (Figure 3B). In the binary image,
the pixel values of spike and background are 1 and 0, respectively.
As shown in Figure 3B, the spike was successfully extracted.

Spikelet Segmentation and Annotation
The color characteristics of spikelets are different from the
other parts of spikes, which contributes to the detection and

segmentation of spikelets. Specifically, some parts of glumes are
prominent in the color images.

The color images of the spike were transformed into several
color spaces, such as RGB, HSV, and YCbCr, to find suitable
features for spikelet segmentation. Testing results showed that
the color features of spikelets and their boundaries were
significant in YCbCr color space. Cb component of the spike in
the color image was calculated using the function “rgb2ycbcr”
provided by Matlab to generate the gray image to represent
the color characteristics of spikelets. Then, a bilateral filter
was used to enhance the contrast between the spikelets and
their boundaries in the gray image, as shown in Figure 4A. By
performing a per-pixel dot product between Figures 4A, 3B, the
spike gray image was extracted, and the gray values of ground
pixels were set to 0.

In the spike gray image, the values of glumes are lower than
that of their surrounding pixels. Based on this characteristic,
the watershed algorithm can be used to segment the spikelets
from spikes. However, the watershed algorithm usually produces
over-segmentation. To improve the segmentation accuracy, a
watershed algorithm, marked by a local minimum threshold, was
applied to process the extracted gray image of the spike. Tests
showed that when the local minimum threshold was set to 3,
the obtained results can remove some local minimums and avoid
over-segmentation. The segmented boundaries generated by the
watershed algorithm can divide the spike into many regions
(Figure 4B), which contained many candidate spikelets. After
the initial segmentation of the spikelet, the areas and minimum
enclosed rectangles (MER) for all the candidate spikelet regions
were calculated (Figure 4C). According to the sizes and shapes of
spikelets, the regions whose areas were between 1,000 and 5,000

Frontiers in Plant Science | www.frontiersin.org 4 May 2022 | Volume 13 | Article 872555

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Qiu et al. Automatic Spikelet Detection and Counting

FIGURE 5 | Loss and AP@0.5IOU of the Faster RCNN model for validation.

TABLE 2 | The number of labeled spikelets for training and validation datasets.

Wheat line Labeled by the DCNN model After manual correction

Training Validation SUM Training Validation SUM

Shiyou 20 982 224 1,206 1,272 297 1,569

Shannong 25 986 232 1,218 1,238 293 1,531

Liangxing 99 954 227 1,181 1,263 312 1,575

Shenmai 818 1,051 272 1,323 1,251 302 1,553

SUM 3,973 955 4,928 5,024 1,204 6,228

and ratios of length to width for the corresponding MER were
in the range of 1–2.5 were reserved, as displayed in Figure 4D.
After that, the upper-left coordinates, widths, and lengths ofMER
were saved to obtain the bounding boxes for the initial labeling
of spikelets.

Three hundred spike images of each wheat line were randomly
selected from their captured images and initially labeled using
the described method. As shown in Figure 4D, there were some
mislabeled or unlabeled spikelets. To acquire better labels, the
labeling results were manually checked, and 100 spike images of
each wheat line annotated with high accuracy were selected to
generate the dataset. XML files for all labeled spike images were
generated based on the coordinates of MER, which were used for
the subsequent dataset construction and DCNNmodel training.

DCNN Model Training
In recent years, some DCNN models were developed and widely
implemented for object detection. In the present study, Faster
RCNN, proposed by Ren et al. (2017), was selected to detect
the spikelets given its high detection accuracy, which can classify
objects and realize semantic segmentation of spikelets. A Faster
RCNN has two main parts, a regional proposal network (RPN)

and a Fast RCNN. The RPN is a type of fully convolutional
network and generates many anchor regions as candidate
bounding boxes. Each anchor is assessed and scored based on
its intersection over union (IOU) ratio with the ground truth.
The anchors are classified as positive and negative using a
Softmax function, and the bounding box regressions of positive
anchors are conducted to obtain corrected region proposals,
which are used by Fast RCNN for object detection training. In
addition, some proposals may overlap with each other, and non-
maximum suppression (NMS) is adopted to reduce the number
of proposals. The loss function (L) was defined as a function (1).

L = Lrpn_cls + Lrpn_reg + Lrcnn_cls + Lrcnn_reg (1)

where Lrpn_cls and Lrpn_reg , and Lrcnn_cls and Lrcnn_reg represent the
classification and bounding box regression losses for RPN and
Fast RCNN, respectively.

In this study, Faster RCNN was implemented using
Tensorflow object detection API (Huang et al., 2017). The
model was pre-trained using the COCO dataset. The Inception-
V2 model was used to extract features because of its high speed.
The scales (i.e., 0.25, 0.5, 1.0, and 2.0) and ratios (i.e., 0.5, 1.0, and
2.0) were set for the anchors. If the values of the IOU ratio with
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the labeled bounding box were higher than 0.6, the anchors were
considered to contain a wheat spikelet. The batch size was set
to 1 because it saves memory and computation time. The IOU
threshold for NMS was set to 0.6. The momentum was fixed to 1.
The initial learning rate (LR) was 0.0005. After 4,000 and 8,000
iterations, the LR dropped to 0.0003 and 0.0001, respectively.
The training results were recorded once every 60 s.

Before training, 80 spike images were randomly selected from
the annotated images (100 images) for each wheat line to generate
the training dataset, and the remaining 20 spike images were used
as the validation dataset. One hundred seventy spike images for
each wheat line that were not annotated were used to build the
testing dataset.

The model was retrained and fine-tuned using transfer
learning on the desktop computer with Tensorflow 1.10.0,
Anaconda 3.5.2, CUDA 9.0, and Python 3.6.7.

If the IOU between a predicted bounding box and a labeled
bounding box is higher than a set threshold, the predicted
bounding box is considered as a true positive (TP). Otherwise,
it is considered as a false positive (FP). If a labeled spikelet cannot
be detected, it is considered as a false negative (FN). Then, the
recall and precision can be calculated by functions (2) and (3).

recall =
TP

TP + FN
(2)

precision =
TP

TP + FP
(3)

The average precision (AP), which is the area under the
precision-recall curve, was applied as an indicator to quantify
the performance of the trained Faster RCNN model. In this
study, the standard IOU threshold value of 0.5 was used, and the
AP@0.5IOU was calculated (Madec et al., 2019).

Dataset Optimization
After training, the spike images in the training and validation
datasets were processed again using the trained DCNN model
to detect and label the spikelets. The coordinates and confidence
scores of detected bounding boxes were saved. The high
confidence scores (up to 1) indicated that the detected boxes
most probably contain spikelets. The bounding boxes of detected
spikelets whose confidence scores were higher than 0.75 were
reserved, which were used to update the image annotation and
the training and validation datasets.

As the performance of the watershed algorithm for spikelet
segmentation and labeling in Section Spikelet Segmentation
and Annotation was not perfect, the training and validation
datasets used for DCNNmodel training containmanymislabeled
or unlabeled spikelets, and the bounding boxes of spikelet
samples generated by the trained DCNNmodel were incomplete.
Therefore, manual corrections were conducted by removing
mislabeled regions and adding new spikelet labels to the updated
training and validation datasets.

Spikelet Detection and Counting
The ultimate goal of this study was to detect and count the wheat
spikelets in spike images. The Faster RCNN model was retrained

again using the optimized training and validation datasets in
Section Dataset Optimization. The batch size was set to 2, and the
momentum was adjusted to 0.8, to prevent overfitting. The initial
LR was set to 0.0005. After 6,000 and 10,000 iterations, the LR
dropped to 0.0001 and 0.00001, respectively. The training results
were recorded once every 15 s.

The retrained model was implemented to detect the spikelets
in the spike images of the testing dataset. The confidence score
threshold of the detected bounding box was set to 0.75. The
final results were counted to obtain the spikelet numbers for all
wheat lines.

Performance Evaluation
One hundred seventy spike images of each wheat line in the
testing dataset were used to assess the performance of the
proposed detection and counting methods for wheat spikelets,
which were evaluated using several statistical parameters,
including the root mean squared error (RMSE), relative RMSE
(rRMSE), and the coefficient of determination (R2), as described
in the following equations.

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

ti − di
)2

(4)

rRMSE =

√

√

√

√

1

n

n
∑

i=1

(

ti − di

ti

)2

(5)

R2
= 1−

∑n
i=1 (ti − di)

2

∑n
i=1 (ti − ti)

2
(6)

where n indicates the number of testing images, ti is the manually
counted number of spikelets, di is the automatically counted
number of spikelets, and ti is the mean value of ti.

RESULTS

Image Annotation Results
Spikelet Segmentation and Annotation Results
Although the bounding boxes generated by the water algorithm
contain some non-spikelet areas and their boundaries show
errors, they incorporate the main parts of spikelets. Some
unsatisfactory MER were removed in Section Spikelet
Segmentation and Annotation, so that many spikelets were
inevitably skipped and not annotated. A manual check was
performed only to estimate the labeling results, and the
boundaries of bounding boxes were not adjusted during the
manual check process.

After manual check and selection, the labeled spikelet
numbers of 100 spike images (80 images for the training dataset
and 20 images for the validation dataset) for each wheat line are
summarized in Table 1. The results indicated that the proposed
method can realize the segmentation and detection of spikelets in
spike images, even though the color characteristics of wheat lines
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are different. Also, it is effective for the initial spikelet labeling
of different wheat lines. Finally, a total of 5,772 spikelets were
roughly labeled. All the labeled spike images are provided in the
Supplementary Material.

Model Training and Dataset Optimization Results
The Faster RCNN model was trained using the initial labeled
spikelet samples. As presented in Table 1, the training and
validation datasets contain 320 (80 images × 4 lines) and 80
(20 images × 4 lines) spike images, and 4,638 and 1,134 labeled
spikelets, respectively. The loss for the validation dataset was
calculated, and the precision (AP@0.5IOU) was selected after
each iteration tomonitor the training process of the Faster RCNN
model. The validation loss and AP@0.5IOU are summarized in
Figure 5.

The AP@0.5IOU of the obtained model was not high due to
the inaccuracy and imperfection of the initial labeling datasets;
therefore, the training was stopped early when the AP@0.5IOU
was essentially unchanged, which was about 0.7479 at iteration
5,393. The final loss of the model for the validation dataset
was∼0.9886.

The training and validation datasets were processed using
the obtained model to detect their spikelets. The labeled
spikelet numbers for the wheat lines using the model are also
summarized in Table 2. After the DCNN model labeling, the
number of labeled spikelets for the training and validation
datasets were 3,973 and 955, respectively. Although the number
of labeled spikelets declined, the labeling qualities of spikelets
were improved. The boundaries of spikelets were flagged more
accurately. In the Supplementary Material, the labeled spikelets
for each wheat line are detailed.

According to the detection results, we found that the
robustness of the obtained model for the spikelets at the bottoms
of wheat spikes (as the lowest spikelet in Figure 4D) is poor. In
practice, these spikelets are sterile and not taken into account.
A manual correction was conducted to remove the mislabeled
samples. Besides, the model cannot detect all spikelets because
some spikelets in the initial datasets were not labeled. Bounding
boxes were manually added to handle this situation. The final
labeled spikelet samples after manual correction are summarized
in Table 2, and the training and validation datasets contain 5,024
and 1,204 labeled spikelets, respectively.

Spikelet Detection and Counting Results
Model Training for Spikelet Detection
The Faster RCNN model was retrained using the corrected
training and validation datasets. The recorded losses and
AP@0.5IOU are summarized in Figure 6. Results showed that
the training and validation losses of the model decreased slowly
with increasing iterations. AP@0.5IOU reached a high value after
a few hundred iterations and basically kept stable. Combing
AP@0.5IOU with the training and validation losses as the
indicators, the model saved at iteration 8,026 was selected as
the reference model, which was used to detect and count the
spikelets in spike images. At this iteration, the training loss,
validation loss, and AP@0.5IOU were about 0.5389, 0.9108, and
0.9582, respectively.

Spikelet Detection and Counting Results
To evaluate the performance of the retrained Faster RCNN
model, the testing dataset consisting of 170 spike images for
each wheat line that were not selected to generate the training
and validation datasets was used to assess the detection and
counting methods. The spikelets for each wheat line were
detected (Figure 7) and counted using the retrained model. The
results were summarized and compared with manual counting,
as shown in Figures 8, 9. The average processing time of
spike images required for spikelet counting was ∼0.4 s. Most
absolute errors for all wheat lines were not more than 1. The
RMSE, rRMSE, and R2 between the automatically and manually
counted results for Shiyou 20, Shannong 25, Liangxing 99, and
Shenmai 818 varieties were 0.62, 0.58, 0.54, and 0.77; 3.96, 3.73,
3.34, and 4.94%; and 0.73, 0.78, 0.84, and 0.67, respectively.
The detection results for all wheat lines are provided in the
Supplementary Material.

DISCUSSION

Image Annotation
Amethod based on a watershed algorithm was proposed to assist
in the labeling of spikelet samples. Cb component of the spike in
the color image was applied to obtain the gray image of the spike.
The color componentmakes full use of the color characteristics of
wheat glumes. On this basis, the watershed algorithm can roughly
segment the spike into many regions that contain spikelets. To a
certain extent, the application of MER reduces the segmentation
errors produced by the watershed algorithm. In addition, the
effect of wheat awns on spikelet labeling is small. The areas and
ratio of length to width were set for MER, which can eliminate
the regions that contain wheat awns. Although the proposed
method successfully labeled many spikelets, it can achieve better
performance on the wheat line whose color distribution is
relatively uniform, such as Liangxing 99.

Manual corrections were conducted twice. For the first time,
labeled spike images with higher annotation accuracy were
manually selected. For the second time, more work was done
to supplement unlabeled spikelets, modify some bounding boxes
that were with small errors, and remove the labels for the sterile
spikelets at the bottom of wheat spikes. Manual corrections assist
us to improve the accuracy of annotation.

In the ACID dataset, Pound et al. (2017) annotated each
spikelet by placing a dot in its center. In the present study, the
spikelets were labeled using bounding boxes. The bounding boxes
cannot only help in the detection and counting of the spikelets,
but also facilitate the calculation of the length, width, and area of
the spikelet in the present study.

Labeling the datasets by integrating machine learning
algorithms and deep learning techniques can effectively reduce
the labor cost and obtain high-quality datasets. The annotated
datasets can be used for DCNNmodel training.

Spikelet Detection and Counting
In this study, a Faster RCNN model was applied to detect
and count the spikelets of the wheat spike. In the image
detection field, image resolution has an impact on the detection
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FIGURE 6 | Losses and AP@0.5IOU of the Faster RCNN model during the training process.

FIGURE 7 | Examples to show the detection results of spikelets for different wheat lines. (A) Detection results of Shiyou 20, (B) detection results of Shannong 25, (C)

detection results of Liangxing 99, and (D) detection results of Shenmai 818.

performance of the model. During the training process, high
image resolution requires expensive processes and higher
hardware specifications. To detect the spikes in color images with
high resolution, Madec et al. (2019) split the spike images into
multiple sub-images and kept a 50% overlap between the sub-
images to develop datasets for model training. The sub-images
were processed, and spikes were detected to generate bounding
boxes for spikes. The overlapped ratios of bounding boxes for

neighbored sub-images were judged to remove some repeated
detections. An object can be easily detected more than once
using this strategy, and the detection results are highly dependent
on the sub-images and overlapped ratio setting. Therefore, we
prefer to reduce the image resolution to get satisfactory images.
Although the ratio of length to width for the image is not 1:1 and
is nearly 4:1, which is limited by the spike shape, the performance
of our model for spikelet detection and counting shows that
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FIGURE 8 | Distribution of the spikelet counting errors for all wheat lines.

FIGURE 9 | Comparison between the automatically and manually counted spikelet results. (A) Comparison and correlation for Shiyou 20, (B) comparison and

correlation for Shannong 25, (C) comparison and correlation for Liangxing 99, and (D) comparison and correlation for Shenmai 818. The red lines indicate the least

squares linear regression lines. The dashed lines are 1:1 lines.
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this strategy is appropriate for processing the color image that
contains a single spike.

Pound et al. (2017) conducted similar work to develop models
for spikelet counting using manually labeled samples. Their
spikelet counting errors ranged from 0.06 to 3.81%. In our study,
the spikelet counting and absolute errors were found to be 0.23
and 2.00%, respectively. There were no significant differences
between our studies. Therefore, the proposed labeling method
and developed model are practical for spikelet counting.

The spikelet detection and counting accuracy of our system
is negatively affected by some factors. First and foremost, the
testing results demonstrate that the sterile spikelets at the bottom
of wheat spikes weremistakenly taken into account. Although the
spikelet datasets were manually corrected and the sterile spikelet
labels were removed, the sterile spikelets are not uniform for
different wheat lines. First, some wheat lines hardly produce
sterile spikelets. Second, even for the same wheat line, the sterile
spikelets are missing in different spike samples. Third, there are
great differences in the locations of the sterile spikelets. Many
of them lay next to the spikelets that need to be counted, while
others are independent. The performance of the final DCNN
model for the sterile spikelet discrimination has been significantly
improved compared to the model trained using the initial image
annotation. Further work can be conducted to improve the
sterile spikelet detection by combing its location and shapes
(e.g., area, width, and the ratio of length to width). Another
potential problem is that many spikelets are too big to be counted
twice. Some grains inside the spikelets are plump, which makes
the lateral florets prominent, due to which the lateral florets
were incorrectly identified as spikelets. Finally, the effects of
wheat awns on spikelet detection should be considered. Some
spikelets were covered by awns in some spikes, particularly the
upper spikelets, which were hard to be detected. In the following
work, the covered spikelets may be estimated according to the
symmetrical characteristics of spikelets.

CONCLUSION

In this study, novel methods using color component selection
and image processing techniques, combined with deep learning,
were proposed to detect and count wheat spikelets in color
images. Cb component and a watershed algorithm were
implemented to process the color images of the spike and
automatically label the spikelets. A DCNN model that was
trained using the initially labeled datasets can further enlarge
and optimize the datasets. The proposed labeling method can
improve the efficiency and accuracy of dataset annotation. Then,
a Faster RCNN model, retrained through the transfer learning

technique and the obtained datasets, was capable of detecting
and counting the spikelets in a spike image. For four wheat lines,
RMSE, rRMSE, and R2 for the automatic and manual countings
of spikelets were 0.62, 0.58, 0.54, and 0.77; 3.96, 3.73, 3.34, and
4.94%; and 0.73, 0.78, 0.84, and 0.67, respectively. These results
demonstrated that the proposed methods can effectively detect
and count spikelets, which will help breeders collect sufficient
data to analyze the developmental characteristics of wheat spikes.

In future work, color images of spikes of other wheat lines
will be collected to further test the applicability of the proposed
methods. The detected spikelets contained several sterile spikelets
at times. Hence, a model that can recognize sterile spikelets needs
to be developed. The results of this study can also be combined
with other wheat spike properties (e.g., GNS) to evaluate more
wheat traits, such as spikelet fertilities. In addition, an app for
smartphones can be developed to acquire the number of spikelet
samples for field observation.
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