
Frontiers in Plant Science | www.frontiersin.org 1 April 2022 | Volume 13 | Article 869713

REVIEW
published: 05 April 2022

doi: 10.3389/fpls.2022.869713

Edited by: 
Eric Von Wettberg,  

University of Vermont,  
United States

Reviewed by: 
Melike Bakir,  

Erciyes University, Turkey
 Tadesse Sefera Gela,  

University of Saskatchewan, Canada

*Correspondence: 
Dil Thavarajah  

dthavar@clemson.edu

Specialty section: 
This article was submitted to  

Plant Breeding,  
a section of the journal  

Frontiers in Plant Science

Received: 04 February 2022
Accepted: 14 March 2022

Published: 05 April 2022

Citation:
Salaria S, Boatwright JL, 

Thavarajah P, Kumar S and 
Thavarajah D (2022) Protein 

Biofortification in Lentils (Lens culinaris 
Medik.) Toward Human Health.

Front. Plant Sci. 13:869713.
doi: 10.3389/fpls.2022.869713

Protein Biofortification in Lentils 
(Lens culinaris Medik.) Toward 
Human Health
Sonia Salaria 1, Jon Lucas Boatwright 1, Pushparajah Thavarajah 1, Shiv Kumar 2 and 
Dil Thavarajah 1*

1 Plant and Environmental Sciences, Clemson University, Clemson, SC, United States, 2 Biodiversity and Crop Improvement 
Program, International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat-Institute, Rabat, Morocco

Lentil (Lens culinaris Medik.) is a nutritionally dense crop with significant quantities of 
protein, low-digestible carbohydrates, minerals, and vitamins. The amino acid composition 
of lentil protein can impact human health by maintaining amino acid balance for physiological 
functions and preventing protein-energy malnutrition and non-communicable diseases 
(NCDs). Thus, enhancing lentil protein quality through genetic biofortification, i.e., 
conventional plant breeding and molecular technologies, is vital for the nutritional 
improvement of lentil crops across the globe. This review highlights variation in protein 
concentration and quality across Lens species, genetic mechanisms controlling amino 
acid synthesis in plants, functions of amino acids, and the effect of antinutrients on the 
absorption of amino acids into the human body. Successful breeding strategies in lentils 
and other pulses are reviewed to demonstrate robust breeding approaches for protein 
biofortification. Future lentil breeding approaches will include rapid germplasm selection, 
phenotypic evaluation, genome-wide association studies, genetic engineering, and 
genome editing to select sequences that improve protein concentration and quality.

Keywords: Lentil (Lens culinaris L.), protein, biofortification, amino acids, protein quality, food secuity

INTRODUCTION

Nutritional imbalances and deficiencies cause several malnutritional and non-communicable 
diseases (NCDs) in humans. A poor diet that lacks macro- and micronutrients, such as proteins, 
low-digestible carbohydrates (LDCs), fats, vitamins, and minerals, results in protein and 
micronutrient malnutrition. Low-digestible carbohydrates (LDs) are, also known as prebiotic 
carbohydrates, defined as ‘a substrate that is selectively utilized by host microorganisms conferring 
a health benefit’ (Gibson et  al., 2017). These dietary prebiotic carbohydrates pass undigested 
through the upper digestive tract and are fermented by microorganisms in the colon for 
increased gut health. The most common human health impacts of malnutrition are stunting, 
intestinal health issues impairing digestion, obesity, overweight, and an increased risk of diet-
related NCDs (Branca et  al., 2019). Major NCDs related to poor dietary intake that threatens 
human life include cardiovascular diseases, cancer, chronic respiratory diseases, and diabetes 
(World Health Organization, 2019). Notably, a protein-deficient diet leading to protein malnutrition 
has alarming consequences that affect infants, young children, and females across the globe 
(Semba, 2016). However, a protein-rich legume-based diet is a viable, sustainable, and healthy 
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option to prevent malnutrition in developing countries. Though 
animal proteins are extensively utilized in human diets, plant-
based proteins have grown in popularity. Their demand has 
increased globally due to nutritional value, low carbon input, 
and environmental concerns (Asif et  al., 2013).

Staple foods rich in macro- and micronutrients can alleviate 
the risk of malnutrition. Plant-based diets comprised mainly 
of cereals and legume staples are popular worldwide. Legume 
crops, including lentils (Lens culinaris Medikk.), have a protein 
concentration (20–30%) higher than cereals (10–12%) and thus 
have the potential to combat protein malnutrition and serve 
as gluten- and allergen-free protein sources. Lentil is highly 
nutritious, affordable and has a shorter cooking time than 
other pulse crops, and features high protein concentrations, 
low-digestible carbohydrates, minerals, vitamins, and low 
concentrations of phytic acid (Thavarajah et  al., 2009; Kumar 
et  al., 2015). Lentil is not a source of cholesterol, and its 
low-fat content makes it easier to digest than other pulse crops. 
Lentil proteins include both essential and non-essential amino 
acids but are notably low in the sulfur-containing amino acids 
methionine (Met) and cysteine (Cys; Khazaei et  al., 2019). 
Biofortification is a possible approach to improve the unbalanced 
composition of amino acids in lentils through appropriate 
conventional breeding strategies and genomic selection. With 
increasing global protein demand, protein biofortification would 
justify lentils as a ‘nutritional booster’ to increase global nutritional 
security and combat malnutrition and NCDs.

Lentil proteins are stored in the cotyledonary cells in 
membranous protein bodies called ‘storage proteins’ (Duranti 
and Gius, 1997). These seed proteins supply carbon (C), nitrogen 
(N), and sulfur (S) and compose 80% of the total protein 
available for germination, subsequent plant growth, and disease 
resistance (Khazaei et  al., 2019). Storage proteins also play a 
defensive role against bruchids, insects of the family Bruchidae, 
in cowpea (Vigna unguiculata; Sales et al., 2000). These proteins 
are classified into four types: globulins (salt soluble), albumins 
(water-soluble), prolamins (ethanol soluble), and glutelins (acid-
soluble; Osborne, 1924). Like other pulse crops, lentils are 
rich in globulins and albumins, whereas prolamins and glutelins 
are more prominent in cereals (Osborne, 1924). Globulins were 
the first type of storage protein reported in lentils (Osborne 
and Campbell, 1898) and are the principal proteins in lentils, 
making up ~44–70% of all storage proteins. Two subclasses 
of globulins, i.e., 11 s type (legumin) and 7 s type (vicilin/
convicilin), were also defined (Danielson, 1950). Albumins 
comprise 26–61% of lentil proteins, and prolamins and glutelins 
only make up a small fraction (Saint-Clair, 1972; Sulieman 
et  al., 2008).

Storage protein quantities demonstrate high variability due 
to the quantitative nature of the genes regulating protein 
synthesis in the seeds (Kumar et  al., 2020). Higher genotype 
× environmental interactions, indicated by the moderate broad 
sense heritability (31.31%), is another reason for the high 
variation in the storage protein concentration in lentil seeds 
(Gautam et  al., 2018). Lentil seed proteins, excluding storage 
proteins, also have metabolic functions. These metabolic proteins 
regulate numerous physiological processes in the plant, including 

enzymatic activity and structural and physiological functions 
(Scippa et al., 2010). Ultimately, lentil seed protein composition 
contributes to human health by providing essential amino acids 
necessary for metabolic processes and nutritional balance in 
the human body. Optimizing the plant breeding process and 
location sourcing may help develop better protein-enriched 
lentil cultivars for global plant-based protein demand. The 
objectives of this paper are to review the protein concentration 
and quality variations within the genus Lens, pathways and 
genes regulating the synthesis of amino acids, functions of 
amino acids for human health, and breeding strategies related 
to lentil protein biofortification.

LENTIL BIOFORTIFICATION

Lentil is an annual diploid (2n = 2x = 14) cool-season food 
legume that originated in the Middle East (Cubero, 1981). 
The genus Lens comprises L. culinaris, L. ervoides, L. nigricans, 
and L. lamoletti. L. culinaris is further divided into four taxa: 
L. culinaris ssp. culinaris, L. culinaris ssp. orientalis, L. culinaris 
ssp. tomentosus, and L. culinaris ssp. odemensis (Ferguson et al., 
2000). Lens genus has been classified as primary, secondary, 
tertiary, and quaternary genetic pools according to the phylogeny 
using the Genotyping-by-sequencing (GBS). The primary gene 
pool contains L. culinaris, L. orientalis, and L. tomentosus, 
whereas L. odemensis and L. lamoletti are in the secondary 
gene pool. However, each tertiary and quaternary gene pools 
contain single species, L. ervoides and L. nigricans, respectively 
(Wong et  al., 2015). Of these, only L. culinaris ssp. culinaris 
is domesticated and cultivated worldwide, representing crops 
over a 5.01 M ha area with an annual production of 6.54 M 
tonnes. Canada is a leading producer, contributing about 44% 
of the world’s lentils; other major lentil-producing countries 
are India, the United States of America (United States), Turkey, 
Australia, Nepal, and Bangladesh (FAOSTAT, 2021).

Lentils are a staple food that is easily digested compared 
to other legumes. The biofortification of lentils could significantly 
fight hidden hunger and nutritional disorders. Hidden hunger 
is also known as micronutrient deficiency despite sufficient 
calorie intake (Lowe, 2021). Several breeding programs have 
been established worldwide that seek to biofortify lentils with 
protein, prebiotic carbohydrates, micronutrients, vitamins, etc. 
(Kumar et al., 2016a). Many lentil accessions have been screened 
for amino acid concentration (Iqbal et al., 2006), protein (Bhatty 
and Slinkard, 1979), starch (Zia-Ul-Haq et  al., 2011), fatty 
acids (Grusak, 2009), macro- and micronutrients (Kumar et al., 
2016a; Podder et  al., 2020; Rasheed et  al., 2020), folates (Sen 
Gupta et  al., 2013), and antinutritional factors (Thavarajah 
et al., 2009, 2011). Marker-assisted breeding has also demonstrated 
the potential for identifying genes/quantitative trait loci (QTL) 
for iron (Fe) uptake (Kumar et  al., 2015; Aldemir et  al., 2017), 
Fe and Zinc (Zn) concentration (Kumar et  al., 2014), and 
selenium (Se) concentration (Ates et  al., 2016). Furthermore, 
the HarvestPlus Challenge program, established in 2004, was 
a landmark effort that increased lentil biofortification efforts 
worldwide. They released several lentil cultivars to economically 
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underprivileged global regions in Asia and Africa (Kumar et al., 
2016a). Notably, numerous high Fe and Zn cultivars have been 
released, including Barimasur-4, -5, -6, -7, -8 and -9  in 
Bangladesh; Khajuraho-1, -2 and -3, Sital, Shekhar, Sisir, and 
Simal in Nepal; L 4704, IPL 220, Pusa Agaiti and Pusa Vaibhav 
in India; Idlib-2 and -3  in Syria/Lebanon; and Alemeya in 
Ethiopia. Smallholder farmers regularly use these biofortified 
lentils in Africa and Southeast Asia (Harvest Plus, 2014).

Various researchers have reported protein concentrations in 
current lentil cultivars in the range of 20–30% (Table  1). In 
a study (Bhatty, 1986), similar protein concentrations in wild 
and cultivated lentils, indicating homogeneity for protein 
concentration in the genus Lens, were identified. However, a 
recent study (Kumar et al., 2016b) efficiently distinguished wild 
species from cultivated lentils for protein concentration. In 
this study, L. orientalis, an immediate progenitor of cultivated 
lentils, expressed the highest average protein (24.15%) among 
all the wild species, followed by L. ervoides (22.99%). Other 
wild species, L. odemensis, and L. nigricans showed slightly 
higher average protein content (19.7 and 19.53%, respectively) 
than L. culinaris. A similar protein level was seen in L. tomentosus 
(18.75%) and cultivated lentils (18.7%). Extensive variation was 
observed for protein content within L. orientalis and L. ervoides, 
ranging from 18.3 to 27.75% and 18.9 to 32.7%, respectively. 
ILWL-47, an L. ervoides accession, had an exceptionally high 
protein content of about 32.7% and is, therefore, a potential 
candidate for protein quality improvement in lentil breeding 
programs (Kumar et al., 2016b). Protein subunit fraction profiling 
has indicated variable levels of the albumin protein fraction 
(APF) and globulin protein fraction (GPF) among Lens species, 
with the wild species having higher APF and GPF concentrations 
than the cultivated species (Bhatty, 1982). Among the evaluated 
wild species, L. orientalis and L. ervoides contained higher 
APF and GPF levels than L. nigricans (Bhatty, 1982).

The proportion of amino acids in lentil proteins varies across 
genotypes in the cultivated gene pool (Table  2). Met and 
tryptophan (Trp) represent a minor fraction among all amino 
acids and are thus termed limiting amino acids. Comparing 
lentil protein with cereal proteins indicates the good nutritional 
complementation between Met and lysine (Lys), but to some 
extent, for Trp and threonine (Thr) because cereals are rich 
in both Met and Trp (Bhatty, 1986). Generally, all essential 
amino acids except Lys are deficient in lentils, but a moderate 

to the high proportion of non-essential amino acids are present 
(Khazaei et  al., 2019). Lentil proteins are also lacking in other 
S-containing amino acids such as Cys. The albumin fraction 
of lentils contains more essential amino acids than the globulin 
fraction (Bhatty, 1982). Recent studies also indicate that amino 
acids vary among distinct species of the genus Lens, with a 
spectrum of variation seen for amino acid content among 
L. culinaris, L. orientalis, L. ervoides, L. nigricans, and L. odemensis. 
Phenylalanine (Phe), Met, valine (Val), leucine (Leu), and 
isoleucine (Ile) concentrations are significantly higher in wild 
species than cultivated lentils (Table  3; Rozan et  al., 2001). 
Similarly, the non-essential amino acid content is also higher 
in wild species than in L. culinaris. Such evidence signifies 
wild species are a potential source of candidate genes that  
can be  harnessed to improve protein quality in cultivated  
lentils.

GENETIC CONTROL FOR AMINO ACID 
BIOSYNTHESIS IN PLANTS

The genetic mechanisms controlling seed protein concentration 
have similar regulation and pathways in different plants, 
including pulse crops. In pulse crops, genetic control of seed 
protein content has not been widely studied except in chickpea 
(Cicer arietinum), soybean (Glycine max), and pea (Pisum 
sativum). However, genetic control of seed protein content 
has been studied extensively in cereals (Mann et  al., 2009; 
Olsen and Phillips, 2009; Chen et  al., 2018; Borisjuk et  al., 
2019) and the model plant Arabidopsis thaliana (Jasinski 
et  al., 2016). In chickpea, seven candidate genes that  
regulate seed protein concentration were identified using a 

TABLE 1 | Genetic variation for protein concentration in cultivated lentils  
(L. culinaris).

Protein concentration  
(% of dry matter)

Total accessions  
used

Reference

24.6–30.0 23 Heuzé et al., 2021
10.5–27.1 45 Kumar et al., 2016b
21.8–27.1 14 Zaccardelli et al., 2012
25.3–29.3 35 Alghamdi et al., 2014
23.8–29.3 22 Tahir et al., 2011
24.3–30.2 4 Wang and Daun, 2006
23.9–26.3 58 Stoddard et al., 1993
25.5–28.9 24 Erskine et al., 1985

TABLE 2 | Amino acid profile of cultivated lentil genotypes (Sayeed and Njaa, 
1985; Shekib et al., 1986; Kahraman, 2018).

Amino acids Concentration (g/100 g of protein)

Ala 3.31–8.35
Arg 4.64–13.80
Asp 6.36–13.20
Cys 0.60–1.62
Glu 6.12–17.10
Gly 4.40–10.40
His 1.21–9.15
Ile 2.20–5.00
Leu 5.21–7.72
Lys 5.81–9.59
Met 0.90–2.23
Phe 3.85–7.55
Pro 3.50–5.22
Ser 4.90–6.34
Thr 1.04–4.60
Trp 0.57–1.37
Tyr 2.71–7.15
Val 4.10–5.01

Ala, alanine; Arg, arginine; Asp, aspartate/aspartic acid; Cys, cysteine; Glu, glutamate/
glutamic acid; Gly, glycine; His, histidine; Ile, isoleucine; Leu, leucine; Lys, lysine; Met, 
methionine; Phe, phenylalanine; Pro, proline; Ser, serine; Thr, threonine; Trp, tryptophan; 
Tyr, tyrosine; Val, valine.
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genome-wide association study of 336 desi and Kabuli accessions 
(Upadhyaya et  al., 2016). In soybean, three QTL (qPro10a, 
qPro13a, and qPro17b) for protein were identified in a 
recombinant inbred line (RIL) population (Zhonghuang 
24 × Huaxia 3) on chromosomes 10, 13, and 17, respectively 
(Liu et  al., 2017).

Several genes regulating the seed protein concentration in 
soybean were found on chromosomes 15 and 20 (Patil et  al., 
2017). Another gene, BIG SEEDS1 (BS1), controlling seed 
size, weight, and composition of amino acids in the protein, 
has been characterized in Medicago trunculata and soybean 
(Ge et al., 2016). Groups of highly coordinated genes (HCGs) 
controlling the aspartate family (Met, Ile, Lys, Thr, and Gly) 
and branched aromatic amino acid formation were also 
identified in A. thaliana (Less and Galili, 2009). These two 
HCGs have several genes controlling the formation of amino 
acids. The first group related to the aspartate family contained 
catabolic genes for THA1 (Thr to Gly metabolism), BCAT2 
(Ile metabolism), MGL (Met catabolism), and LKR/SDH (Lys 
metabolism). However, the second group exclusively regulated 
Met metabolism and was termed the ‘Met metabolism group.’ 
It contained the genes AK/HSDH1 (encoding aspartate kinase 
enzyme for the formation of aspartate-4-semialdehyde, the 
first substrate for amino acid synthesis), CGS1 (Met synthesis), 
DAPD (Lys synthesis), SAMS3 (Met catabolism), BCAT3 (Ile 
metabolism), and BCAT4, MAM1, and MAML (Met catabolism). 
One of the two groups related to branched aromatic acids 
contained ten genes (ASA1, ASB, TSA2, TSB1/2, IGPS for 
Trp synthesis, CYP79B2 for Trp catabolism, PD for Phe 

synthesis, PAL1 and PAL2 for Phe catabolism, and TAT3 
for tyrosine (Tyr) catabolism). In contrast, two genes (PAL3 
and IGPS) were reported in the second group (Less and 
Galili, 2009).

The genes regulating the synthesis of enzymes that mediate 
the formation of amino acids and their precursors have been 
extensively studied in plants (Table 4; Figure 1). In A. thaliana, 
glutamate is formed from precursor 2-oxoglutarate by enzymatic 
aminotransferases, a process that is regulated by 44 putative 
genes (Liepman and Olsen, 2004). Glutamate synthase production, 
which converts glutamine (Gln) to glutamate, is controlled by 
either one or two genes in the chloroplast and mitochondria 
(Gaufichon et al., 2016). Similarly, six genes encode Gln synthase, 
which converts glutamate to Gln, in A. thaliana (Forde and 
Lea, 2007). Glutamate is a precursor that synthesizes arginine 
(Arg) and proline (Pro) using 20 enzymes encoded by about 
30 genes in A. thaliana (Majumdar et  al., 2016). Glutamine 
with aspartate also forms asparagine (Asn) in plants by the 
transamination action of the Asn synthetase (AS) enzyme 
encoded by the asnB gene in eukaryotes (Gaufichon et  al., 
2010) and the ASN gene family (ASN1, ASN2, and ASN3) in 
Arabidopsis (Table  4; Arabidopsis Genome Initiative, 2000). 
A histidine (His) synthesis pathway revealed eight genes (ATP-
PRT, PRATP/CH, ProFAR-I, IGPS, IGPD, HPA, HPP, and 
HDH) forming eight enzymes in A. thaliana (Rees et al., 2009). 
Two branched-chain amino acids, Val and Leu, form with the 
acetohydroxyacid synthase (AHAS) enzyme acting on pyruvate 
producing acetolactate. This enzyme forms the third branched-
chain amino acid, Ile, by serving on a substrate formed from 
Thr in the pathway for 2-ketobutyrate converting Thr to Ile. 
A single gene encodes the AHAS enzyme in Arabidopsis (Singh 
and Shaner, 1995).

The enzyme chorismate mutase (CM) is encoded by three 
genes (AtCM1, AtCM2, and AtCM3) and is a precursor for 
chorismate to form prephenate for Phe and Tyr biosynthesis 
in plants (Figure  1). The formation of Trp from chorismate 
is regulated by three genes (ASa1, ASa2, and ASb1) and 
seven putative genes (two Asa and five ASb genes) encoding 
anthranilate synthase (AS) enzyme-producing anthranilate 
(Table 4). This anthranilate generates Trp using five enzymes 
(PAT1, PAI, IGPS, TS a, and TS b) encoded by eight genes 
in plants (Tzin and Galili, 2010; Parthasarathy et  al., 2018). 
Aspartate regulates the formation of four essential amino 
acids, Ile, Lys, Met, and Thr, also termed aspartate-derived 
amino acids. Five genes encode aspartate formation enzymes 
in A. thaliana (Han et  al., 2021). In C3 plants, including 
lentils, two pathways are identified for serine (Ser) formation, 
namely photorespiratory and non-photorespiratory pathways 
in photosynthetic and non-photosynthetic tissues, respectively 
(Figure  1). The Ser produced in different pathways is 
converted into glycine (Gly) in non-photosynthetic tissues 
in the presence of the Ser hydroxymethyltransferase (SHM) 
enzyme. Ser also synthesizes Cys by following a two-step 
pathway in plants regulated by Ser acetyltransferase (SAT) 
and O-acetylserine (thiol)lyase (OASTL) enzymes encoded 
by five and nine genes, respectively (Howarth et  al., 1997; 
Wirtz et  al., 2004).

TABLE 3 | Amino acid concentrations among different Lens species (Rozan 
et al., 2001).

Amino 
acids

L.  
culinaris

L. 
orientalis

L.  
ervoides

L. 
nigricans

L. 
odemensis

mg amino acids/g of dry  
seed weight

Ala 20.42 39.81 16.01 22.47 21.32
Arg 10.61 14.04 12.05 7.48 9.10
Asp 10.96 26.10 17.42 7.68 11.17
Cys 0.40 0.39 0.53 0.47 0.44
Glu 26.55 42.27 32.62 19.95 24.22
Gly 9.77 12.66 11.48 7.89 10.22
His 8.74 3.95 9.75 4.94 6.84
Ile 6.26 9.58 8.59 7.76 5.06
Leu 10.64 15.86 14.07 11.74 8.09
Lys 4.54 12.64 9.48 6.14 5.69
Met 1.49 1.63 1.74 1.22 1.18
Phe 6.70 10.64 9.37 9.46 5.55
Pro 11.11 11.36 11.54 10.52 8.88
Ser 11.38 15.60 14.10 8.70 11.20
Thr 5.57 7.57 6.31 4.56 5.62
Trp NA NA NA NA NA
Tyr 6.34 7.53 6.65 6.35 5.05
Val 8.54 11.64 9.60 8.64 7.24

Ala, alanine; Arg, arginine; Asp, aspartate/aspartic acid; Cys, cysteine; Glu, glutamate/
glutamic acid; Gly, glycine; His, histidine; Ile, isoleucine; Leu, leucine; Lys, lysine; Met, 
methionine; Phe, phenylalanine; Pro, proline; Ser, serine; Thr, threonine; Trp, tryptophan; 
Tyr, tyrosine; Val, valine.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Salaria et al. Lentil Protein Biofortification

Frontiers in Plant Science | www.frontiersin.org 5 April 2022 | Volume 13 | Article 869713

AMINO ACIDS IMPACT HUMAN HEALTH

Amino acids are the foundational units of proteins. Structural 
conformations have unique chemical properties due to basic 
(amide) and acidic (carboxylic) chemical groups. Based on 
the human nutritional requirements, amino acids have been 
classified in several ways—essential or non-essential. Essential 
amino acids are indispensable because the human body cannot 
synthesize them; hence, appropriate concentrations in the diet 
are necessary (Table 5). Non-essential amino acids, synthesized 
in the human body, are also called dispensable amino acids 
(Reeds, 2000). However, some non-essential amino acids are 
considered conditionally non-essential because their abundance 
in the human body declines in times of stress or sickness. 
External sources are required to maintain necessary quantities 
(Fürst and Young, 2000).

The role of amino acids (individually or in combination) 
was first studied in rats to evaluate the necessity of Lys and 

Trp in food sources containing gliadin proteins. This initial 
study documented the adverse effects of amino acid deficiency 
on rats (Osborne and Mendel, 1914). Based on preliminary 
classical studies using model organisms (Ackroyd and Hopkins, 
1916; Rose and Cox, 1924), an analogy of amino acid functions 
and dietary requirements in humans was first established by 
Rose and co-workers in 1947 (Rose et  al., 1947). This study 
played a significant role in recognizing and classifying essential 
and non-essential amino acids based on their impacts on human 
health. Amino acids perform several crucial functions in the 
human body, either directly or indirectly. Amino acids have 
a specific role in gene expression (Oommen et  al., 2005), 
signaling pathways for activation of immune systems (Kim 
et  al., 2007), have nutraceutical effects for improving health 
status by regulating metabolic activities (Duranti, 2006), and 
can be  used to treat genetic disorders (van Vliet et  al., 2014).

Amino acids govern the epigenetic regulation of gene 
expression through DNA modifications. DNA modifications 

TABLE 4 | Genes responsible for amino acid synthesis.

Amino acid Key precursors Key enzymes Genes in Arabidopsis References

Glutamate
2-oxoglutarate;

Glutamine

Amino transferases;

glutamate synthase (GOGAT): two forms- 
ferredoxin (Fd) and NADH

44 putative genes

Fd form: GLU1, GLU2

NADH form: GLT

Liepman and Olsen, 2004; 
Forde and Lea, 2007

Glutamine Glutamate
Glutamine synthase: two forms—plastidic (GS1) 
and cytoplasmic (GS2)

GS1 form: one gene;

GS2 form: five genes

Forde and Lea, 2007; 
Gaufichon et al., 2016

Asparagine
Glutamine and 
Aspartate

Asparagine synthase
asnB gene; ASN gene family 
(ASN1, ASN2, ASN3)

Arabidopsis Genome Initiative, 
2000; Gaufichon et al., 2010

Histidine Ribose-5-phosphate Eight enzymes
PRATP/CH, ProFAR-I, IGPS, HPP, 
HDH- single copy genes; ATP-PRT, 
IGPD, HPA-duplicated genes

Rees et al., 2009; Ingle, 2011

Leucine
Pyruvate

2-oxoisovalerate

Acetohydroxyacid synthase (AHAS) enzyme

Isopropylmalate synthase (IPMS), isopropylmalate 
isomerase (IPMI), and isopropylmalate 
dehydrogenase (IPMDH)

AHAS gene

IPMS: IPMS1, IPMS2, IPMI LSU1 
IPMI SSU1 IPMI SSU2, IPMI SSU3, 
IPMDH gene

Singh and Shaner, 1995; 
Calder, 1995; Xing and Last, 
2017; Knill et al., 2009

Valine
Pyruvate

2-oxoisovalerate

Acetohydroxyacid synthase (AHAS) enzyme

Amino transferase

AHAS gene

Single gene

Singh and Shaner, 1995; 
Calder, 1995; Xing and Last, 
2017; Knill et al., 2009

Isoleucine 2-ketobutyrate Acetohydroxyacid synthase (AHAS) enzyme AHAS gene Singh and Shaner, 1995
Alanine Pyruvate and glutamate Alanine aminotransferases Eight genes Parthasarathy et al., 2019

Phenylalanine

Tyrosine

Chorismate

Prephenate

Arogenate

Chorismate mutase (CM),

Prephenate aminotransferase

Phenylalanine synthesis: Arogenate dehydratase

Tyrosine synthesis: Arogenate dehydrogenase

CM: AtCM1, AtCM2, AtCM3,

AtPPA-AT gene

Six genes (ADT1, ADT2, ADT3, 
ADT4, ADT5, ADT6)

Two genes (TyrA1, TyrA2)

Tzin and Galili, 2010; 
Dudareva et al., 2011

Tryptophan

Chorismate

Anthranillite

Anthranilate synthase (AS)

Anthranilate

phosphoribosyltransferase (PAT1), indole-3-glycerol 
phosphate synthase (IGPS), tryptophan synthase 
alpha (TS a), phosphoribosylanthranilate isomerase 
(PAI), and tryptophan synthase beta (TS b)

Three genes (ASa1, ASa2, ASb1) 
and seven putative genes (two Asa 
and five ASb genes)

PAT1, IGPS, TSa,

three genes (PAI1, PAI2, PAI3) and 
two genes (TSb1 and TSb2)

Tzin and Galili, 2010; 
Parthasarathy et al., 2018

Aspartate
Oxaloacetate and 
glutamate

Aspartate aminotransferase (AspAT)
Five genes: AspAT1, AspAT2, 
AspAT3, AspAT4, AspAT4, AspAT5

Han et al., 2021

Methionine, 
Threonine, 
Isoleucine Lysine

Aspartate

L-aspartate-4-
semialdehyde

Aspartate kinase (AK)

Methionine, threonine and isoleucine synthesis: 
homoserine dehydrogenase (HSD)

Lysine synthesis: dihydrodipicolinate synthase 
(DHDPS)

Five genes

Two genes

Two genes

Vauterin and Jacobs, 1994; 
Vauterin et al., 1999; Craciun 
et al., 2000; Sarrobert et al., 
2000; Galili, 2011
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such as methylation and acetylation occur due to the binding 
of DNA to C groups (methyl, acetyl) donated by Met, His, 
Ser, and Gly (Oommen et al., 2005; Kouzarides, 2007). Acetylation 

leads to the detachment of histones from DNA to favor its 
exposure-promoting transcription process. However, methylation 
plays a role in the reverse direction by densely packing the 

FIGURE 1 | Pathways synthesizing various essential (green boxes) and non-essential (purple boxes) amino acids. Amino acids: Ala, alanine; Arg, arginine; Asn, 
asparagine; Asp, aspartate/aspartic acid; Cys, cysteine; Gln, glutamine; Glu, glutamate/glutamic acid; Gly, glycine; His, histidine; Ile, isoleucine; Leu, leucine; Lys, 
lysine; Met, methionine; Phe, phenylalanine; Pro, proline; Ser, serine; Thr, threonine; Trp, tryptophan; Tyr, tyrosine; Val, valine). Substrates/precursors: acetyl-CoA, 
acetyl-coenzyme A; DAHP, 3-deoxy-D-arabinoheptulosonate-7-phosphate; ESPS, 5-enolpyruvylshikimate-3-phosphate; E4P, erythrose 4-phosphate; fructose-6-P, 
fructose-6-phosphate; GA3P, glyceraldehyde 3-phosphate; glucose-6-P, glucose-6-phosphate; histidinol-P, histidinol phosphate; IAP, imidazole acetol-phosphate; 
PEP, phosphoenol pyruvate; 3-PGA, 3-phosphoglyceric acid; PRFAR, (N´-[(5′-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide) ribonucleotide); PRPP, 
phosphoribosyl diphosphate; R5P, ribose 5-phosphate; Ru5P, ribulose 5-phosphate. Enzymes indicated in parentheses: ADH, arogenate dehydrogenase; ADT, 
arogenate dehydratase; AHAS, acetohydroxyacid synthase; AK, aspartate kinase; ALT, alanine transferase; AS, anthranilate synthase; AsnS, asparagine synthetase; 
AspAT, aspartate aminotransferase; BCAT, branched-chain amino acid aminotransferase; CGS, cystathionine gamma synthase; CM, chorismate mutase; DHDPS, 
dihydrodipicolinate synthase; GOGAT, glutamate synthase; GS, glutamine synthetase; HSD, homoserine dehydrogenase; IPMS, isopropylmalate synthase; MS, 
methionine synthase; OASTL, O-acetylserine(thiol)lyase; SAT, serine acetyltransferase; SHM, serine hydroxymethyltransferase; TD, threonine deaminase; TrpS, 
tryptophan synthase; TS, threonine synthase.
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DNA and encouraging gene silencing (Wu, 2010). Studies also 
demonstrate the role of Gln in the regulation of intestinal gene 
expression in rats, promoting intestinal health concerning cell 
growth and antioxidation activity (Wang et  al., 2008). Arg 
supplementation in rats leads to the upregulation of gene 
expression, preventing oxidative stress and promoting fatty acid 
metabolism and glucose metabolism (McKnight et  al., 2010). 
At the transcriptional level, amino acids regulate the activity 
of RNA polymerase by altering its specificity for promoters 
and enhancing the binding of some repressors near the non-coding 
sequences adjacent to the promoter region (Oommen et  al., 
2005). Such studies demonstrate the remarkable contribution 
of different amino acids in regulating gene expression.

The human immune system consists of both innate and 
acquired immune subsystems that regulate the response and 
protection of the human body upon pathogen attack (Calder, 
1995). The innate immune system is a natural system that 
immediately activates when pathogens enter the body and can 
only prevent the entry and initial establishment of the pathogen. 
It comprises the physiological barriers, monocytes, macrophages, 
neutrophils, basophils, natural killer cells, mast cells, platelets, 
and various humoral factors (Buchanan et  al., 2006). However, 
once the pathogen invades the innate immune system and 
colonizes, the acquired immune system is activated to decrease 
further pathogen progress. The acquired immune system consists 
of lymphocytes (T- and B-lymphocytes) that have immunological 
memory for invading pathogens (Calder, 2006). Human immune 
systems require a range of amino acids to produce 
immunoglobulins, cytokines, and other biomolecules to prevent 
diseases (Kim et  al., 2007).

Several amino acids (branched-chain amino acids: BCAA 
(Leu, Ile, and Val), alanine (Ala), Gln, Ser, Pro, and Thr) 

regulate the proliferation of lymphocytes (Li et al., 2007). These 
amino acids either directly participate (Ala, Ser, and Thr) or 
produce signal molecules or hormones (BCAA, Gln, and Pro) 
to stimulate lymphocyte proliferation and create various immune 
responses (Li et  al., 2007). Moreover, BCAAs participate in 
lipid metabolism (Nishimura et  al., 2010) and blood glucose 
maintenance. In females, BCAAs also regulate blastocyst 
development and embryo implantation, fetal growth by hormonal 
secretions, stimulate mammary gland function and lactation, 
and increase aspartate, Gln, and glutamate synthesis (Zhang 
et  al., 2018). Met, His, Gly, and Phe regulate the synthesis of 
signaling molecules controlling immune responses. Individually 
or in combination, these amino acids control the production 
of immune cell signaling molecules, leading to major immunity-
boosting elements such as cytokines and antibodies (Li et  al., 
2007). Amino acid oxidases (AAOs) derived from L-isomers 
of Phe, Trp, Tyr, and Leu possess antimicrobial (Phua et  al., 
2012) and antitumoral functions (Lee et  al., 2014).

Legumes have antinutritional compounds, including trypsin 
and chymotrypsin inhibitors, phytic acids, and tannins, which 
reduce nutrient bioavailability (Vidal-Valverde et  al., 1994; Shi 
et  al., 2017). Lentil is naturally low in phytic acid (Thavarajah 
et  al., 2009) and contains trypsin inhibitors (3.6–7.6 units/mg 
protein) and tannins (1.28–3.9 mg/g; Hefnawy, 2011). Inactivity 
of trypsin and chymotrypsin enzymes causes difficulties in 
lysis proteins into small peptides and eventually affects the 
release of amino acids from small peptides. Tannins are phenolic 
inhibitors that bind to proteins via Lys or Met cross-links 
(Davis, 1981) and make insoluble complexes with carbohydrates 
(Reddy et  al., 1985). In lentils, trypsin and chymotrypsin 
inhibitors and phytic acids are present in seed cotyledons, 
whereas tannins are concentrated mainly in the seed coat 
(Dueñas et  al., 2002). Different food processing methods, 
including dehulling and cooking, are recommended to reduce 
these antinutritional properties (Acquah et al., 2021). Dehulling 
effectively reduces the tannins by removing the seed coat (Goyal 
et  al., 2009). In pulses, other common processing treatments 
are soaking, hydrothermal treatments (cooking and roasting), 
fermentation, and irradiation (Acquah et  al., 2021). Soaking 
reduces trypsin and chymotrypsin inhibitors, phytic acids, and 
tannins in lentils depending on the soaking time (Shi et  al., 
2017). Thermal methods are recommended for denaturing 
trypsin and chymotrypsin inhibitors and removing tannin in 
lentils (Hefnawy, 2011). Fermentation and irradiation are alternate 
methods to reduce antinutritional compounds (Siddhuraju et al., 
2002; Maleki and Razavi, 2021) but have not been widely 
studied in pulses.

BREEDING APPROACHES FOR PROTEIN 
QUALITY IMPROVEMENT

Pulse breeding programs focus on meeting the world’s food 
demand and ensuring global food security. The primary objectives 
of these breeding programs are to increase the yield by efficient 
selection from available germplasm, introduce hybrid lines, 
cross contrasting lines to exploit heterosis, develop biotic and 

TABLE 5 | Classification of amino acids based on human nutritional 
requirements.

Class of amino acid Amino acids Abbreviations

Essential

Histidine His

Isoleucine Ile
Leucine Leu
Lysine Lys
Methionine Met
Phenylalanine Phe
Threonine Thr
Tryptophan Trp
Valine Val

Conditionally essential
Arginine Arg
Cysteine Cys
Glycine Gly
Glutamine Gln
Proline Pro
Tyrosine Tyr

Non-essential
Alanine Ala
Asparagine Asn
Aspartate/aspartic acid Asp
Glutamate/glutamic acid Glu
Serine Ser
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abiotic stress-tolerant cultivars, and induce mutations to generate 
novel variability with molecular and genomic techniques. Today, 
most conventional pulse breeding programs employ molecular 
markers for traits of interest. Genetic engineering technology 
has demonstrated remarkable potential to modify plants for 
specific breeding objectives. Thereby, technological advancement 
has broadened the scope of plant breeding to enable special-
purpose breeding programs such as nutritional quality 
improvement programs or nutritional breeding (Kumar 
et  al., 2020).

Conventional breeding approaches focus on improving 
highly heritable traits governed by a few genes. Quantitative 
traits with low heritability and high environmental effects, 
such as protein and other nutritional quality traits, do not 
significantly respond to selection by conventional breeding 
methods. In crop plants, including pulses, protein concentration 
negatively correlates with yield (Qureshi et al., 2013); therefore, 
selecting either trait negatively affects the other. For this 
reason, conventional approaches, such as mass selection, 
pedigree method, and bulk method, face challenges for protein 
quality improvement, but adding genetic markers into the 
breeding pipeline is possible. A comprehensive study comparing 
relative protein concentration among different lentil species 
identified a high protein accession, ILWL 47, belonging to 
L. ervoides (Bhatty, 1986). Lentil cultivar., IC317520, was 
identified as a high protein, sugar, and starch cultivar (Tripathi 
et  al., 2019). The identified candidates can improve protein 
content in cultivated lentils by hybridization-based 
breeding methods.

Compared to selection and hybridization-based methods, 
mutation breeding has improved legume protein. A mutant 
lentil variety, NIA-MASOOR-5, with increased protein 
concentration, high yield, and disease resistance was created 
by gamma irradiation of M-85 as a parent and released in 
Pakistan (Ali and Shaikh, 2007). Mutation using gamma 
radiation has increased protein levels in mutants obtained 
from Chiang Mai 60, SSRSN35-19-4, and EHP  275 cultivars 
of soybean (Yathaputanon et  al., 2009). Some high-protein 
and low-fiber mutants were identified from gamma 
ray-irradiated and ethyl methanesulfonate (EMS)-treated Himso 
1563 and TS 82 cultivars in soybean (Kavithamani et  al., 
2010). EMS also induced beneficial mutations for protein 
and oil content improvement in Huayu 22 and Yueyou 45 
cultivars of peanut (Chen et  al., 2020). A high-yielding and 
high-protein chickpea mutant variety, Hyprosola or Faridpur-1, 
was also developed by gamma irradiation in Bangladesh (Oram 
et al., 1987). TAEK-SAGEL is another gamma radiation-derived, 
high-protein mutant variety of chickpea released in Turkey 
(Saǧel et  al., 2009). Such landmark achievements of mutation 
breeding in pulse crops, including lentils on a commercial 
scale, demonstrate the success of this method for improving 
quality traits.

Genomic-assisted breeding demonstrates the broad potential 
for improving quantitative traits, which are highly complex, 
controlled by many genes, and environmentally influenced 
(Kumar et al., 2016a). The current genomic toolbox for breeding 
includes genetic marker development, linkage map construction, 

identifying QTL and alien introgressions, candidate gene 
discovery, diversity analysis, genome sequencing, and 
pangenome construction. The use of molecular markers to 
gear up genomic developments in lentils for various traits 
has been reviewed widely (Kumar et al., 2015). Several legume 
crops, including dry pea (Pisum sativum L.), soybean, and 
chickpea, have been broadly investigated for use in genomic-
assisted breeding to identify putative genomic regions governing 
seed protein concentration. The QTL mapping approach in 
dry pea revealed three genes regulating protein concentration 
using a linkage map of 207 markers (AFLP, RAPD, and STS 
markers; Tar’an et  al., 2004). Another similar mapping study 
in dry pea using 204 markers (morphological, isozyme, AFLP, 
ISSR, STS, CAPS, and RAPD) identified genomic regions for 
seed protein concentration (Irzykowska and Wolko, 2004). 
Several other studies using genomic-assisted breeding in dry 
pea identified protein concentration-related genes (Tayeh et al., 
2015). However, these studies are limited in the number of 
dry pea accessions used in each study and the genome-wide 
comparisons. Furthermore, a restriction-site associated DNA 
sequencing (RAD-seq) approach identified 47,472 SNP markers 
in a soybean RIL population (Liu et  al., 2017), and several 
genes for the seed protein in soybean were found using 
transcriptome analysis, QTL mapping, and the genome-wide 
association study (GWAS) approach (Patil et  al., 2017). A 
gene controlling seed size, weight, and composition of amino 
acids in total protein concentration were characterized in 
model legume Medicago trunculata and soybean using 
PCR-based markers and transcriptome profiling (Ge et  al., 
2016). Likewise, extensive studies in soybean have also identified 
several seed protein genes by exploiting genomic breeding 
approaches (Brummer et al., 1997; Sebolt et al., 2000; Chapman 
et  al., 2003; Chung et  al., 2003; Liang et  al., 2010; Van and 
Mchale, 2017; Li et  al., 2018; Huang et  al., 2020). A high-
throughput genotyping technology study identified 16,376 
SNPs and revealed seven major genes for seed protein through 
a GWAS in 336 desi and Kabuli chickpea accessions (Upadhyaya 
et  al., 2016). Such studies in legume crops demonstrate the 
success of marker-based genomic tools for improving protein 
concentration and quality. However, marker-based genomic-
assisted studies identifying genic regions associated with seed 
protein content and quality have not been reported in 
lentils so far.

Genetic engineering technology has provided other insights 
to improve protein concentration in legumes. Protocols have 
been designed to develop transgenic lines in chickpea 
(Fontana et  al., 1993), common bean (Russell et  al., 1993), 
lupin (Molvig et  al., 1997), peanuts (Brar et  al., 1994), pea 
(Schroeder et  al., 1993) and soybean (Hinchee et  al., 1988). 
Several research groups have developed transgenic soybean 
lines with increased S-containing amino acids (Falco et  al., 
1995; Dinkins et  al., 2001; Guo et  al., 2020). Likewise, 
transformation studies to improve seed protein concentration 
in broad bean (Montamat et  al., 1999), dry pea (Tegeder 
et  al., 2007), and French bean (Tan et  al., 2008) have also 
been reported. Recently, the genome-editing tool CRISPR/
Cas 9 has emerged as a revolutionary approach to improving 
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staple food crops, but this approach is not widespread in 
pulses except in soybean.

CLOSING REMARKS

Most lentil breeding programs worldwide focus on yield 
improvement, disease resistance, biotic/abiotic stress tolerance, 
and germplasm diversity. Lentils are a nutrient-dense superfood 
to combat malnutrition and non-communicable diseases. As 
such, lentil protein quality has recently emerged as a target 
trait for lentil breeding programs due to the increased demand 
for plant-based protein. Conventional breeding is progressing 
for lentil crop nutritional improvement, but other genomic 
approaches are essential to speed up the breeding process 
due to the quantitative nature of these traits. Genome-wide 
association studies with conventional plant breeding approaches 
are appropriate for improving the genetic gain of quantitative 
traits by increasing selection accuracy through indirect selection 
(Rutkoski, 2019). For example, the genetic gain for lentil 
protein concentration can be  achieved by selecting diverse 
parents, increasing the selection intensity, accuracy and 
reducing the selection cycle duration by increasing the number 
of generations per year. Conventional methods like pedigree, 
bulk, and mutation breeding can develop new breeding 
material using wild species, cultivars, landraces, advanced/
elite breeding lines, and genetic stocks (Figure  2). These 
breeding methods will generate broadly diversified germplasm 
used for phenotyping and genotyping platforms to enhance 
selection accuracy (Xu et al., 2017). However, these conventional 
methods do not increase the selection intensity due to low 
heritability, slow progression, and visual phenotypic selection 

(Cobb et  al., 2019). Combining genomic-assisted breeding 
with rapid generation methods such as single-seed descent, 
speed breeding, and double haploid production will enhance 
selection intensity and shorten the selection cycle, resulting 
in increased genetic gain over time (Cobb et  al., 2019; 
Figure  3). Future lentil breeding efforts should focus on the 
rapid diversification and evaluation of lentil germplasm for 
protein quality through conventional breeding approaches. 
The development and adoption of genomic resources and 
tools such as genetic engineering or genome editing may 
also contribute to the pace of conventional breeding in lentils 
and eventually lead to breakthroughs in lentil protein 
improvement programs to ensure nutritional security and 
improve human health.
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