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Potato is one of the most significant food crops globally due to its essential

role in the human diet. The growing demand for potato, coupled with severe

environmental losses caused by extensive farming activities, implies the need

for better crop protection and management practices. Precision agriculture

is being well recognized as the solution as it deals with the management

of spatial and temporal variability to improve agricultural returns and reduce

environmental impact. As the initial step in precision agriculture, the traditional

methods of crop and field characterization require a large input in labor,

time, and cost. Recent developments in remote sensing technologies have

facilitated the process of monitoring crops and quantifying field variations.

Successful applications have been witnessed in the area of precision potato

farming. Thus, this review reports the current knowledge on the applications

of remote sensing technologies in precision potato trait characterization. We

reviewed the commonly used imaging sensors and remote sensing platforms

with the comparisons of their strengths and limitations and summarized the

main applications of the remote sensing technologies in potato. As a result,

this review could update potato agronomists and farmers with the latest

approaches and research outcomes, as well as provide a selective list for those

who have the intentions to apply remote sensing technologies to characterize

potato traits for precision agriculture.

KEYWORDS

precision agriculture, remote sensing, satellite imagery, potato, unmanned aerial
system, sensors

Introduction

Potato (Solanum tuberosum L.) is one of the most essential and commonly
consumed non-grain food in the world. Due to its importance in the food industry
supply chain, potato has become a dominant crop in many countries (Ortiz and Mares,
2017). For example, more than 23 million tons of potato tubers were harvested from
about 940 thousand acres in the United States in 2019 (U. S. Department of Agriculture,
2020). Also, recently, the planting area and the total yield of potatoes have increased
more than those of any other food crop in Africa. However, the continuously enhanced
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use of agricultural inputs (e.g., fertilizer and pesticide) could
lead an environmental degradation, including the depletion
of natural resources, polluted surface water and underground
flows, and eutrophication (Kleinman et al., 2011; Konikow,
2015; Sishodia et al., 2017). Moreover, the over and/or inefficient
use of water, fertilizers, pesticides, and herbicides for potato
crops over the growing season causes economic losses and
negative impacts on the environment (Hendricks et al., 2019).
To constantly and sustainably meet the increasing needs
for potato production, reducing environmental losses with
improved potato productivity is the key topic in precision
agricultural activities for potatoes (Delgado et al., 2019).

Traditionally, the effects of precision field activities, such as
irrigation timing and frequency, fertilizer applications, planting
dates, and population density, were determined through field
surveying and/or biophysical modeling on crop growth and
yield under different environmental conditions (Molahlehi et al.,
2013; Al-Gaadi et al., 2016). Such methods commonly require
visual examinations and destructive sampling and thus can be
time-consuming with poor scalability. In the past few decades,
the development of technologies, such as remote sensing, global
positioning system, geographic information systems, artificial
intelligence, has significantly promoted the applications in
precision agriculture for enhancing crop production and quality
while reducing the negative impacts on the environment in a
more efficient way (Mulla, 2013). Precision agriculture has been
gradually applied to monitor the crop growth status, generate
auto-irrigation systems and disease detection systems in both
developed and developing countries. Based on the interaction
of electromagnetic radiation with soil and canopy reflectance,
the remote sensing technique is considered as an effective
tool in precision management for optimizing the decision-
making process, which helps to improve profitable tuber yield
and quality and minimize the negative impacts on the natural
resources (Banerjee et al., 2020; Sanchez et al., 2020; Sun
et al., 2020). Also, the data processing approaches, such as
machine learning and image processing, have been widely used
for extracting useful information from remotely sensed data
(Dutta Gupta and Pattanayak, 2017; Oppenheim and Shani,
2017; Suh et al., 2018). Besides, cloud computing systems
have been successfully used in data storing and processing
for precision agriculture (Zhou et al., 2016b). Remote sensing
systems, integrating advances in imaging, data processing, and
computing technologies, thus have the potential to monitor
the crop growth status and help make the decisions for crop
management (Pavón-Pulido et al., 2017; Say et al., 2017).

In recent years, information-based precision agriculture has
been successfully applied to explore potato crop traits and
field phenotyping (Fortin et al., 2011; Sugiura et al., 2016;
Franceschini et al., 2017a; Pei et al., 2019). Potatoes are stem
tubers that are concealed in soils over the growing season.
After being seeded in the soil, the top sides of the tuber
produce shoot that grow into typical stems and leaves, and

the undersides produce roots (Khayatnezhad et al., 2011). By
establishing the relationship between traits of the aboveground
parts and the underground tubers, remote sensing techniques
have great potential in estimating the tuber growth conditions
and predicting tuber yield prior to harvest (Shayanowako
et al., 2014). Compared with traditional sampling methods,
remote sensing is capable of providing a non-destructive and
efficient way to collect the multi-temporal reflectance data of
the aboveground plants for monitoring the biomarkers of potato
crops (Nikolakopoulos et al., 2017; Feng et al., 2020). Past studies
have focused on the specific applications of potatoes in precision
agriculture using remote sensing approaches, such as tuber yield
prediction (Akhand et al., 2016; Zaeen et al., 2020), above-
ground biomass (AGB) estimation (Li B. et al., 2020; ten Harkel
et al., 2020), water stress detection (Rud et al., 2014), nitrogen
stress assessment (Bohman et al., 2019), and disease detection
(Nebiker et al., 2016; Franceschini et al., 2017b, 2019; Polder
et al., 2019). Most of these studies demonstrated the strengths
of remote sensing techniques along with their limitations and
future challenges for the applications in potato production.

The primary purpose of this review is to provide a
comprehensive background and knowledge on applications of
remote sensing technologies in potato trait characterization in
the context of precision agriculture. Both Web of Science and
Google Scholar databases were used for literature review with
keywords or topics of potato remote sensing from 2010 to the
present. This paper is organized in the following main aspects:
(1) compare the strengths and limitations of a variety of imaging
sensors and remote sensing platforms and (2) summarize the
remote sensing techniques adopted for the specific applications
of potatoes in precision agriculture.

Imaging sensors

Remote sensing for crop trait characterization broadly
involves a series of techniques in sensing, recording, analyzing,
and/or modeling. When incident radiation (light source or
natural light) hits plant surface, the radiation will either be
absorbed, transmitted, or reflected. The reflected radiation
is expressed as the electromagnetic spectrum with a range
of wavelengths. The sensing technologies include developing
devices to capture the reflected spectrum and convert them into
readable signals for further analysis (Xie and Yang, 2020).

When choosing sensors for a specific purpose, image
temporal, spatial, and spectral resolutions are the three main
factors to consider. Temporal resolution refers to the time
window between two images over the same place. Spatial
resolution refers to the size of the smallest objects that can
be captured and displayed in the imagery. Spectral resolution
refers to the ability of a sensor to measure specific wavelengths
of the electromagnetic spectrum and it is mainly decided by
the sensor types.
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Within the context of potato trait characterization, a
variety of sensors has been developed and applied for different
purposes. The sensors, varying in their spatial and temporal
resolutions, mainly include visible Red-Green-Blue (RGB)
cameras, multi- and hyper-spectral cameras, thermal infrared
(TIR) cameras, and light detection and ranging (LiDAR)
sensors. In this section, we summarized the sensors that have
been applied in characterizing potato traits with comparisons of
their strengths and limitations.

Visible red-green-blue cameras

Visible RGB cameras receive lights in red (564–580 nm),
green (534–545 nm), and blue (420–440 nm) board spectral
bands in the visible spectrum regions to emulate human vision.
Due to the broad applicability of RGB cameras in all the fields,
they are well-developed products by private sectors with a
large selective range in price, sensor sizes, lens availability, data
storage, and transmission. For characterizing crop traits, the
RGB cameras generally have the best performance in providing
high spatial-resolution images with the ability to be associated
with various sensing environments, which makes them the most
commonly adopted sensors in the areas of remote sensing.

Applications in potato trait characterization have been
leveraging the advantages of RGB images in different ways.
In potato, studies have been conducted on quantifying disease
severity using the RGB images by detecting pixels of diseased
leaves with that of healthy leaves and soil. It was shown that
the diseased leaves could be clearly distinguished from the
transformed color spaces (Sugiura et al., 2016) or spectral
indices (Gibson-Poole et al., 2017; Siebring et al., 2019) from
the RGB color space. Also due to the contrast between plant
and soil background captured by the RGB image, promising
applications have been seen in detecting potato emergence
(Gibson-Poole et al., 2018; Li et al., 2019) and calculating
ground vegetation coverage (Gibson-Poole et al., 2018). Other
than the color-based features, high resolution images from the
RGB cameras can be used to reconstruct three-dimensional
(3D) dense point models using photogrammetry methods. Plant
height is then obtained by subtracting the digital elevation
model (DEM) which represents the absolute elevation of the
bare ground from the digital surface model (DSM) which
represents the absolute height of the plant canopies. Li B. et al.
(2020) compared the performance in estimating potato plant
height from the RGB 3D models with the plant height regressed
from the hyperspectral reflectance and the results showed that
the RGB 3D models lead to a higher correlation with the ground
truth data [Coefficient of determination R2 = 0.93, root mean
square error (RMSE) = 6.39 cm] than the full spectra regression
(R2 = 0.85, RMSE = 7.24 cm).

Compared with other sensors, the RGB cameras provide an
intuitive way to visualize and quantify crop traits. RGB cameras

are typically low-cost, lightweight, and can be easily mounted
on various platforms for data collection. However, three spectral
bands and the broad bandwidth of the RGB cameras limit their
ability to receive crop traits other than human perceptions and
consequently their applications in sensing more complicated
crop traits, such as yield and nutrient deficit. Besides, it requires
extra efforts to remove background noises from the RGB images
under certain situations when the plants have similar visual
colors to the background or when plants are covered with
shadows and other plants (Li et al., 2014).

Multi- and hyper-spectral cameras

Multi- and hyper-spectral cameras provide information
with higher spectral resolutions than the RGB cameras and
spectral bands additional to the visible range. The multispectral
cameras usually consist of a small number (less than 10) of
discrete wavebands in the visible-near infrared range from 400
to 1,000 nm. The spectral wavebands usually are narrower RGB
bands and those with prior knowledge of their sensitivity in
receiving important crop information (Hunt et al., 2013), such
as red edge (700–730 nm) and NIR (760–900 nm). There are
two types of multispectral cameras currently used in precision
agriculture, that is, customized and commercial off-the-shelf
cameras. As suggested by the name, the customized camera has
the internal NIR filter removed from a visible RGB camera and is
then replaced with an external filter to alter the camera spectral
sensitivity (Zhou et al., 2016a), for example, from R-G-B to R-G-
NIR. The commercial multispectral cameras are explicitly made
with an interference filter to block or transmit specific lights
(Xie and Yang, 2020). Compared with the customized camera,
the commercial ones can provide more than three wavebands
with other selectable spectral regions, but with lower spatial
resolutions (Table 1).

By integrating both spectroscopic and imaging techniques
into one system, hyperspectral cameras provide 3D
hyperspectral cubes that contain both contiguous spectral
information and two-dimensional spatial information. There
are four types of hyperspectral cameras based on their image
acquisition methods, namely point scanning, line scanning, area
scanning, and snapshot cameras (Wu and Sun, 2013). The line
scanning, also known as the pushbroom cameras, records a line
of an image at each time and then forms the whole image by
scanning along the other direction. The line scanning cameras
are particularly suitable for being carried on imaging platforms
that follow certain moving patterns (e.g., zigzag paths) to cover
a large field and thus are the most popular ones in precision
agricultural applications (Xie and Yang, 2020). Compared
with the multispectral camera, hyperspectral cameras provide
a real spectrum in every image pixel, allowing to calculate
advanced vegetation indices (VIs) and estimate unperceived
crop phenotypes. However, hyperspectral cameras have more
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TABLE 1 Sensors and their applications in potato trait characterization.

Sensors Manufacturers Models Image
resolution

Spectral
range (nm)

No. of
bands

Applications

Visible
red–green–blue
(RGB)

DJI Phantom 4 Pro 5,472 × 3,648 400–700 3 Plant height estimation (Li B. et al.,
2020); Disease detection (Sugiura
et al., 2018); Emergence estimation (Li
et al., 2019)

Sony NEX-5N 1,920 × 1,080 Disease detection (Sugiura et al.,
2016)

Canon A2200 4,320 × 3,240 Disease detection (Gibson-Poole
et al., 2017)

ELPH 115 IS 4,608 × 3,456 Growth status prediction
(Gibson-Poole et al., 2018)

Panasonic GX1 4,592 × 3,448 Disease detection (Siebring et al.,
2019)

Multispectral Tetracam Micro-MCA
RGB + 3

1,280 × 1,024 350–950 6 Yield prediction (Tanabe et al., 2019)

ADC Lite 2,048 × 1,536 520–920 3 Crop scouting (Théau et al., 2020);
Insect detection (Hunt et al., 2016);
nitrogen stress estimation (Hunt et al.,
2016, 2018; Hunt and Rondon, 2017)

Mini-MCA 1,280 × 1,024 450–1,000 6 Beetle damage assessment (Hunt and
Rondon, 2017)

Kodak Megaplus 4.2i
cameras
(customized)

2,024 × 2,044 400–1,000 3 Yield prediction (Sankaran et al.,
2015)

Canon S95
(customized)

3,648 × 2,736 400–1,000 4 Chlorophyll content estimation
(Elarab et al., 2015)

S110
(customized)

4,000 × 3,000 400–1,000 3 Disease detection (Nebiker et al.,
2016; Duarte-Carvajalino et al., 2018)

Powershot
ELPH 340 HS
(customized)

4,608 × 3,456 400–1,000 3 Growth status estimation (Théau
et al., 2020)

ELPH 110
(customized)

4,608 × 3,456 400–1,000 3 Hail damage assessment (Zhou et al.,
2016a)

Redlake MS4100 1,920 × 1,080 400–1,000 3 Nitrogen stress prediction (Nigon
et al., 2014)

MicaSense RedEdge 1,280 × 960 400–1,000 5 Structural change (Angulo-Morales
et al., 2020); Radiation use efficiency
assessment (Peng et al., 2021)

Hyperspectral Headwall Nano-
Hyperspec

640 × 1 400–1,000 270 Yield prediction (Li B. et al., 2020; Sun
et al., 2020)

Specim ImSpector V10
2/3”

Depending on
the combined

imager

400–950 61 Chlorophyll content assessment, leaf
area index (LAI) estimation and
ground cover assessment
(Franceschini et al., 2017a); nitrogen
stress detection (Nigon et al., 2015);
canopy changes assessment
(Franceschini et al., 2017b); crop
growth assessment (Gevaert et al.,
2014); Reflectance anisotropy
measurements (Roosjen et al., 2016)

Cubert UHD 185 1,000 × 1,000 450–950 125 Chlorophyll content assessment (Li C.
et al., 2020)

Rikola Fabry-Perot
interferometer

1,010 × 1,010 500–900 16 Disease detection (Franceschini et al.,
2019); Chlorophyll content
assessment and LAI estimation
(Roosjen et al., 2018); Reflectance
anisotropy assessment (Roosjen et al.,
2017)

(Continued)
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TABLE 1 (Continued)

Sensors Manufacturers Models Image
resolution

Spectral
range (nm)

No. of
bands

Applications

Thermal infrared Infrared cameras Microbolometer 640 × 480 7,000–14,000 Chlorophyll content assessment
(Elarab et al., 2015)

Wilsonville TAU 640 640 × 512 7,500–13,500 Crop scouting (Théau et al., 2020)

FLIR E60 320 × 240 7,500–13,000 Water status (Cucho-Padin et al.,
2020)

FLIR SC2000 320 × 240 7,500–13,000 Water status (Rud et al., 2014)

FLIR SC655 640 × 480 7,500–13,000 Water status (Rud et al., 2014)

JeanOptics IDM200 640 × 480 7,500–13,000 Water status (Rud et al., 2014)

Fluke Ti-32 320 × 240 7,500–14,000 Water status (Elsayed et al., 2021a)

Fluke TiR1 160 × 120 7,500–14,000 Water status (Gerhards et al., 2016)

Telops HyperCamLW 320 × 256 7,700–11,500 Water status (Gerhards et al., 2016)

Palmer Wahl
Instruments

HSI3000 160 × 120 8,000–14,000 Water status (Ghazouani et al., 2017)

Light detection
and ranging
(LiDAR)

RIEGL VUX-1 Crop height and biomass estimation
(ten Harkel et al., 2020)

restrictions on reflectance calibration procedures and moving
patterns and they are more costly both in the devices and data
storage (Li et al., 2014).

The spectral cameras have been widely used to predict
potato leave biomass (Li B. et al., 2020; Peng et al., 2021)/tube
yield (Sankaran et al., 2015; Tanabe et al., 2019; Li B. et al.,
2020; Sun et al., 2020), detect canopy damage/disease (Nebiker
et al., 2016; Hunt and Rondon, 2017; Duarte-Carvajalino
et al., 2018; Franceschini et al., 2019), and estimate potato
biophysical properties, such as chlorophyll content (Elarab
et al., 2015; Franceschini et al., 2017a; Li C. et al., 2020),
nitrogen concentrations (Nigon et al., 2014, 2015; Hunt and
Rondon, 2017; Hunt et al., 2018), and leaf area index (LAI,
Franceschini et al., 2017a). Among them, disease detection is
the common application of visible RGB and spectral cameras.
Unlike separating the healthy and unhealthy leaf areas in RGB
images, spectral cameras are used to investigate the relationship
between spectral measurements and disease severity at plot/field
level. For example, the normalized difference vegetation index
(NDVI) combined with spectral reflectance values in NIR and R
was able to highlight sites infested by blight disease in a large
potato field (Nebiker et al., 2016). Atherton et al. (2015) also
reported that heavily diseased plants had significantly different
spectral profiles from healthy plants.

Thermal infrared cameras

Radiation emitted by objects in the longwave infrared range
(8–1.3 µm) is proportional to their surface temperature, which
can be exploited for remote measurements of plant canopy
temperature using TIR cameras (Kuenzer and Dech, 2013;
Williams et al., 2018). Plant canopy temperature has been

used as an indicator of plant stomatal traits (e.g., stomatal
conductance, stomatal aperture, or leaf porosity) because leaves
surfaces are cooled by evaporation, and stomatal opening or
higher transpiration rates lead to high evaporation rates (i.e.,
decreased temperatures; Deery et al., 2019). In plant science
and agronomy, measuring plant leaf temperature using thermal
imaging has long been used to study the mechanisms behind
plant water relations (Chaerle and Van Der Straeten, 2000),
plant physiology processes (Jones et al., 2002; Aldea et al., 2006a;
Grant et al., 2010), plant responses to pathogens (Chaerle et al.,
1999) or environmental stressors (Jones et al., 2009), and plant
photosynthetic rate (Aldea et al., 2006b; Vítek et al., 2020).
In the area of precision agriculture, substantial interests have
been witnessed in irrigation scheduling (Li et al., 2022), yield
prediction (Bellis et al., 2022), evapotranspiration estimation
(Lu et al., 2022; Wolff et al., 2022), pre-symptomatic diagnosis
(Cohen et al., 2022), and stress tolerance (Zhou et al., 2020;
Degani et al., 2022; Rippa et al., 2022).

In potato applications, TIR cameras are primarily used
to evaluate potato water status. Plant water stress indicators,
for example the Crop water stress index (CWSI), were
calculated using TIR image-derived temperature and validated
by comparing with biophysical measurements of plant water
status. Related studies showed that the TIR image-based indices
highly agreed with the ground measurements and were able to
reflect the effects of different irrigation treatments (Rud et al.,
2014; Gerhards et al., 2016; Cucho-Padin et al., 2020; Elsayed
et al., 2021a). In some other applications, the TIR cameras
were used as an aid tool for spectral cameras for detecting
pest stress (Théau et al., 2020) or assessing chlorophyll content
(Elarab et al., 2015).

The TIR cameras are the most effective tool in remotely
sensing plant leaf/canopy temperature and water-related status.
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In practical, pre-calibration and post-correction procedures are
required for receiving reliable temperature readings from the
TIR cameras especially under changing ambient environmental
factors such as air temperature, humidity, and wind speed
(Jones et al., 2009; Jin et al., 2021). Additionally, the low spatial
resolutions of the TIR cameras (Table 1) make them easily
affected by image background temperature. It is also reported by
Théau et al. (2020) that spectral indices (including visible ones)
would be preferred over the TIR indices when both performed
similarly in detecting various plant characteristics.

Light detection and ranging system

Light detection and ranging (or laser scanner) sensors
are used to obtain depth information of targeted objects.
A LiDAR device has a single-beam laser (narrowband in 600–
1,000 nm) that emits a light pulse and a receiver measures the
propagation time of the light pulse from emission to reflection.
The time is then converted into a distance given the known
speed of light (ten Harkel et al., 2020). LiDAR devices are
lightweight with compact sizes and thus can be easily integrated
on different platforms. Unmanned aerial vehicle (UAV)-based
LiDAR systems have been applied to map the 3D structure
of the plant canopy and topography of the landscape (Lin
et al., 2019; ten Harkel et al., 2020). UAV-based LiDAR devices
were reported to deliver accurate estimations of plant height
with the RMSE of 0.02, 0.07, and 0.12 m compared with the
manual measurements on snap bean crops (Zhang et al., 2021),
sugar beet, and potato (ten Harkel et al., 2020), respectively.
However, LiDAR devices can be expensive and require longer
imaging times, compared to other stereo vision methods from
images for 3D mapping.

Remote sensing platforms for data
collection

In precision agriculture, a variety of remote sensing
platforms have been developed and applied for different
purposes, mainly including ground and aerial platforms.
The ground platforms provide higher spatial and temporal
resolution imagery than the aerial platforms and generally do
not require a specific certificate to operate. Depending on the
structural differences, four types of ground platforms are often
seen, namely pole-based, cable-suspended, tractor, and gantry
platforms (Li et al., 2021b). However, due to the limited spatial
coverage, vibrations, and causes of soil compaction, ground
platforms are challenged to be used in large-scale applications
(Sankaran et al., 2015), such as potato precision management.
Thus in this section, we focused on the aerial platforms that have
been largely applied in precision potato management, that is,

satellite-based and UAV-based platforms, with comparisons of
their strengths and limitations.

Satellite-based remote sensing
platforms

Satellite imagery, as one of the remote sensing means, began
more than half a century ago and has been used efficiently in
multiple agricultural applications (Ma et al., 2021; Wang Y. et al.,
2021). Its major benefits include non-destructive capture of the
earth surface at wide geographical regions (hundreds of square
kilometers in a single image), selectable revisit time (1 day–
2 weeks), and sensors with high spatial and spectral resolutions
(Zhang et al., 2020). In recent years, a number of studies
have investigated the potential of using satellite-based remote
sensing platforms for precision potato management activities.
The specifications for eleven representative platforms and their
corresponding applications in precision potato management
have been summarized in Table 2.

Among all the selected satellite missions, the Landsat
program involves a series of satellites that have been successfully
used in agricultural monitoring because of the availability of
historical data of the Earth’s surface for over 40 years. The
most recent Landsat-8 was launched in 2013 with two imagers
(Operational Land Imager and Thermal Infrared Sensor)
that provide spectral observations in nine spectral bands at
a 30-m spatial resolution. Several studies thus adapted the
high-resolution observations from Landsat-8 for potato yield
prediction (Al-Gaadi et al., 2016; Newton et al., 2018; Awad,
2019).

Besides the Landsat missions, Sentinel-2 is another
popular platform for agriculture monitoring. For the potato
management, Sentinel-2 imagery has been used for LAI and
chlorophyll content estimation (Herrmann et al., 2011; Clevers
and Kooistra, 2012; Clevers and Gitelson, 2013; Clevers et al.,
2017), radiation utilization assessment (Peng et al., 2021),
yield prediction (Al-Gaadi et al., 2016; Gómez et al., 2019;
Abou Ali et al., 2020), and crop mapping (Ashourloo et al.,
2020). Launched in 2015 by Copernicus Programme, Sentinel-2
systematically acquires optical imagery with global coverage. It
is equipped with a push-broom multi-spectral instrument (MSI)
which provides optical observations at 13 spectral bands ranging
from visible (VIS) to short-wave infrared (SWIR) at high spatial
resolutions (10–60 m/pixel). Like Landsat-8, Sentinel-2 also
provides a global coverage but with a much higher temporal
resolution (Table 1), which makes Sentinel-2 the most widely
used satellite platform in potato precision management.

Other satellite platforms with unique specifications in one
of the resolutions have been used to address specific purposes in
potato management. For example, Terra Moderate Resolution
Imaging Spectroradiometer has the highest spectral resolution
of 36 bands in the range between 400 and 1,440 nm and thus the
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TABLE 2 Satellite-based remote sensing platforms and their applications in potato trait characterization.

Satellite Instrument Spatial
resolution
(m/pixel)

Temporal
resolution

(days)

Spectral
range (nm)

No. of
bands

Applications

Terra Moderate Resolution
Imaging
Spectroradiometer
(MODIS)

250–1,000 1–2 400–1,440 36 Yield prediction
(Salvador et al., 2020);
disease assessment
(Dutta et al., 2014)

Advanced Spaceborne
Thermal Emission and
Reflection Radiometer
(ASTER)

15–90 4–16 500–12,000 14 Herbicide rate
assessment (Van Evert
et al., 2012)

Planet scope PS2 3 1 455–860 4 Yield prediction (Abou
Ali et al., 2020)

Resourcesat-1 Advanced Wide Field
Sensor (AWiFS)

56 5 520–1,700 3 Disease assessment
(Dutta et al., 2014)

Sentinel-2 Multispectral Instrument
(MSI)

10–60 5 400–2,190 13 Leaf area index (LAI)
and chlorophyll content
estimation (Herrmann
et al., 2011; Clevers and
Kooistra, 2012; Clevers
and Gitelson, 2013;
Clevers et al., 2017);
Radiation utilization
assessment (Peng et al.,
2021); Yield prediction
(Al-Gaadi et al., 2016;
Gómez et al., 2019; Abou
Ali et al., 2020); crop
mapping (Ashourloo
et al., 2020)

Sentinel-3 The Ocean and Land
Color Instrument
(OLCI)

300 27 400–1,020 21 Nitrogen stress
prediction (Clevers and
Gitelson, 2013)

Landsat-5 Thematic Mapper (TM) 30–120 16 450–12,500 7 Yield prediction (Newton
et al., 2018); LAI and
Crop height estimation
(Papadavid et al., 2011)

Landsat-7 Enhanced Thematic
Mapper Plus (ETM+)

15–60 16 450–12,500 8 Yield prediction (Newton
et al., 2018; Awad, 2019);
LAI and Crop height
estimation (Papadavid
et al., 2011)

Landsat-8 Operational Land Imager
(OLI)

30 16 433–1,390 9 Yield prediction
(Al-Gaadi et al., 2016;
Newton et al., 2018;
Awad, 2019)

Formosat-2 Remote Sensing
Instrument

8 1 450–900 4 Spectral-Temporal
Response Surfaces
(STRS) estimation
(Gevaert et al., 2015);
Crop growth assessment
(Gevaert et al., 2014)

Proba-1 Compact High
Resolution Imaging
Spectrometer (CHRIS)

18 2 400–1,050 19 LAI estimation
(Atzberger and Richter,
2012; Delegido et al.,
2013)

Polar Orbiting
Environmental
Satellites (POES)

The Advanced Very
High-Resolution
Radiometer (AVHRR)

1,100 7/14 580–12,500 5 Yield prediction (Khan
et al., 2012; Akhand et al.,
2016)
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TABLE 3 UAV-based remote sensing platforms and their applications in potato traits characterization.

UAV type Manufacturer Model On board
sensors

Max. speed
(km/h)

Duration
(min)

Applications

Quadcopters DJI Phantom 4 Pro Visible RGB 50–72 30 Plant height estimation (Li B.
et al., 2020); Disease detection
(Sugiura et al., 2018); Emergence
estimation (Li et al., 2019)

Quadcopters DJI Inspire 2 RGB;
Multispectral

94 25 Yield prediction (Li et al., 2021a)

Quadcopters 3D Robotics Solo Visible RGB 80 25 Growth status prediction
(Gibson-Poole et al., 2018)

Quadcopters DJI Matrice 100 * Multispectral 61–79 20–40 Radiation use efficiency
assessment (Peng et al., 2021)

Hexacopter DJI Matrice 600 Pro Customizable 65 25 Yield prediction (Sun et al., 2020)

Hexacopter Tarot 680 Pro Customizable – – Structural change
(Angulo-Morales et al., 2020)

Octocopter Aerialtronics Altura AT8 * Customizable – – Chlorophyll content assessment,
leaf area index (LAI) estimation
and ground cover assessment
(Franceschini et al., 2017a); Crop
growth assessment (Gevaert et al.,
2014); Chlorophyll content
assessment and LAI estimation
(Roosjen et al., 2018); Reflectance
anisotropy measurements
(Roosjen et al., 2016, 2017);
Disease detection (Siebring et al.,
2019)

Octocopter Riegl RiCOPTER Visible RGB;
LiDAR

30 30 Crop height and biomass
estimation (ten Harkel et al.,
2020)

GmbH HiSystems Unspecified Visible RGB – – Disease detection (Sugiura et al.,
2016, 2018)

Fixed-wing Trimble UX5 HP Visible RGB 80 35 Plant height estimation (De Jesus
Colwell et al., 2021)

Fixed-wing senseFly eBee micro * Visible RGB;
Multispectral

110 25–50 Disease detection (Nebiker et al.,
2016)

*Better versions are available now.

benefits for detecting the abnormal reflectance from leaves in the
narrow bands for potato disease assessment (Dutta et al., 2014).
Planet Scope provides images with the highest spatial resolution
(3 m/pixel) every day through a constellation of about 130 low-
orbit satellites. Though costly (∼$ 218 per 100 km2) compared
to the publicly launched satellites, its imagery has been used as a
good source for the decision-making at field-level and plot-level
potato management on a daily basis (Abou Ali et al., 2020).

Unmanned aerial vehicle-based
remote sensing platforms

Over the decades, UAV-based platforms have been a popular
approach in precision agriculture. UAVs refer to devices with
flying capacity without humans onboard (Eisenbeiss, 2004;
Sankaran et al., 2015). Other than the UAV and its accessories
(e.g., batteries and remote controller), UAV-based remote
sensing platforms for agricultural purposes generally include

onboard sensors for collecting data, a gimbal for motion
correction and stabilization, and a flight planning App installed
in a smart mobile device for automated flight control. To deliver
precisely geo-referenced data, UAV platforms are typically
coupled with ground control points (GCPs) with known global
navigation satellite system positions.

The UAV platforms are available in several types with
distinguishing features. The most widely used UAVs in precision
agriculture are multi-rotor copters or fixed-wings (Li et al.,
2021b). Multi-rotor copters can be quadcopters, hexacopters, or
octocopters depending on the number of propellers they have.
Multi-rotor copters are driven by the pairs of propellers to create
thrust downward and directed by changing the thrust of one or
more propellers. Thus, they are able to hover, take off and land
vertically and have no lower limits on flight altitude. Fixed-wing
UAVs, like airplanes, have a pair of rigid wings and a thruster
at back. The lift of fixed-wing UAVs comes from the air pressure
differences between the upper and lower sides that are generated
passively as its wings cut through the air at a specific angle when
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being pushed forward. Fixed-wing UAVs are fast and energy-
efficient, and thus allow much larger ground coverage than the
multi-rotor copters. On the other hand, they do not have the
capability to hover and fly close to the ground. A list of popular
UAV models and their applications in potato applications are
summarized in Table 3.

Selection of UAVs is conditional on specific tasks, including
field area, spatial resolution, flexibility for carrying various
cameras, and costs. Among all UAV types, quadcopters are the
most popular as they are light weight and easy to operate.
The DJI Phantom series with high-resolution motion RGB
cameras have been used in applications for obtaining plant
structural traits (Li B. et al., 2020) and recently they have
an updated multispectral version for those who favor spectral
measurements. Hexacopters generally are not sold with onboard
sensors but offer interfaces to power and control third-party
cameras. Thus the hexacopters are often used to carry multi-
or hyper-spectral cameras for perceiving complicated crop traits
such as yield responses (Feng et al., 2020; Zhou et al., 2021b)
or stress (Zhou et al., 2020, 2021a). Similar to the hexacopter,
octocopters are flexible in carrying multiple sensors and other
devices for durable flight. The most widely accepted octocopter
is the Altura AT8 (Aerialtronics, South Holland, Netherlands)
which was used to carry a hyperspectral imaging system (2.0 kg
in total) as the original version of the Hyperspectral Mapping
System (HYMSY, Suomalainen et al., 2014). The HYMSY system
costs around $12,769 and is largely used in potato studies
conducted in European. On the opposite to multi-rotor UAVs,
the fixed-wings offer a solution to the need of covering large
fields because of their nature of high flight speed and altitude.
Cameras on fixed-wings should have high frame rates and short
exposure time to avoid blurred images caused by the high flight
speed (Li et al., 2021b). As products evolve, fixed-wings vendors
now offer a variety of versions with dual or triple cameras for
agricultural purposes.

Applications

Precision agricultural management is the key to reducing
environmental impact and enhancing agricultural sustainability
(Zhang et al., 2021). Within the context of potato management,
a variety of activities are employed to ensure its productivity
and quality throughout the growing cycle. Some of these
activities heavily rely on in situ field monitoring of potato
growing conditions, field environmental conditions and
diseases, followed by in-season decision-making on irrigation,
fertilization, pesticides and off-season guidance on storage, sell,
and post-harvest field management. Remote sensing techniques
have been explored and applied to directly measure crop yield,
disease damages, and some key indicators of potato growth. In
this section, we reviewed the applications of these techniques
in potato management, including tuber yield prediction,

AGB estimation, water deficit stress assessment, nitrogen
concentration estimation, and disease detection. Some key traits
that are closely related to potato growth were also summarized,
namely plant height, LAI, chlorophyll, and emergence detection
and plant counting. The details of the applications can be found
in Table 4.

Tuber yield prediction

Achieving the maximum crop yield at the lowest investment
is an ultimate goal for farmers (Al-Gaadi et al., 2016). Early
detection of problems associated with crop yield can greatly
help with the decision-making for field management and
reduce profit loss. In addition, yield mapping pre- or post-
harvest can be used as spatial references for implementing
variable rate technologies to achieve precise applications of
field-level inputs and thus optimize production across entire
fields (Al-Gaadi et al., 2016).

Potato tuber yield is jointly affected by genetic variation,
environmental conditions (soil and weather), seed quality,
and crop management practices (Li et al., 2021a). Classical
potato yield prediction models are often used to estimate yields
within the growing season by considering nitrogen fertilizer,
temperature, and daylight or the incidence of solar radiation
(Wang X. et al., 2021). Recent studies showed higher prediction
accuracies by using machine learning models with remote
sensing data at various levels, providing target-specific insights
and recommendations for precision agriculture practices.

Salvador et al. (2020) predicted potato tuber yield at a
municipal level in Mexica using machine learning models with
satellite remote sensing imagery. The models were trained
with NDVI values calculated from the TERRA satellite images
combined with meteorological data on a monthly basis. The best
testing performance was from the Random Forest model for the
winter cycle (R2 = 0.76 and RMSE% = 18.9) and the polynomial
Support Vector Machine for the summer cycle (R2 = 0.86 and
RMSE% = 14.9). There are a few similar studies using satellite
imagery and machine learning models for predicting potato
yield at large scales in Spain (Gómez et al., 2019), Saudi Arabia
(Al-Gaadi et al., 2016), and Bangladesh (Bala and Islam, 2009).

Unmanned aerial vehicle-based imagery is largely used for
predicting potato yield in site-specific studies. Multi- (Tanabe
et al., 2019; Li et al., 2021a) and hyper-spectral (Li B. et al.,
2020; Sun et al., 2020) have been used to establish and validate a
variety of machine learning models for predicting potato yield.
The prediction performance of images collected at different
growth stages was compared. It was found that images at earlier
growth stages, i.e., the tuber initiation stage (Li et al., 2021a)
and vegetative growth stage (Tanabe et al., 2019), tuber bulking
stage (Li B. et al., 2020) had better prediction performances than
those at the later stage when close to the end of seasons. Even
though, Sun et al. (2020) reported a decent prediction accuracy
with R2 = 0.63, RMSE = 3.03 ton/ha, and RMSE% = 5.8 when
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TABLE 4 Applications of remote sensing technologies in Potato traits characterization.

Application Platform Sensor Model Sensor-derived
feature

References

Tuber yield
prediction

UAV Hyperspectral camera OLS; Ridge; PLSR; SVR;
RF; AdaBoost

Full spectra Sun et al., 2020

RGB, multi- and hyper-
spectral cameras

RF; PLSR 13 narrow-band VIs Li B. et al., 2020

Multispectral camera ANN NDVI Tanabe et al., 2019

RF; SVR 15 wide-band VIs Li et al., 2021a

Satellite Terra MODIS LR VIs Bala and Islam, 2009

RF; SVM; LR NDVI Salvador et al., 2020

Sentinel-2 9 machine learning
models

54 features including
band reflectance and VIs

Gómez et al., 2019

Landsat-8; Sentinel-2 LR NDVI; SAVI Al-Gaadi et al., 2016

Above-ground
biomass (AGB)
estimation

UAV RGB and Hyperspectral
camera

RF; PLSR 13 narrow-band VIs;
Image-based plant height

Li B. et al., 2020

LiDAR 3D Profile Index
(Jimenez-Berni et al.,
2018)

LiDAR point cloud ten Harkel et al., 2020

Handheld Hyperspectral
spectrometer

PLSR, MLR, RF NDSI, RSI, DSI Pei et al., 2019

GA; ANFIS 20 narrow-band VIs Elsayed et al., 2021b

RF 12 narrow-band VIs Yang et al., 2021

TIR and RGB cameras MLR; ANFIS NRCT and 12
wide-based VIs

Elsayed et al., 2021a

UAV; Satellite;
handheld

Multispectral camera;
Sentinel-2; multispectral
spectrometer

Carnegie–Ames–
Stanford
approach

RVI and raw bands Peng et al., 2021

Water deficit
stress
assessment

UAV; handheld TIR and RGB cameras LR CWSI Rud et al., 2014

Handheld TIR camera – CWSI Cucho-Padin et al., 2020

MLR; ANFIS NRCT Elsayed et al., 2021a

LR CWSI Ghazouani et al., 2017

Nitrogen
concentration
estimation

UAV Multispectral camera LR NDVI; GNDVI Hunt and Rondon, 2017

MAV Multispectral camera LR GNDVI; GRVI; NDVI;
NG

Nigon et al., 2014

Hyperspectral
spectrometer

PLSR NG and 6 narrow-band
VIs

Nigon et al., 2015

Handheld Multispectral radiometer LR 8 wide-band VIs Clevers and Gitelson,
2013

Hyperspectral
spectrometer

LR 4 SWIR-based indices Herrmann et al., 2011

Multispectral camera LR NDVI; RVI; RRE;
RRE/GC

Zhou et al., 2018

Disease
detection

PVY Ground vehicle RGB-Depth camera;
hyperspectral line scan
camera

FCN Full spectra Polder et al., 2019

Handheld Hyperspectral
spectrometer

SVM 5 EM wavelength
segments

Griffel et al., 2018

PLS-DA NDSI for all
combinations of
wavelengths

Couture et al., 2018

(Continued)
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TABLE 4 (Continued)

Application Platform Sensor Model Sensor-derived
feature

References

Late blight UAV RGB camera Color threshold HSV color space Sugiura et al., 2016

Multispectral camera – NDVI Nebiker et al., 2016

CNN; SVR; RF Differences between G
and B as well as between
NIR and G

Duarte-Carvajalino et al.,
2018

Satellite Terra MODIS; AWiFS Clustering NDVI and LSWI Dutta et al., 2014

Handheld Hyperspectral
spectrometer

ANOVA; Stepwise
Discriminant Analysis

NDVI; SR; SAVI; REI;
and full spectra

Ray et al., 2011

Early blight Ground vehicle Hyperspectral camera PLS-DA; SVM Full spectra; five
wide-band VIs

Van De Vijver et al., 2020

Handheld Hyperspectral
spectrometer

PCA; spectral change
analysis; and PLSR

Full spectra Atherton et al., 2015

Plant height UAV RGB camera and
hyperspectral sensor

SfM; RF and PLSR RGB images and 13
narrow-band VIs

Li B. et al., 2020

LiDAR scanner 3DPI 3D-point cloud ten Harkel et al., 2020

RGB camera SfM; “trace all triangles”
method and “do not
track breaklines” method

RGB images De Jesus Colwell et al.,
2021

Leaf area index
(LAI)

Handheld Hyperspectral
spectrometer

PLSR Full spectra NDVI; REIP Herrmann et al., 2011

Handheld;
satellite

Hyperspectral
spectrometer; Landsat
TM/ETM+

Linear, exponential, and
logarithmic regression

NDVI; SAVI; WDVI Papadavid et al., 2011

UAV Multispectral camera PROSAIL model
inversion

Multi-angular
multispectral data

Roosjen et al., 2018

Satellite Sentinel-2 MSI LR WDVI Clevers et al., 2017

Landsat-8 OLI;
Sentinel-2 MSI

LR; SNAP model SAVI; NDVI; EVI2; SeLI Mourad et al., 2020

Leaf chlorophyll
content (LCC)

Handheld RGB camera ANN; LR Mean brightness
parameters and mean
brightness ratio

Dutta Gupta et al., 2013

Hyperspectral
spectrometer

PLSR Full spectra; normalized
spectra; MFs spectra

Liu et al., 2020

Multispectral camera LR; MLR mean and std of R and G Borhan et al., 2017

Handheld;
satellite

Hyperspectral
spectrometer; REIS

LR TCARI/OSAVI,
TCI/OSAVI and CVI

Kooistra and Clevers,
2016

UAV; satellite Hyperspectral
spectrometer;
FORMOSAT-2

LR Spectral–temporal
response surfaces

Gevaert et al., 2015

Emergence
detection and
plant counting

UAV RGB camera Mask R-CNN RGB images Machefer et al., 2020

RF Morphological features Li et al., 2019

Multispectral camera LR NDVI Sankaran et al., 2017

Abbreviations for Table 3: OLS, ordinary least squares; PLSR, partial least square regression; SVR, support vector regression; RF, random forest; VI, vegetation index; ANN, artificial neural
network; NDVI, normalized difference vegetation index; LR, linear regression; SVM, support vector machine; SAVI, soil adjusted vegetation index; NDSI, normalized difference snow
index; RSI, ratio spectral index; DSI, difference spectral index; MLR, multiple linear regression; GA, genetic algorithm; ANFIS, adaptive neuro-fuzzy inference system; NRCT, normalized
relative canopy temperature; RVI, ratio vegetation index; CWSI, crop water status index; GNDVI, green normalized difference vegetation index; GRVI, green and red ratio vegetation
index; NG, normalized green; RRE, ratio red edge vegetation index; GC, canopy cover; FCN, fully convolution neural network; EM, electromagnetic spectrum; PLS-DA, partial least-
squares discriminate analysis; CNN, convolution neural network; G, green; B, blue; NIR, near infrared; LSWI, integration of leaf water content index; ANOVA, analysis of variance; SR,
simple ratio; REI, red edge index; PCA, principal components analysis; SfM, structure from motion; 3DPI, 3D profile index; REIP, red-edge inflection point; WDVI, weighted difference
vegetation index; PROSAIL, the coupling of the PROSPECT and SAIL models; SANP, sentinel application platform; EVI2, enhanced vegetation index 2; SeLI, sentinel-2 LAI index; REIS,
RapidEye earth-imaging system; TCARI, transformed chlorophyll absorption in reflectance index; OSAVI, optimized soil-adjusted vegetation index the optimized soil-adjusted vegetation
index; TCI, triangular chlorophyll index; and CVI, chlorophyll vegetation index.
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using hyperspectral image features at tuber maturation stage and
machine learning models to predict potato tuber yield under
four irrigation levels.

Potato above-ground biomass
estimation

Above-ground biomass is a basic agronomic trait in field
investigations and is often used to indicate crop growth status,
the effectiveness of agricultural management measures, and
the carbon sequestration ability of crops (Li B. et al., 2020).
Particularly for potatoes, AGB is one of the most important
indicators for calculating the nitrogen nutrition index and
diagnosing the potato nitrogen status for precise nitrogen
fertilizer management (Jin et al., 2021; Yang et al., 2021). Manual
measurement of AGB requires cutting culms at the ground
level for a defined portion of the experimental plot, and then
weighing before (AGB fresh weight) and after drying (AGB
dry weight) in an oven until constant weight (Pask et al.,
2012), which is laborious and subject to experimental errors
(Jimenez-Berni et al., 2018).

Estimations of potato AGB using remote sensing methods
have been explored in a variety of ways, by integrating spectral-
based VIs, plant height (manual- or sensor-based) with machine
learning, classical and empirical models. Ground-based data
acquired on potato canopies by spectroradiometers (Pei et al.,
2019; Elsayed et al., 2021b; Yang et al., 2021), RGB, and
thermal cameras (Elsayed et al., 2021a) were used as predictors
in machine learning models and the studies showed that
the agreements between the estimated and measured biomass
were up to R2 of 0.7–0.8. Pei et al. (2019) also compared
the estimation performance using the ground spectral data
at different stages and the best result was given by the
spectral features at the tube growth stage with R2 = 0.71
and RMSE% = 19.3.

In addition to the spectral features, plant height was
considered as an important contributor to potato biomass. ten
Harkel et al. (2020) derived the potato plant height from a UAV-
LiDAR device and imported it to an empirical model originated
from (Jimenez-Berni et al., 2018) for the estimation of biomass
from LiDAR. The biomass solely based on plant height had
an R2 of 0.24 with the RMSE of 22.1 g/m2. In another case,
the UAV image-based plant height (from RGB images using
the Structure from Motion method) was integrated with UAV
hyperspectral VIs into a Random Forest model. The model
accuracy for the biomass fresh weight was up to R2 = 0.90 with
RMSE% = 20.6, and for the biomass dry weight up to R2 = 0.92
with RMSE% = 17.4 (Li B. et al., 2020).

An interesting comparison in the estimation performance
of potato biomass using ground, UAV, and satellite data was
conducted by Peng et al. (2021). Data from each source
were independently used as variables in a classical model

(the Carnegie–Ames–Stanford approach). The results showed
that the ground spectral data reached the highest accuracy
with R2 = 0.76 and RMSE% = 22.2, while the UAV and
the Satellite multispectral image features had the similar
performance with R2 = 0.70 (RMSE% = 22.4) and R2 = 0.72
(RMSE% = 24.4), respectively.

Potato water deficit stress assessment

Potato plants are sensitive to water stress due to their
shallow root systems. Approximately 70% of the total water
needed for potato growth comes from the upper 30 cm of
the soil (Ahmadi et al., 2011). Potato commonly grows in
coarse-textured soil with low water holding capacity (Rud et al.,
2014) or in arid and semiarid countries (Elsayed et al., 2021a).
Therefore, inappropriate water management practices or water
deficit stress in potato plants could cause significant reductions
in tuber yield (Karam et al., 2014) and degraded tuber quality
(Djaman et al., 2021).

The plant water deficit is conventionally detected by
measuring plant water statuses, such as leaf water potential and
stomatal conductance, or by measuring soil gravimetric water
content. All of the measurements are direct, destructive, labor-
intensive, and unable for large-scale cultivation or tracking
intra-field variability (Rud et al., 2014). CWSI, accounting
for the differences between canopy and air temperatures at a
fixed air vapor pressure deficit, has been extensively validated
to represent plant water status, after it was designed by
Idso et al. (1981). The use of leaf or canopy temperature
to detect the water-related stresses is based on the principle
that a plant’s stomatal closure takes place during water stress,
which results in a decrease of energy dissipation and an
increase in plant temperature (Idso et al., 1981; Elsayed et al.,
2021a). The CWSI has been proposed as a good indicator
of plant water stress (Cucho-Padin et al., 2020) and proved
relating to stomatal conductance (Rud et al., 2014) and yield
(Ghazouani et al., 2017).

The computation of CWSI requires the knowledge of plant
canopy temperature which can be acquired through remote
sensing technologies. Handheld infrared cameras have been
used to obtain temperature values of plant canopy and soil to
calculate the CSWI values for potato plants under irrigation
treatments. Cucho-Padin et al. (2020) found that the CWSI
values derived from a TIR camera had a high correlation (the
Pearson’s correlation coefficient r = 0.84) with those from
ground proximal sensors. The results also showed that no
significant reduction in tuber yield was observed by using
CWSI < 0.4 as a threshold for irrigation in potato crops,
compared to the irrigation amount with CWSI > 0.4, which
agrees with other works (Ramírez et al., 2016; Rinza et al., 2019)
and provides a reference for saving irrigation water in arid and
semiarid regions (Cucho-Padin et al., 2020).
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The effectiveness of aerial TIR images in representing potato
water status was evaluated in Rud et al. (2014) by comparing
the image-derived CWSI with the biophysical measurements of
leaf stomatal conductance values. In this study, RGB images
were acquired simultaneously with the TIR images and used
to create masks for the TIR images to distinguish between
vegetation and soil. The CWSI was calculated based on the
difference between leaf and air temperatures normalized to
the variation in environmental meteorological conditions and
showed high correlations (0.64 ≤ R2

≤ 0.99) with the stomatal
conductance measurements.

A few studies have tried to combine spectral indices with the
CWSI and canopy temperature to indicate potato water stress.
Elsayed et al. (2021a) reported a good alignment (R2 = 0.89)
between the estimated and measured water content of the
potato AGB by using the spectral indices derived from RGB
and thermal images combined with machine learning models.
Similarly, Gerhards et al. (2016) compared the performance of
detecting water content in potato plants between spectral and
thermal-based indices. The results showed that the CWSI was
most suitable for water stress detection among all the thermal-
based indices. Additionally, it was found that the NIR/SWIR
reflectance-based indices and the spectral emissivity (non-
imaging devices) were equally sensitive to plant water content
and responded quicker than the indices from imaging devices
(such as the NDVI from a hyperspectral TIR camera; Gerhards
et al., 2016).

Potato nitrogen concentration
estimation

Potato growth depends largely on the nitrogen availability in
the soil (Nigon et al., 2014). However, the shallow-root system
coupled with their common cultivation in coarse-textured soils
leads to poor nitrogen use efficiency in potato plants (Nigon
et al., 2014). Excessive applications of nitrogen fertilizers, on
one hand, might have negative impacts on potato productivity
by inducing a greater growth of aboveground biomass but
reducing the root growth. On the other hand, it raises the
health risks associated with nitrate-contaminated groundwater
caused by the high rates of nitrate leaching in irrigated potato
fields (Zebarth and Rosen, 2007; Lynch et al., 2012). Therefore,
precise spatial and temporal nitrogen management is important
to optimize production and minimize environmental nitrogen
losses (Nigon et al., 2014).

One of the typical guidance on the timing and amount
of nitrogen applications on potato is nitrogen nutrition index,
defined as the ratio of the actual nitrogen concentration (Nc)
over the minimum crop nitrogen concentration allowing for
maximum biomass production (Ncri). While Ncri is an estimated
value depending on the potato AGB, Nc needs to be determined
along with the potato growth and traditionally by wet tests in

laboratory. However, Nc values from the sampled potato plants
might not accurately represent nitrogen status for an entire field
and potato nitrogen status might change considerably by the
time of analysis (Zhou et al., 2018). Thus, fast and accurate
estimation of potato Nc values is urgently needed to assist the
precision nitrogen management in potato productions.

Canopy spectral reflectance has been used extensively in
agriculture to measure the actual nitrogen status of crop growth
in order to guide nitrogen fertilization (Raun et al., 2002; Van
Evert et al., 2012; Zhou et al., 2016c). The principle that the
canopy spectral reflectance can indicate the canopy Nc values is
based on the fact that the light reflected in certain wavebands is
sensitive to leaf chlorophyll concentration, which in turn closely
depends on leaf nitrogen concentration (Lawlor et al., 1989;
Baret and Fourty, 1997; Hansen and Schjoerring, 2003). Studies
have been conducted to compare the performances in estimating
the potato Nc among canopy spectral reflectance obtained at
different scales (handheld/UAV/Satellite) with narrow or wide
spectral bandwidths and various ranges in spectral wavelength.
The commonly used spectral features and their details have been
summarized in Table 3.

Potato disease detection

Potato production is threatened by several diseases resulting
in considerable yield losses, causing decreases in the quality
and increases in the price of potatoes (Taylor et al., 2008).
In-season early detection is particularly important for disease
management decisions to control disease severity and prevent
the spread of diseases (Oppenheim and Shani, 2017). Besides,
detecting the overall disease grade of potato fields allows growers
to make decisions regarding the best way to store, sell, and
manage the fields for future generations (Gibson-Poole et al.,
2018). Traditional potato disease inspection requires visual
identification of the signs of disease. However, the disease
plants can be difficult to identify, especially when symptoms
are not yet developed or at the early stages. The remote sensing
technique provides an opportunity to overcome the limitations,
and they have already been widely used to detect diseases of
potatoes for many years.

Among all the diseases that occurred during potato growth,
Potato Virus Y (Potyviridae, PVY) is the most common reason
for the rejection of seed lots from certification and one of the
most common potato diseases (Griffel et al., 2018). The foliar
symptoms of PVY include mosaic, leaf drop, and interveinal
necrosis, and this virus can also cause necrotic rings on potato
tubers (Gray et al., 2010). However, the recently prevalent PVY
strains exhibit transient and milder foliar symptoms, making it
less effective the visual inspection of seed lots with high PVY
incidence (Frost et al., 2013). Spectral reflections in the NIR
and SWIR regions have provided differentiable profiles in the
underlying responses to the PVY stress. Couture et al. (2018)
assessed the efficacy of hyperspectral information (a handheld
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device with narrow bands between 350 to 2,500 nm) in detecting
the presence of PVY in potato leaves prior to the onset of
the visual symptoms and observed a significant difference in
the whole spectral profile between the PVY-negative and PVY-
positive plants, especially in the NIR and SWIR spectral regions.
A partial-least square discriminate analysis model trained with
normalized spectral indices derived from the hyperspectral
bands correctly identified the positive PVY infection status
in vivo with a mean cross-validation accuracy of Kappa = 0.73.
Similarly, high accuracy of 89.8% was reported by Griffel et al.
(2018) in classifying the PVY-infected and non-infected potato
plants using the UAV-based spectral information in the NIR
and SWIR regions. Another example was given by Polder et al.
(2019) that the healthy potato plants were distinguished from
PVY infected ones (the classification Precision = 0.78) by a
deep learning model directly using the hyperspectral images
(400–1,000 nm).

Potato late blight (Phytophthora infestans) is another serious
disease affecting potato production worldwide (Hwang et al.,
2014). The disease rapidly destroys leaves, and it consequently
leads to yield losses and tuber quality deterioration. Symptoms
of late blight on potato plants mostly appear on the leaves,
developing from small, dark green, irregular-shaped water-
soaked spots to large, dark brown or black lesions surrounded
by a yellow chlorotic halo. Compared to the PVY, late blight
affections are more easily detectable from potato canopies using
remote sensing techniques. Various sensing combinations have
been evaluated with promising potential to estimate the late
blight severity, from ground-based spectrometer (Ray et al.,
2011; Franceschini et al., 2017a; Gold et al., 2020) to UAV-based
RGB (Sugiura et al., 2016), multi-/hyper-spectral (Nebiker et al.,
2016; Franceschini et al., 2017b; Duarte-Carvajalino et al., 2018)
cameras and to satellite-based MSI (Dutta et al., 2014). Despite
using considerably different prediction models, the general idea
of quantifying the late blight severity is first to differentiate the
infected and the healthy leaves parts and then obtain as the
estimations the percentage of the damaged part over the healthy
part (Dutta et al., 2014; Sugiura et al., 2016; Duarte-Carvajalino
et al., 2018).

Another potato disease that has been detected using remote
sensing techniques is early blight (Alternaria solani). Atherton
et al. (2015) analyzed the spectral profile of potato plants
with the early blight and noticed a significant difference in
the spectral reflectance between heavily diseased plants and
healthy plants. Van De Vijver et al. (2020) developed a ground-
based proximal sensing platform-Hypercart for acquiring
hyperspectral images in the potato field. The machine learning
models highly agreed (R2 = 0.92) with the visual assessments.
Additionally, significant differences between healthy leaf and
injected leaf tissues were observed in the green (550 nm),
red (680 nm), and NIR (720–750 nm) regions and the NIR
was recognized as the most helpful region for detecting the
early blight lesions.

Other traits

Potato plant height
Plant height is one of the most important traits for

precision agricultural management. Plant height usually had
a significantly positive correlation with yield in many types
of crops, thus it is often used as an indicator of crop yield
potential (Li et al., 2016; Feng et al., 2019). Besides, plant
height can be used to estimate crop AGB and crop lodging.
Remote sensing of plant height commonly adopts two different
techniques, one directly obtaining the depth information from
sensors, for example, the LiDAR devices. The other one is
to estimate the 3D information from highly overlapped 2D
images using photogrammetric methods such as stereo vision
or structure from motion.

The effectiveness and accuracy of plant height measurement
in remote sensing depend on the joint effects of the device
type, measuring distances, algorithms, and plant variations. For
estimating the potato plant height, ten Harkel et al. (2020) used
a UAV-LiDAR system at 40 m above ground level and obtained
the estimation accuracy of R2 = 0.50 and RMSE = 12 cm. By
using photogrammetric methods, a less expensive way than
the LiDAR devices is to take the difference between DSM
(representing the absolute elevation of the object in image
pixels) and DEMs (representing the absolute elevation of the
bare ground under the canopy) derived from RGB imagery.
Estimated potato heights often showed high correlations with
the R2 = 0.93 and RMSE = 6.39 cm using a high-resolution RGB
camera at a flight height of 30 m (Li B. et al., 2020) and R2 = 0.52
at a flight height of 75 m with more than 200 potato varieties
(De Jesus Colwell et al., 2021).

Leaf area index
Leaf area index is one of the most fundamental vegetation

biophysical parameters, defined as a dimensionless measure
of the one-sided leaf area (m2) per unit ground surface area
(m2). LAI has long been reported as a good indicator of
vegetation status (Reyes-González et al., 2019), photosynthesis
rate (Clevers et al., 2017), biomass accumulation (Viña et al.,
2011), evapotranspiration (Jung et al., 2010), yield estimation
(Luo et al., 2020), etc. In potato growth, LAI is also crucial
in estimating plant nitrogen concentration. Zhou et al. (2017)
developed a ratio vegetation index/LAI-reference curve defining
the optimal nitrogen-nutrition for potatoes throughout the
season and it could be used as a diagnostic tool to detect nitrogen
stress in potato plants during the season.

A variety of handheld instruments have been developed
specifically for measuring plant LAI in field conditions, such
as the LAI-2000/LAI-2200C instrument (Li-Cor, Inc, Lincoln,
NE, United States) the SS1 Sun-Scan canopy analyzer (Delta-T
Devices Ltd, Cambridge, United Kingdom), and AccuPAR LP-
80 ceptometer (Decagon Devices, Inc). Multi-/hyper-spectral
spectrometers are also commonly used to estimate LAI through
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empirical models that were derived from historical data between
LAI measurements (by the LAI instruments) and spectral
indices (Herrmann et al., 2011; Papadavid et al., 2011; Clevers
et al., 2017). Satellite and UAV-based LAI estimates were
validated for measuring at larger scales by observing significant
linear relationships with the measurements of the handheld LAI
instruments (Herrmann et al., 2011; Clevers et al., 2017; Roosjen
et al., 2018).

Leaf chlorophyll content
Leaf chlorophyll content (LCC) plays a significant role in

plant growth, helping crops to absorb and store the energy to
build their tissues. Combining carbon dioxide (absorbed from
the air) and water, the stored energy can be converted into
glucose through the photosynthesis process (Zheng et al., 2018).
Then, the plants utilize the glucose and the nutrients (such as
fertilizers and water) from the soil to generate new leaves and
other parts, and release the produced oxygen back into the air
(Yadav et al., 2010). The LCC is one essential indicator of plant
health, and can be used to assess the photosynthetic rate, plant
productivity, and nutrient level (Clevers and Kooistra, 2012;
Vesali et al., 2017).

A portable non-imaging device, the Soil Plant Analysis
Development chlorophyll meter, provides a rapid, accurate, and
non-destructive approach to measure the LCC for different
crops. Readings from this device have been successfully used as
an indicator of plant health status and nitrogen concentrations
in potato remote sensing (Giletto et al., 2010; Ramírez et al.,
2014, 2015) and often used as ground truth for investigating
the effectiveness of RGB and spectral images (in lab conditions)
in estimating the LCC, providing the basis for monitoring
the LCC in situ with the remote sensing platforms for potato
management (Dutta Gupta et al., 2013; Borhan et al., 2017).
Under field conditions, handheld hyperspectral spectrometer
(Liu et al., 2020), satellite multispectral imagery (Kooistra
and Clevers, 2016), and UAV hyperspectral imagery (Gevaert
et al., 2015) have been explored with promising potential in
estimating the potato LLC.

Potato emergence detection and plant
counting

Potato emergence rate and uniformity play important roles
in potato field management (Moran et al., 1997) and yield
prediction (Ciuberkis et al., 2007). Poor potato emergence and
canopy uniformity lead to variations in the amount of canopy
sunlight interception and hence varied photosynthetic efficiency
(Moran et al., 1997). Thus, consistent potato emergence is
always desirable at early growth stages and is a key trait being
routinely assessed in potato agronomy and potato improvement
research. Potato emergence can be affected by many factors,
such as seed quality, dormancy period, soil temperature, water
stress, and nutrient deficiency (Sankaran et al., 2017; Li et al.,
2019). The standard method for assessing crop emergence is to
visually count the number of plants that emerged at frequent
intervals during the establishment phase of development,

whereas the uniformity is estimated by subjective and inaccurate
manual scoring (Knowles and Knowles, 2006; Herman et al.,
2016). Remote sensing techniques can greatly enhance the
efficiency in the emergence evaluation. There have been a
number of studies leveraging UAV-based imagery and advanced
machine learning methods for detecting potato emergence.

Sankaran et al. (2017) observed a significant correlation
(r = 0.82) between the image-based and manual plant count.
Image pixels representing plant canopies were separated (by
a color threshold) from the UAV-based multispectral images
collected at 15 m in a potato field and then the number of
image polygons were estimated as the plant count. Similarly, Li
et al. (2019) obtained the image polygons from the UAV-based
RGB images using the Otsu thresholding method. The potato
emergence rate of a pixel polygon was then estimated from six
morphological features of the polygon by a trained machine
learning model. The estimations showed a high correlation
(R2 = 0.96) with the manual count. Despite the excellent
performance, the image plant counts in these two studies
required the accurate separation of pixels between plant and
background, which limits its applications for situations with
non-uniform backgrounds and changing illuminations. A more
adaptable way was proposed by Machefer et al. (2020) for
potato plant counting by directly inputting UAV-based RGB
images to a transferred deep learning architecture. The model
was previously trained on low-density crops so a much smaller
number of labeled images was needed to train the model for
potato plants. Besides, no pre-processing step was required on
the UAV images, which helps to keep the stable performance
under varying UAV image collection conditions.

Conclusion

Remote sensing has great potential in characterizing
potato traits for precision agricultural applications, as a
promising alternative to conventional field scouting and visual
examination for farmers. This review fills a critical gap in
precision agriculture literature by providing a comprehensive
review of the applications of remote sensing technologies
specifically used in potato trait characterization. We reviewed
the commonly used imaging sensors and remote sensing
platforms with the comparisons of their strengths and
limitations in characterizing potato traits. The main applications
that are benefited from the development of advanced remote
sensing technologies have been summarized with the scientific
logic behind the scenes and the current research status. The
applications include tuber yield prediction, AGB estimation,
water stress detection, nitrogen stress assessment, and disease
detection. Four other agronomic traits that were widely
investigated relating to potato growth were listed as well, namely
plant height, LAI, LCC, and emergence rate and plant counting.
This review will update potato agronomists and farmers with
the latest approaches and research outcomes, as well as provide

Frontiers in Plant Science 15 frontiersin.org

https://doi.org/10.3389/fpls.2022.871859
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-871859 July 12, 2022 Time: 15:53 # 16

Sun et al. 10.3389/fpls.2022.871859

a selective list for those who have the intentions to apply
remote sensing technologies to characterize potato traits for
precision agriculture.
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