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As one of the representative algorithms of deep learning, a convolutional neural network
(CNN) with the advantage of local perception and parameter sharing has been rapidly
developed. CNN-based detection technology has been widely used in computer vision,
natural language processing, and other fields. Fresh fruit production is an important
socioeconomic activity, where CNN-based deep learning detection technology has been
successfully applied to its important links. To the best of our knowledge, this review
is the first on the whole production process of fresh fruit. We first introduced the
network architecture and implementation principle of CNN and described the training
process of a CNN-based deep learning model in detail. A large number of articles were
investigated, which have made breakthroughs in response to challenges using CNN-
based deep learning detection technology in important links of fresh fruit production
including fruit flower detection, fruit detection, fruit harvesting, and fruit grading. Object
detection based on CNN deep learning was elaborated from data acquisition to model
training, and different detection methods based on CNN deep learning were compared
in each link of the fresh fruit production. The investigation results of this review show
that improved CNN deep learning models can give full play to detection potential by
combining with the characteristics of each link of fruit production. The investigation
results also imply that CNN-based detection may penetrate the challenges created by
environmental issues, new area exploration, and multiple task execution of fresh fruit
production in the future.

Keywords: computer vision, deep learning, convolutional neural network, fruit detection, fruit production

INTRODUCTION

Fresh fruits in the market are beloved by people because of their enticing aroma and unique
flavor. From fruit flowers blooming to fruit grading, every link of fresh fruit production
needs to be seriously supervised so that fruits enter the market without economic loss. In
recent years, the world agricultural population and labor force have been having a declining
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trend leading to the urgent need for automation of fresh
fruit production (Yuan et al., 2017). Object detection based
on computer vision has been applied to the main link of
automatic fresh fruit production such as smart yield prediction,
automatic harvesting robots, and intelligent fruit quality grading
(Naranjo-Torres et al., 2020).

A function of ML is to ensure that machines can automatically
detect objects accurately. Although ML has been applied in
many fields, the ML technology has been developing to achieve
efficient detection. The detection performance of traditional ML
will not improve with increase in training sample data. The
features need to be given artificially for object detection, which
is also a disadvantage of traditional ML (Mohsen et al., 2021).
As an intelligent algorithm in the development of ML, DL has
significant advantages over traditional algorithms of ML. The
detection performance of DL usually improves with increase
in the amount of training sample data. DL can automatically
extract features of a detected object using network structure.
However, DL takes a lot of training time and runs on computers
with higher cost configurations compared with traditional ML
(Joe et al., 2022).

Deep learning is a further study on artificial neural networks
such as deep belief network (Hinton et al., 2006), recurrent neural
network (Schuster and Paliwal, 1997), and convolutional neural
network (LeCun et al., 1989). The deep learning algorithm has
a similar calculation principle with a mechanism of the visual
cortex of animals (Rehman et al., 2019). The deep learning-
based technology has broad applications in many domains due
to its superior performance in operation speed and accuracy,
for example, in the medical field (Gupta et al., 2019; Zhao Q.
et al., 2019), in the aerospace field (Dong Y. et al., 2021), in the
transportation sector (Nguyen et al., 2018), in the agriculture field
(Kamilaris and Prenafeta-Boldú, 2018), and in the biochemistry
field (Angermueller et al., 2016).

A CNN with a convolutional layer and a pooling layer
was proposed by Fukushima (1980), which was subsequently
improved to LeNet (LeCun et al., 1998), GoogleNet (Szegedy
et al., 2015), ResNet (He et al., 2016), AlexNet (Krizhevsky et al.,
2017), and so on. With the appearance of R-CNN (Girshick et al.,
2014), CNN-based object detection became a hot research topic
on computer vision and digital image processing (Zhao Z. et al.,

Abbreviations: CNN, convolutional neural network; DBN, deep belief network;
RNN, recurrent neural network; VGG, visual geometry group; DTI, decision
tree induction; SVM, support vector machine; 2D, two-dimensional; ms-
MLP, multiscale-multilayered perceptron; HoG, histogram of oriented gradient;
ML, machine learning; GLCM, gray-level co-occurrence matrix; CIELab,
Commission Internationale de l’Eclairage Laboratory; CHT, circular Hough
transform; SLIC, simple linear iterative clustering; YOLO, you only look
once; SSD, single shot multibox detector; mAP, mean average precision; STN,
Special Transform Network; CCD, charge coupled device; SMOTE, synthetic
minority oversampling technique; DC-GAN, deep convolutional generative
adversarial network; CycleGAN, cycle generative adversarial network; CVAE-
GAN, conditional autoencoder generative adversarial network; GAN, generative
adversarial network; CPU, central processing unit; GPU, graphics processing unit;
TP, true positive; FN, false negative; FP, false positive; TN, true negative; MAE,
mean absolute error; MSE, mean square error; RMSE, root mean square error;
FCN, full convolutional net; AV, unmanned aerial vehicle; MS-FRCNN, multiple
scale Faster R-CNN; MIoU, mean intersection over union; SFM, structure from
motion; ROI, region of interest; E-CNN, ensemble-convolutional neural net; NIR,
near infrared.

2019). Object detection is the coalition of object classification
and object location requiring a network to differentiate an object
region from the background and accomplish the classification
and location of the object. The technique of CNN-based image
segmentation using a CNN model to perceive the representative
object of each pixel for classifying and locating objects can be
performed for object detection tasks. Frequently used image
segmentation models are Mask-R-CNN, U-Net (Ronneberger
et al., 2015), SegNet (Badrinarayanan et al., 2017), DeepLab
(Chen et al., 2018), and so on.

Early fruit image segmentation algorithms use traditional
ML algorithms to identify fruit objects by combining shallow
characteristics of fruits such as color, texture, and shape, and
mainly included threshold segmentation (Pal and Pal, 1993),
DTI (Quinlan, 1986), SVM (Cortes and Vapnik, 1995), cluster
analysis (Tsai and Chiu, 2008), and so on. Color traits of
fruits are frequently used in fruit detection (Thendral et al.,
2014; Zhao et al., 2016). Shape, as an outstanding mark of
fruits, is applied to fruit segmentation and recognition (Nyarko
et al., 2018; Tan et al., 2018). In addition, spectral features
and depth information are applied in fruit detection (Bulanon
et al., 2009; Okamoto and Lee, 2009; Gené-Mola et al., 2019a;
Lin et al., 2019; Tsoulias et al., 2020). The above methods
can detect fruit objects; however, they have certain limitations
of features expression for fruit object detection in a complex
environment. CNN-based detection technology has been proved
to have a potential in fresh fruit production by many studies
(Koirala et al., 2019b). Models combined with CNN, for example,
CNN + SVM (Dias et al., 2018), CNN + ms-MLP (Bargoti
and Underwood, 2017), fuzzing mask R-CNN (Huang et al.,
2020), faster R-CNN (Gao et al., 2020), the Alex-FCN model
(Wang et al., 2018), and 3D-CNN (Wang et al., 2020), have
obtained satisfactory detection results in fruit flower detection,
fruit recognition, fruit maturity prediction, and surface defect
detection-based fruit grading. These successful studies imply
that CNN-based methods can break the technical bottleneck
in detection and accelerate the mechanization of fresh fruit
production.

As shown in Figure 1, this review investigates the CNN-
based detection application in the process of fresh fruit
production, which is a complete process from fruit flower
detection, growing fruit detection, fruit picking to fruit
grading. We provide a comprehensive introduction and analysis
of the CNN model and its improved models in fresh
fruit production. In addition, different CNN-based detection
methods are compared and summarized in each link of
fresh fruit production. The arrangement of this article is
as follows: Section “Common Models and Algorithms of
Convolutional Neural Network” introduces the composition
and algorithms of CNN; Section “Implementation Process
of Convolutional Neural Network-Based Detection” explains
the CNN-based detection implementation process; Section
“Convolutional Neural Network-Based Fresh Fruit Detection”
investigates the current research on CNN applications in
each link of fresh fruit production; Section “Challenges and
Future Perspective” discusses difficulties that will be encountered
by CNN-based detection in future research on fresh fruit
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FIGURE 1 | Convolutional neural network (CNN)-based detection application in main links of fresh fruit production.

production; Section “Conclusion” presents an entire summary of
this investigation.

COMMON MODELS AND ALGORITHMS
OF CONVOLUTIONAL NEURAL
NETWORK

Convolutional Neural Network Models
for Image Detection
Common CNN models used for image detection are usually
composed of convolutional layers, activation functions, pooling
layers, and full-connected layers (Mohsen et al., 2021). A CNN
model transforms an image into high dimension information,
so a computer can read and extract features from the image. In

two-dimensional (2D) convolution operation, each pixel value of
an input image entering into a convolutional layer is convoluted
with a kernel to generate a feature map. When an input image
is three-dimensional (3D) or four-dimensional (4D), a multi-
dimension convolution operation will be implemented. In the
multi-dimension convolution operation, the channel number of
kernels is equal to the channel number of input images, and the
channel number of output feature maps is the number of kernels
(Alzubaidi et al., 2021). However, in convolutional layers and
full-connected layers, the linear connection between the input
and the output restricts the ability of a CNN model to solve
more complex problems. The activation function is added after
the operations of convolution layers and full-connected layers,
which can capacitate a CNN model to solve non-linear problems.
Common activation functions include the Sigmoid function, the
Tanh function, the ReLU function, SoftMax, and so on.
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TABLE 1 | Structure and performance of common convolutional neural network (CNN) models for image detection.

CNN models Weight layers Convolutionlayer Kernel size Active function Dropouta LRNb BNc Top-5 error (on ImageNet)

AlexNet 8 5 3×3, 5×5, 11×11 ReLU
√ √

– 16.4%

VGG 19 16 3×3 ReLU
√

– – 7.3%

GoogleNet
(Inception-V1)

22 21 1×1, 3×3, 5×5,
7×7

ReLU
√ √

– 6.7%

ResNet 152 151 1×1, 3×3, 7×7 ReLU
√

–
√

3.57%

DenseNet 265 264 1×1, 3×3, 7×7 ReLU
√

–
√

5.29%

MobileNet 28 27 1×1, 3×3 ReLU – –
√

*

aDropout is a training trick, which means that neural network units are temporarily discarded from the network according to a certain probability in the training process of
a deep learning network.
bLRN, local response normalization, is a training trick that can enhance the generalization ability of a model. It creates a competitive mechanism for activities of local
neurons, which can make the value of neurons with large responses larger and inhibit neurons with small feedback.
cBN, batch normalization, normalizes the data of each layer and performs linear transformation to improve data distribution.
*Means that we have not found relevant data about Mobilenet in the public references.

LeNet is the first improved CNN; however, it has not
been widely promoted and applied because of simple network
structure (LeCun and Bengio, 1995). AlexNet is the first deep
CNN architecture and the first CNN model trained on GPU
(Krizhevsky et al., 2017). A VGG model with four network
structures and different configurations was proposed by the
Visual Geometry Group of Oxford University in 2014 (Simonyan
and Zisserman, 2014). The most popular network among VGG
models is VGG-16 containing thirteen convolutional layers
and three full-connected layers. GoogLeNet was a new deep
learning structure proposed in 2014 (Szegedy et al., 2015). The
most unique of GoogLeNet is the inception component, which
utilizes partial connection to accomplish parameter reduction
and computation simplicity. A series of inception components
including InceptionV2, InceptionV3, and InceptionV4, was
proposed for optimizing GoogLeNet (Szegedy et al., 2016). By
proving the existence of degradation of CNN while its depth
is increasing, ResNet was proposed to improve the CNN by
designing residual components with the shortcut connection (He
et al., 2016). DenseNet was proposed in 2017, and dense block
was the highlight of DenseNet by building connections of all
layers with each other to ensure maximum information flow
among the layers (Huang et al., 2017). With the popularization
of CNN models, it is required that CNN-based image recognition
tasks are implemented on mobile terminals or embedded devices.
As a lightweight model, MobileNet was designed to run on the
CPU platform, and it had good detection accuracy (Howard
et al., 2017). These models are fundamentals of CNN-based object
detection and can help computers learn more information about
images because of functions of feature recognition and extraction.
The structure and image detection performance of the above
common CNN models are summarized in Table 1.

Convolutional Neural Network Models
for Three-Dimensional Point Cloud
Detection
With the development of vision technology, sensors that directly
acquire 3D data are becoming more common in robotics,
autonomous driving, and virtual/augmented reality applications.
Because depth information can eliminate a lot of segmentation

ambiguities in 2D images and provides important geometric
information, the ability to directly process 3D data is invaluable
in these applications. However, 3D data often come in the form
of point clouds. Point clouds are typically represented by a set of
3D points that are not arranged in order, each with or without
additional features (such as RGB color information). Because of
the disordered nature of point clouds and the fact that they are
arranged differently from regular mesh-like pixels in 2D images,
traditional CNNs struggle to handle this disordered input.

At present, the deep learning point cloud target recognition
method mainly has three kinds of point cloud target recognition
methods based on views (Kalogerakis et al., 2017), voxels (Riegler
et al., 2016), and point clouds (Qi et al., 2017a). Among them, the
idea based on views is still to convert three-dimensional data into
a two-dimensional representation; that is, 3D data are projected
according to different coordinates and different perspectives to
obtain a two-dimensional view, and then the two-dimensional
image convolution processing method is used to extract features
from each view and, finally, aggregate the features to obtain
classification and segmentation results. The idea based on voxels
is to put an unordered point cloud into the voxel grid, so that
it becomes a three-dimensional grid regular data structure, and
then as network input data. However, in order to solve problems
of view-based and voxel-based computational complexity and
information loss, researchers began to consider directly inputting
raw point cloud data into the network for processing.

At Stanford University in the United States, Qi et al. (2017a)
proposed a new type of neural network, PointNet, for point
cloud identification and segmentation directly using a point
cloud as the input object, the spatial transformation network
T-Net to ensure the displacement invariance of the input point,
a shared multilayer perceptron (MLP) to learn the characteristics
of each point, and, finally, the maximum pooling layer to
aggregate global features. However, PointNet cannot learn the
relationship characteristics between different points in the local
neighborhood, and then Qi et al. (2017b) proposed PointNet++
to improve PointNet, according to the idea of two-dimensional
convolution proposed hierarchical point cloud feature learning
for local areas, which is composed of sampling layer, grouping
layer and feature extraction layer (PointNet) in the hierarchical
module, while improving the stability of the network architecture
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and the ability to obtain details. Later, the description ability of
local features was enhanced in order to make the local structure
information between points, such as distance and direction, be
able to learn in the network.

PointNet inputs an irregular point cloud directly into the
deep convolutional network, the framework represents the point
cloud as a set of 3D points { (P|i = l, . . . , n}, where each point
P is its 3D coordinates plus additional feature channels such
as color, normal vector, and other information; the architecture
is shown in Figure 2. In response to the point cloud disorder
problem, PointNet pointed out that a symmetric method is used;
that is, maximum pooling, no matter how many orders there are
in N points, the maximum eigenvalue in the pooling window
corresponding to N points is selected for each dimension of
the final high-latitude feature and fused into the global feature.
For the rotation invariance problem of point cloud, PointNet
points out that spacial transform network (STN) is used to
solve it. Through the T-Net network to learn the point cloud
itself attitude information to obtain a DD rotation matrix (D
represents the characteristic dimension), PointNet in the input
space transformation using 3×3, feature space transformation
using 64×64 to achieve the most effective transformation for the
target.

Convolutional Neural Network-Based
Detection Algorithms
Convolutional neural network-based detection algorithms
mainly include object detection algorithms, semantic
segmentation algorithms, and instance segmentation algorithms,
which are described in detail as follows.

Object Detection Algorithms
As a kind of object detection algorithm, a two-stage detector
is mainly composed of a region proposal generator and
classes and bounding box prediction. The R-CNN series is the
most representative two-stage detector and includes R-CNN
(Girshick et al., 2014), Fast-R-CNN (Girshick, 2015), Faster-
R-CNN (Ren et al., 2017), etc. R-CNN is the pioneer in
using deep learning for object detection. After that, researchers
proposed Fast-R-CNN and Faster-R-CNN in succession to
update detection performance. Figure 3 shows the structure
of Faster-R-CNN, which is frequently used. Besides the above
object detection algorithms, R-FCN and Libra R-CNN are also
two-stage detectors.

Compared with a two-stage detector, a one-stage detector
conducts classification and bounding box regression after feature

extraction without generation of proposal regions. Prediction of
objects depends on doing dense sampling on an input picture.
Representative one-stage detectors are the YOLO series and
SSD (single shot multibox detector). The YOLO series contains
YOLOv1 (Redmon et al., 2016), YOLOv2 (Redmon and Farhadi,
2017), YOLOv3 (Redmon and Farhadi, 2018), and YOLOv4
(Bochkovskiy et al., 2020). Notably, during the evolution of
YOLO, a new convolution neural net, DarkNet, was constructed
for feature extraction. Furthermore, YOLOv2 referenced the
anchor conception from Faster-R-CNN. YOLOv3 contains three
different output nets that can predict multi-scale pictures. SSD
(Liu W. et al., 2016) is also a kind of one-stage detector that
can implement multi-box prediction. VGG-16 was used as a
backbone in SSD. With the development of DL, more improved
one-stage detection algorithms have been designed.

A comparison of CNN models between two-stage detectors
and one-stage detectors is shown in Table 2. As can be seen in
Table 2, frames per second (FPS) of the one-stage detector are
bigger than those of the two-stage detector, which implies that
the detection speed of the one-stage detector is faster than that
of the two-stage detector. The FPS and mAP of the Mask-R-
CNN model are bigger than those of other models of the two-
stage detector. It shows that the Mask-R-CNN model has faster
detection speed and higher detection accuracy than the two-stage
detector. However, in the one-stage detector, no CNN model has
faster detection speed and higher detection accuracy. Because of
lack of mAP in some CNN models on data of VOC2012 and
COCO, the accuracy of the two detectors cannot be compared.

Semantic Segmentation Algorithms
Unlike box recognition in object detection, semantic
segmentation refers to pixel-level recognition and classification,
which classifies pixels of the same class into one group. Early
DL-based semantics segmentation methods performed clustering
to generate super-pixels and a classifier to classify them (Couprie
et al., 2013; Farabet et al., 2013). However, such methods have
drawbacks of time-consuming and rough segmentation results.
With the popularity and development of object detection
algorithms based on CNNs, semantic segmentation algorithms
have also made great progress, and can be divided into
region-classification-based image semantic segmentation and
pixel-classification-based image semantic segmentation.

The method of region-classification-based image semantic
segmentation first selects the appropriate region, then classifies
the pixels in the candidate region. SDS (simultaneous detection
and segmentation) is a model based on R-CNN that can

FIGURE 2 | Structure of PointNet.
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FIGURE 3 | Faster-R-CNN structure. The feature map is extracted by a convolutional neural network, and then the RPN (region proposal network) generates several
accurate region proposals according to the feature map. The region proposals are mapped to the feature map. The ROI (region of interest) pooling layer is
responsible for collecting proposal boxes and calculating proposal feature maps. Finally, the category of each proposal is predicted through the FC (full connect) layer.

TABLE 2 | Summary of common CNN-based object detection models.

Type Name Backbone Bounding boxes
generation

Additional
blocks

FPSa mAP/% References

VOC2012b COCOc

Two-stage R-CNN AlexNet SSd – 0.03 59.2 – Girshick et al., 2014

Fast-R-CNN VGG-16 SS+ROI pooling – 7.00 68.4 19.7 Girshick, 2015

Faster-R-CNN VGG-16/ResNet-101 RPN+ROI pooling – 7.00/5.00 70.4/73.8 21.9/34.9 Ren et al., 2017

Mask-R-CNN ResNeXt-101-FPN RPN+ROI align FCN 11.00 73.9 39.8 He K. et al., 2017

One-stage SSD VGG-16 Anchor – 19.3 78.5 28.8 Liu W. et al., 2016

YOLOv1 GoogleNet – – 45.0 57.9 – Redmon et al., 2016

YOLOv2 DarkNet-19 Anchor – 40.0 73.5 21.6 Redmon and Farhadi, 2017

YOLOv3 DarkNet-53 Anchor FPN, SPP 51.0 – 33.0 Redmon and Farhadi, 2018

YOLOv4 CSPDarkNet53 Anchor FPN+PA, SPP 23.0 – 43.5 Bochkovskiy et al., 2020

aFPS, frames per second, is used to measure how many frames (pictures) the target network can detect per second.
bVOC2012: a dataset used in pattern analysis, statistical modeling, and computational learning visual object classes challenge 2012.
cCOCO: Microsoft Common Objects in Context, a dataset funded and labeled by Microsoft in 2014.
dSS: selective search (Uijlings et al., 2013).

simultaneously detect and semantically segment targets
(Hariharan et al., 2014). In 2016, based on the SDS method,
Liu S. et al. (2016) convoluted images using sliding windows
of different sizes and constructed multi-scale feature maps,
proposed an MPA (multi-scale patch aggregation) method
that can semantically segment an image at the instance level.
DeepMask is a segmentation model proposed based on CNN
to generate object proposals (Pinheiro et al., 2015). It generates
image patches directly from original image data and then
generates a segmentation mask for given image patches. The
whole process is applied to a complete image to improve the
efficiency of segmentation.

The method of pixel-classification-based semantic
segmentation does not need to generate object candidate
regions but extracts image features and information from
labeled images. Based on that information, a segmentation
model can learn and infer the classes of pixels in an original
image, and classify each pixel in the image directly to achieve
end-to-end semantic segmentation. FCN (fully convolutional
network) is a popular semantic segmentation model that can
be compatible with any size of images (Shelhamer et al., 2017).
FCN can distinguish the categories of pixels directly, which
greatly promotes the development of semantic segmentation.

Subsequently, researchers proposed a series of methods based
on FCN. FCN-based image semantic segmentation methods
are as follows: DeepLab, DeepLab-V2, and DeepLab-V3. Image
semantics segmentation methods based on encoder-decoder
model are as follows: U-net, Segnet, Deconvnet, and GCN (global
convolution network).

Instance Segmentation Algorithms
The purpose of instance segmentation is to distinguish different
kinds of objects in an image and different instances of the same
kind. Therefore, it has the characteristics of object detection
and semantic segmentation at the same time. Because of
the characteristics of instance segmentation, it can include
instance segmentation based on object detection and instance
segmentation based on semantics segmentation.

An instance segmentation algorithm based on object detection
has been the mainstream direction in the field of instance
segmentation research in recent years. Its main process is to
locate an instance using an object detection algorithm, and then
segment the instance in each detected box. Mask-R-CNN is one
of the famous models in instance segmentation proposed by
He K. et al. (2017). Mask-R-CNN is one of the famous models in
instance segmentation on the basis of Fast-R-CNN(He K. et al.,
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2017). As a representative instance segmentation model, many
scholars are deeply inspired by Mask-R-CNN. Based on Mask-R-
CNN, PANet (path aggregation network) introduces a bottom-
up path augmentation structure, adaptive feature pooling, and
a fully connected fusion structure to obtain more accurate
segmentation results (Liu S. et al., 2018). Chen et al. (2018)
proposed Masklab, which uses directional features to segment
instances of the same semantic class. In 2019, the first instance
segmentation algorithm based on a one-stage object detection
algorithm, YOLACT, was proposed by Bolya et al. (2019). It
added a mask generation branch behind the one-stage object
detector to complete a segmentation task. The overall structure
of YOLACT is relatively lightweight, and the trade-off between
speed and effect would be good. In addition, there are some newly
proposed instance segmentation algorithms such as MS-R-CNN
(Huang et al., 2019), BMask-R-CNN (Cheng et al., 2020) and BPR
(Tang et al., 2021).

An instance segmentation algorithm based on semantic
segmentation classifies each pixel first and then segments
different instances of the same category. For example, the SGN
(Liu et al., 2017) model decomposes an instance segmentation
into multiple subtasks, then uses a series of neural networks to
complete these subtasks, and finally recombines the results of the
subtasks to obtain the segmentation task.

Differences of Detection Algorithms
In this section, differences among object detection, semantic
segmentation, and instance segmentation are visually explained
through pear flower detection. Figure 4A is an undetected image
of pear flowers. The result of detecting pear flowers with the
object detection algorithm is shown in Figure 4B, and it shows
the approximate position of pear flowers with bounding boxes.
The result with semantic segmentation algorithm is shown in
Figure 4C, which reaches the pixel level compared with the
result of object detection. It means that when labeling data sets,

FIGURE 4 | Different CNN-based algorithms for pear flower detection.
(A) Original image, (B) object detection, (C) semantic segmentation, and (D)
instance segmentation.

the annotation of the task of semantic segmentation is also at
pixel level. Compared with rectangular box annotation in the
object detection task, the annotation of semantic segmentation
task is more complex. The result with the instance segmentation
algorithm is shown in Figure 4D, and the detection results of
instance segmentation are more detailed than those of semantic
segmentation in distinguishing each pear flower individual.

IMPLEMENTATION PROCESS OF
CONVOLUTIONAL NEURAL
NETWORK-BASED DETECTION

This section introduces the main procedures of comprehensively
training a CNN-based deep learning model for basic tasks. The
first step is determining the learning target and establishing
the data set. Second, it is vital to choose an adept deep
learning framework to modify the model and implement training.
Finally, mastering the estimation metrics of deep learning models
leads to knowing the performance of the modified models and
training results.

Data Set Construction
Dataset Acquisition
An RGB camera, which can capture the properties of a fruit
surface, such as color, shape, defect, and texture, is a pervasive
and affordable camera for image acquisition used in many types
of research (Fu et al., 2020a). Vasconez et al. (2020) held an
RGB camera and acquired apple, avocado, and lemon pictures
at 30 frames per second in orchards. However, the information
obtained from RGB images is not sufficient for 3D location
and reconstruction. Thus, most researchers have begun utilizing
RGB-D to capture RGB images and depth images in their
experiments. RGB-D cameras generally operate with three depth
measurement principles: structured light, time of flight, and
active infrared stereo technique (Fu et al., 2020a). Data sets that
provide geometric information and radiation information can
enhance the models’ ability to distinguish fruits from complex
environments. Gené-Mola et al. (2019b) established an apple data
set containing multimodal RGB-D images and pointed out that
the model provided with RGB-D images is more robust than that
provided with RGB images in a complex environment. However,
sensors in most depth cameras cannot obtain information beyond
3.5 m, and light detection and ranging (LiDAR) scanners are
needed to acquire information at a far distance (Tsoulias et al.,
2020). A LiDAR scanner can directly provide three-dimensional
positioning information of fruits without being affected by light
conditions. In addition, LiDAR data can improve the positioning
accuracy of fruits because of the appearance of different objects
showing different reflectivity to laser. Gené-Mola et al. (2019a),
by detecting Fuji apples in orchards with LiDAR, found that the
reflection of apple surface was 0.8 higher than that of leaves and
branches at a wavelength of 905 nm.

The internal properties of fruits need hyperspectral reflectance
images to be represented. Yu et al. (2018) used a hyperspectral
imaging system that constituted of a spectrometer, a CDD
camera, a light system, and a computer to detect the internal
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features of Korla fragrant pear. Some scholars bought a designed
hyperspectral system for data collection (Wang et al., 2020).

Data Set Augmentation
Data sets, as an input, play a significant part in a DL model.
Most researchers consider that enhancing the scale and quality
of data sets can strengthen the models’ generalization and
learning capacity. The methods of dataset augmentation can
be divided into the basic-image-manipulation-based method
and the DL-based method. The most straightforward and
frequently-used methods based on basic image processing
are geometric transformations, flipping, color space, cropping,
rotation, translation, noise injection, color space transformations,
kernel filters, mix images, and random erasing. Figure 5
displays example images with some usual image processes. In
addition, the DL-based method contains SMOTE (Chawla et al.,
2002), adversarial training, DC-GAN (deep convolutional GAN)
(Zheng et al., 2017), CycleGAN (Zhu et al., 2017), CVAE-GAN
(Bao et al., 2017), etc.

Some researchers processed images from angle, brightness,
and sharpness to simulate different light conditions (Jia et al.,
2020). Some used clockwise rotation, horizontal mirror, color
balance processing, and blur processing to augment a data set
for apple detection (Tian et al., 2019). Flowers have distinct

characteristics from fruit organs. Thus, Tian et al. (2020)
proposed a novel image augmentation method as per apple
inflorescence (Figure 6). The procedure of image generation is
displayed in Figure 7. They clipped 50 pictures of central flowers
and 150 pictures of side flowers. Then, they filtered and combined
these clipped images to generate foreground pictures. At the same
time, 200 pictures were extracted and processed for background
pictures. Finally, sample images were produced by coalescing
foreground pictures and background pictures. The experiment
results proved that this way of augmentation contributed to
detection performance.

Convolutional Neural Network Model
Training
Training Tools
It is onerous to construct a deep learning model from zero. Many
open-source or commercial deep learning tools came into being
with the advent of deep learning (Li et al., 2021). In the field of
fresh fruit detection, Caffe, TensorFlow, Keras, and PyTorch are
popular open-source training tools.

Caffe is the abbreviation of convolution architecture for
feature extraction, and is one of the earlier DL frameworks. Caffe
defines a network structure in the form of configuration text

FIGURE 5 | Example images with different image processes. (A) Original image, (B) vertical flip image, (C) noise injected image, (D) sharpened image, (E) Gaussian
blurry image, (F) random erased image, (G) image with brightness adjustment, (H) RGB2GRB image, and (I) gray image.
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FIGURE 6 | Apple inflorescence: (A) the central flower and the side flowers have a bud shape, (B) the central flower has a semi-open shape and the side flowers
have a bud shape, (C) the central flower has a fully open shape and the side flowers have bud and semi-open shapes, and (D) the central flower and the side
flowers have a fully open shape.

FIGURE 7 | Procedure of image generation in Tian et al. (2020).

instead of code. Users can expand new models and learning tasks
with its modular components (Jia et al., 2014). TensorFlow is
an open-source machine learning library from Google Brain that
can be used for a variety of deep learning tasks, including CNN,
RNN, and GAN (generative adversarial network) (Abadi et al.,
2016). It uses data flow graphs to represent calculations, shared
states, and operations (Zhu et al., 2018). Keras is a very friendly
and simple DL framework for beginners. Strictly speaking, it
is not an open-source framework but a highly modular neural
network library based on TensorFlow and Theano. PyTorch is
a DL framework launched by Facebook in 2017 and is based
on the original Torch framework; it utilizes Python as main
development language (Paszke et al., 2019). Furthermore, the
open-source code of Caffe2 has merged into PyTorch, which
signifies that PyTorch has strong capacity and flexibility. Table 3
describes the detail and differences of the above DL tools. In
Table 4, we display the code of the first convolutional layer of
Lenet-5 in different languages.

Furthermore, data set annotation, which generates ground
truth for supervising networks’ learning object features, is a

prerequisite for tasks of object detection and segmentation.
Familiar label tools have LabelImg, LabelMe (Russell et al., 2007),
Matlab, Yolo_mark, Vatic, CVAT, etc.

Parameter Tuning
Parameter initialization is very important. Reasonable
initial parameters can help a model improve
training speed and avoid local minima. The Kaiming
initialization and Glorot initialization methods
are generally used (Glorot and Bengio, 2010;
He et al., 2015).

In the beginning of the training, all parameters have typically
random values and, therefore, far away from the final solution.
Using a too-large learning rate may result in numerical instability.
We can use warm-up heuristic (He et al., 2019) to gradually
increase the learning rate parameter from 0 to the initial learning
rate, and then use the conventional learning rate attenuation
scheme. With the progress of training, a model will gradually
converge to the global optimum. It is necessary to reduce the
learning rate to prevent a model from oscillating back and
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TABLE 3 | Comparison of Caffe, TensorFlow, Keras, and PyTorch.

Name Caffe TensorFlow Keras PyTorch

Support language C++/Python/MATLAB C++/Python Python Python

Support hardware CPU/GPU CPU/GPU/Mobile CPU/GPU/Mobile CPU/GPU

Support system Linux/Windows/MacOS Linux/Windows/MacOS/Android/IOS Linux/Windows/MacOS/Android/IOS Linux/Windows/MacOS

Traits Strong readability and
expansibility, stable and
superior performance

Comprehensive functionality, good
visualization, and active user
community

Highly modular, keeping each module
short and simple, and ease of
extension.

Intuitive design, ease of
use, and active user
community

forth near the optimum. Generally, learning rate adjustment
strategies such as Step, MultiStep, and exponential and cosine
annealing can be used.

Selection of an optimizer plays an important role in DL
training and is related to whether the training can converge

TABLE 4 | Different languages define the code of the first convolution
layer of Lenet-5.

Caffe layer{
name:“conv1”
type:“Convolution”
bottom:“data”
top:“conv1”
param{

lr_mult:1
}
param{

lr_mult:2
}
convolution_param{

num_output:20
kernel_size:5
stride:1
weight_filler{

type:“xavier”
}
bias_filler{

type:“constant”
}

}
}

TensorFlow def hidden_layer(input_tensor,regularizer,avg_class,resuse):
with tf.variable_scope(“C1-conv”,reuse=resuse):

conv1_weights=tf.get_variable(“weight”, [5, 5, 1, 32],
initializer=tf.truncated_normal_initializer(stddev=0.1))

conv1_biases=tf.get_variable(“bias”, [32],
initializer=tf.constant_initializer(0.0))

conv1=tf.nn.conv2d(input_tensor, conv1_weights,
strides=[1, 1, 1, 1],

padding=“SAME”)
relu1=tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))

Keras model.add(Conv2D(filters=6,
kernel_size=5,
strides=1,
activation=‘relu’,
input_shape=(32,32,1)))

PyTorch self.conv2=nn.Sequential(
nn.Conv2d(in_channels=6, out_channels=16,
kernel_size=5, stride=1),
nn.MaxPool2d(kernel_size=2)

)

quickly and achieve high accuracy and recall. Commonly used
optimizers include gradient descent, momentum, SGD, SGDM,
Adagrad, Rmsprop, Adam, etc.

Convolutional neural network learning needs to establish
millions of parameters and a large number of labeled images. If
the amount of data is not enough, a model will be over fitted, and
the effect is likely to be worse than traditional manual features.
If the data set of a new task is significantly different from the
original data set and the amount of data is small, one can try
transfer learning to complete the new task (Oquab et al., 2014).
The weight update of a whole network can be adopted during
transfer learning.

Evaluation Metrics
The confusion matrix is a basic, intuitive, computational, and
simple method for measuring the accuracy of a model. Take
the binary classification model as an example, and its confusion
matrix is shown in Figure 8. It is mainly composed of four
basic indicators: TP (true positive), FN (false negative), FP (false
positive), and TN (true negative).

• TP: an outcome where a model correctly predicts
a positive class.
• FP: an outcome where a model incorrectly predicts

a positive class.
• TN: an outcome where a model correctly predicts

a negative class.
• FN: an outcome where a model incorrectly predicts

a negative class.

With a confusion matrix, accuracy, precision, recall, and F1-
score can be calculated to evaluate a model. Accuracy (Eq. 1)
indicates the proportion of correctly classified test instances to
the total number of test instances. Precision (Eq. 2) represents

FIGURE 8 | Basic confusion matrix.
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the correct proportion of positive samples predicted by a model.
Recall (Eq. 3) represents the proportion of all positive samples
that are correctly predicted by a model. Generally speaking,
precision and recall is a pair of contradictory indicators. As the
weighted harmonic average of the two of them, F1-score (Eq. 4)
balances the relative importance between precision and recall.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2TP

2TP + FP + FN
(4)

In addition to the above basic evaluation metrics, there are
also IoU (intersection over union) and mAP (mean average
precision) for evaluating the accuracy of a bounding box in an
object detection and segmentation model, FPS for detection of
speed, and the metrics of the regression model of MAE (mean
absolute error), MSE (mean square error), RMSE (root mean
square error), and R2 coefficient of determination, etc. Diversified
evaluation indicators can help researchers evaluate and improve
algorithms used in many aspects.

ROC curve is often used for evaluating two classifiers. The
vertical axis of the ROC diagram is TPrate (Eq. 5) and the
horizontal axis is FPrate (Eq. 6). FPrate represents the probability
of misclassifying negative cases into positive cases, and TPrate
represents the probability that positive cases can be divided into
pairs. Each discrete classifier produces an (FPrate, TPrate) pair
corresponding to a single point in ROC space. Several points in
the ROC space are important to note. The lower left point (0, 0)
represents the strategy of never issuing a positive classification;
such a classifier commits no false positive errors but also gains no
true positives. The opposite strategy of unconditionally issuing
positive classifications is represented by the upper right point
(1, 1). The point (0, 1) represents perfect classification (Fawcett,
2006).

TPrate =
TP

TP + FN
(5)

FPrate =
FP

FP + TN
(6)

In addition to ROC curve, MCC (Eq. 7) is also used to
measure the performance of binary classification. This indicator
considers true positives, true negatives, false positives, and false
negatives. It is generally considered to be a relatively balanced
indicator. It can be applied even when sample sizes of two
categories are very different (Supper et al., 2007). MCC is
essentially a correlation coefficient between actual classification
and prediction classification, and its value range is [−1, 1]. When
it is 1, it means perfect prediction of a subject; when it is 0,
it means that the predicted result is worse than the random

prediction result; −1 means that the predicted classification is
completely inconsistent with the actual classification.

MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(7)

CONVOLUTIONAL NEURAL
NETWORK-BASED FRESH FRUIT
DETECTION

Fruit Flower Detection
Fruit flowers are the primary form of fruit organ. Most fruit
trees bloom far more than final fruits. However, if there are too
many flowers, nutrition supply will be insufficient, which will not
only affect the normal development of fruits but will also cause
formation of many small fruits and secondary fruits. Yield and
economic benefits will be affected. Therefore, flower thinning
is necessary to remove some excessive flowers and obtain high-
quality fruits (Wouters et al., 2012). After flower thinning, flower
detection is implemented and plays a considerable role in fresh
fruit production. Flowers of most kinds of fruits are small and
dense, resulting in overlap and blockage, which seriously affect
the accuracy of detection. Precise estimation based on DL can
assist orchardists in assigning labor resources on time to attain
a highly effective but low-cost harvest.

The size of flowers of most species of fruits is small, and
the flowers are dense, which causes overlap and occlusion
quickly. Many researchers detect the flowers in outdoor fields
close to make the most of flowers’ traits. Being inspired by the
performance of CNNs in computer vision tasks, Dias et al. (2018)
incorporated CNN and SVM for apple flower detection. Lin
et al. (2020) compared the performance of R-CNN, Fast-R-CNN,
and Faster-R-CNN in recognizing strawberry flowers, and Faster-
R-CNN ha higher accuracy (86.1%) than R-CNN (63.4%) and
Fast-R-CNN (76.7%). Farjon et al. (2020) constructed a system
for apple flower detection, density calculation, and flourish peak
prediction. The detector in the system was based on Faster-R-
CNN. Mask R-CNN with ResNeXt50 is a superior algorithm for
recognizing citrus flowers and detecting their quality in an end-
to-end model. The average precision of detecting citrus flowers
is 36.3, and the error of calculating the number was decreased
to 11.9% (Deng et al., 2020). Using U-Net (Ronneberger et al.,
2015) as the backbone of Mask-Scoring-R-CNN can also detect
flowers with great precision (Tian et al., 2020). At the same time,
researchers augmented a data set based on apple flowers’ growth
and distribution features to improve the learning capacity of
networks. YOlOv4 can detect objects on three different scales.
Wu D. et al. (2020) proposed a channel-pruning algorithm based
on the YOLOv4 model. The pruned model contains simple
structures and has fewer parameters, and it works with sound
accuracy and faster speed.

Grape flower counting is often very time-consuming and
laborious because the grape flower has particular phenotypic
traits that their shapes are the small sphere and growing on the
inflorescence densely. Hence, scholars utilized full convolution
net (FCN) to detect and identify inflorescences, and then used
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CHT to recognize the flowers (Rudolph et al., 2019). Palacios et al.
(2020) also detected inflorescences and flowers, but both steps
used the SegNet architecture with a VGG19 network. In addition,
they estimated the actual number of flowers from the number
of detected flowers by training a linear regression model. Litchi
flowers are also densely clustered and difficult to distinguish in
morphology. Thus, a semantic segmentation net that constituted
of a backbone net, DeepV3, for feature extraction and a full
convolutional net for pixel prediction can detect litchi flower at
the pixel level (Xiong et al., 2021).

Growing Fruit Detection
Terrestrial Platform
In addition to fruit flower detection, fruit detection and counting
are also important for yield estimation. Fruit growth in fruit
trees is different, and fruit thinning needs to be implemented to
remove small fruits, residual fruits, diseased fruits, and fruits with
incorrect shapes, so that fruits are evenly distributed in trees and
branches and can fully receive nutrients. After the fruit thinning
and fruit dropping stages, fruits can be detected during fruit
ripening to estimate yield (Zhou et al., 2012).

The CNN algorithm has better performance for detecting
expanding fruits in a vast scene, which has been proved by
comparing it with existing methods (Bargoti and Underwood,
2017). Various species of fruits have different characteristics;
therefore, different CNN models are used. Tu et al. (2020)
proposed a MS-FRCNN model to estimate passion fruit
production. To detect fruits of small and dense olive, researchers
tested five different CNN configurations in an intensive olive
orchard, and the model with Inception-ResNetV2 showed the
best behavior (Aquino et al., 2020). Behera et al. (2021) proposed
a Faster-R-CNN model with MIoU, and it achieved an F1 score
of 0.9523 and 0.9432 for yield estimation of apple and mango in
the ACFR data set. Janowski et al. (2021) employed the YOLOv3
network to predict the yield of an apple orchard. Nevertheless,
all algorithms face the problems of occlusion resulting from
leaves or branches and fruit overlap. To suppress the disturbance
from occlusion, an instance segmentation neural net based on
Mask-R-CNN was used to detect apples in two-dimensional space
and a multi-view structure from motion (SFM) (Triggs et al.,
2002) was used to generate a 3D point cloud according to 2D
detection results. Recognizing unripe tomatoes is important for
long-term yield prediction, but green fruits are hard to perceive
in a green background. Mu et al. (2020) used Faster-R-CNN to
detect immature tomatoes in greenhouses and created a tomato
location map from detected images. Prediction errors of a whole
orchard caused by duplicate statistics attracted the attention of
many scholars. It is remarkably effective segmenting individual
mango trees with LiDAR Mask and identifying fruits with a
Faster-R-CNN-based detector. Koirala et al. (2019a) designed a
mango identification system and installed it on a multifunctional
agricultural car to realize real-time detection. The algorithm
named “MnagoYOLO” in the detction system is modified based
on YOLOv2. The car drove on the path between rows of
mango trees while the system detected and summed the mangoes
on the trees (Koirala et al., 2019a). Some researchers thought

of using mobile phones to detect kiwifruits in an orchard in
real-time (Zhou et al., 2020). They used a single shot multi-box
detector (SSD) with two lightweight backbones, MobileNetV2
and InceptionV3, to develop a device for kiwifruit detection in the
wild, the Android app KiwiDetector. Four types of smart phones
are used for experiments. Highest detection accuracy can reach
90.8%, and fastest detection speed can reach 103 ms.

Deep learning has advantages in yield estimation of clustered
fruits. For dense small fruits such as blueberries and small
tomatoes, DL has a better detection effect on single fruits and is
more convenient for counting fruits. However, using DL to detect
small fruits is more vulnerable to the influence of light conditions.
To quantify the number of berries per image, a network based
on Mask R-CNN for object detection and instance segmentation
was proposed by Gonzalez et al. (2019). Grapes are a type of crop
presenting a large variability in phenotype. Zabawa et al. (2020)
chose to train a CNN to implement semantic segmentation
for single grape berry detection, and then used the connected
component algorithm to count each berry. SfM (structure-
from-motion) can simultaneously solve camera pose and scene
geometry estimation to find a three-dimensional structure.
Thus, Santos et al. (2020) used Mask-R-CNN to segment grape
clusters and generate comprehensive instance masks. Then, the
COLMAP SfM software can match and track these masks to
reduce duplicate statistics. GPS was employed to establish pair-
wise correspondences between captured images and trajectory
data (Stein et al., 2016). Figure 9 displays the process of instance
matching and tracking. A counting method for cherry tomatoes
based on YOLOv4 was proposed by Wei et al. (2021), and it takes
the counting problem as detecting and classifying problems that
can reduce the effects of occlusion and overlap. Ni et al. (2021)
proposed a method for counting blueberries based on the result of
individual 3D berry segmentations. In that study, Mask-R-CNN
was used for 2D blueberry detection, and the 3D point was used
for 3D reconstruction.

Some types of fruits are only edible when ripe. Therefore,
maturity monition can provide a timely signal to harvest workers.
Tomatoes have the characteristics of clustered growth and batch
ripening. Immature tomatoes contain solanine, which is noxious
to the human body. Thus, dozens of studies are related to tomato
maturity detection. Sun et al. (2018) first used Faster-R-CNN with
ResNet 50 to detect critical organs of tomatoes, and the mAP of
the model is 0.907. Subsequently, they improved the FPN model
to recognize tomato flowers, green tomatoes, and red tomatoes,
and the mAP achieved 0.995 (Sun et al., 2020). Coconuts with
different maturities can be sold for various purposes. Therefore,
Parvathi and Tamil Selvi (2021) used Faster-R-CNN to detect
the maturities of coconuts in trees to decrease economic loss.
The definition of mature and immature fruits is the primary
issue of maturity detection. Some researchers transformed the
identification task into a classification task. According to the
relationship between storage time and appearance, tomatoes can
be classified into five categories: “Breaker,” “Turning,” “Pink,”
“Light red,” and “Red.” A CNN can classify the level of tomato
maturity (Zhang L. et al., 2018). Tu et al. (2018) collected five
maturities category pictures of passion fruit (Figure 10), and
then modified the Faster-R-CNN model to recognize the fruit
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FIGURE 9 | Instance matching and tracking by 3-D assignment. (Left) Key
frames extracted from a video sequence with a 1,080-p camera. (Right)
Graph-based tracking. Each column represents instances found by a neural
network, and each color represents an individual grape cluster in a video
frame.

and its ripeness. Tian et al. (2019) divided objective apples into
three classes, young, expanding, and ripe, and optimized the
YOLOv3 model with DenseNet for detection. The classification
method referred in Tian et al. (2019) was used on litchi (Wang H.
et al., 2021). However, litchi fruits are different from apples that
are small and dense; thus, Wang adjusted the prediction scale
and decreased the weight layers of YOLOv3 to enhance the
capacity of the model for compact object detection. Khosravi
et al. (2021) coded olives according to their mature stages and
varieties, divided them into eight categories, and used a deep
convolutional network for detection. The overall accuracy of
detection can reach 91.9, and the processing speed on the CPU
is 12.64 ms per frame.

Offering indices of fruit maturity can help workers make
harvesting plans and assist harvest robots in making decisions.
Some scholars offered indices for describing fruit maturity under
the premise of using a CNN to detect fruits. Huang et al. (2020)
utilized Mask-R-CNN to identify the location of tomatoes in
images and evaluated the HSV value of detected tomatoes. They
then constructed Fuzzy inference rules between the maturity
and the color feature of the surface of tomatoes, which can
predict ripeness and harvesting schedule. Ni et al. (2020) also
used Mask-R-CNN to extract blueberry fruit traits and gave
two indices to describe fruit maturity (Figure 11). One index is

about the maturity of individual berries that can infer whether
blueberries are harvestable or not. Another is the maturity ratio
(mature berry number/total berry number) of a whole cluster
that can indicate the specific harvesting time of this cultivar.
For clustered and dense fruits such as blueberries, cherries, and
cherry tomatoes, the maturity of whole bunches of fruits can be
calculated by detecting the maturity of each fruit using DL. At the
same time, the labeling process is time-consuming and laborious.
To provide technical support for high quality cherry production,
Gai et al., 2021 proposed aYOLO-V4-dense model for detection
of the maturity of cherries.

Aerial Platform
Many researchers have begun using UAVs (unmanned aerial
vehicles) to obtain images, and UAVs have become common
in agricultural remote sensing as intelligent devices progress.
Studies have demonstrated that data taken with UAVs are suitable
for fruit yield prediction (Wittstruck et al., 2021). Chen et al.
(2017) proposed a novel method that uses DL to map from
input images to total fruit counts. It utilizes a detector based
on an FCN model to extract candidate regions in images, and
a counting algorithm based on a second convolutional network
that estimates the number of fruits in each region. Finally,
a linear regression model maps that fruit count estimate to
a final fruit count. A UAV-based visual detection technology
for green mangoes in trees was proposed by Xiong et al.
(2018). In their study, the YOLOv2 model was trained for green
mango identification. The mAP of the trained model on the
training set was 86.4%, and estimation error rate was 1.1%.
Apolo-Apolo et al. (2020) used a UAV to monitor citrus in
orchards (shown in Figure 12) and adopted Faster-R-CNN to
develop a system that can automatically detect and estimate
the size of citrus fruits and estimate the total yield of citrus
orchards according to detection results. To solve the problem
of inconvenient data capture in mountain orchards, Huang
et al. (2022) designed a real-time citrus detection system for
yield estimation based on a UAV and the YOLOv5 model.
Kalantar et al. (2020) presented a system for detection and yield
estimation of melons with a UAV. The system included three
main stages: CNN-based melon recognition, geometric feature
extraction (Kalantar et al., 2019), and individual melon weight
(Dashuta and Klapp, 2018).

After using UAVs to predict fruit yield produced significant
results, some scholars began to use UAVs to detect fruit maturity.
Chen et al. (2019) used a UAV to capture images of the
strawberry crop, and then utilized Faster-R-CNN to detect
strawberry flowers and immature and mature strawberries with
84.1% accuracy. Zhou et al. (2021) also divided the growth of
strawberries into three stages, “flowers,” “immature fruits,” and
“mature fruits,” and utilized the YOLOv3 model to detect images
photographed with a UAV. The experimental results show that
the model has the best detection effect on the data set taken with
the UAV 2 m away from fruits, and the mAP reaches 0.88.

Differences Between Two Platforms
In Sections “Terrestrial Platform” and “Aerial Platform,” we have
described in detail the existing literature on the use of DL for
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FIGURE 10 | Different maturity levels of passion fruit in Tu et al. (2018). (A) Near-young passion fruit. (B) Young passion fruit. (C) Near-mature passion fruit.
(D) Mature passion fruit. (E) After-mature passion fruit.

FIGURE 11 | Detection examples in Ni et al. (2020). The black rectangle contains the ID number and three traits (number, maturity, and compactness) of the
corresponding sample.

detecting fruits in the growing period, and the differences can be
seen in Table 5.

From the above discussion, the advantages and disadvantages
of terrestrial and aerial platforms for yield estimation and
maturity detection are obvious. For orchards located in harsh
terrains, it is time-consuming and laborious that researchers
use hand-held cameras to obtain data sets, and it is difficult
to achieve automatic detection. Researchers only need to
remotely control a UAV to easily acquire a large data
set with different terrains and shooting distances, which
is more convenient than handheld cameras. However, a
UAV cannot be too close to the detected subject in the
air; otherwise, a collision accident will occur. Therefore,

it is noticed that the operation of a UAV needs more
skilled technology.

For the yield prediction task, a UAV can capture a wider field
of vision, such as fruits at the top of trees. However, when a UAV
is used for long-distance shooting, the visibility of fruits is low
because fruits at the bottom or inside of a canopy cannot be
recognized, and increase in prediction error. When a handheld
camera is used, the visibility of fruits is higher because a small
part of a blocked fruit can be detected. However, the repetition
rate of photographed fruits is high, which is not conducive to
yield estimation.

For the maturity detection task, the characteristics of fruits
are more conspicuous when a handheld camera is used for
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FIGURE 12 | Workflow of field tests (Apolo-Apolo et al., 2020).

close shooting. Fruits photographed with the UAV equipment
are too small because of long distance, and the characteristics
are relatively fuzzy. In Zhou et al. (2021), researchers used
UAV equipment and a handheld camera equipment for data
acquisition. They divided the strawberry data captured with the
camera into seven different growth stages: flower fruits, green
fruits, green-white fruits, white-red fruits, red fruits, and rotten
fruits. The strawberry data collected with the UAV were only
divided into three labels: flowers, immature fruits, and mature
fruits.

Fruit Picking
The picking period of fruits arrives when fruit organs expand
to a certain size. Mature fruits are needed to harvest fruits
in time. However, there has been an imbalance between
labor force and economic benefits for a long time. In
these years, automatic fruit harvest robots have become
a hotspot of intelligent agricultural study. Most fruit
trees have proper growth heights and structured planting
modes that offer convenience to harvest robots. Table 6
summarizes the crops (containing fruits, branches, and trunks)
experimented on for automatic harvest and corresponding
detection models.

Fruit Recognition on Fields
The recognition and detection of fruits in an orchard
environment provide robots with vital contextual information
for maneuvering. However, branches, foliage, and illumination
conditions affect the fruit detection with robots. Feature
augmentation is a simple way to enhance the learning
capacity of DL models. Mu et al. (2019) collected images
with four types of occlusions in four illumination conditions
as training data. Some researchers divided target apples into

four classes depending on their obscured circumstances:
leaf-occluded, branch/wire-occluded, non-occluded, and
occluded fruits (Gao et al., 2020). Different varieties of the
same fruit will have subtle differences in appearance. Using
Mask-R-CNN to segment fruit images can distinguish fruits
from occluded ones well. Chu et al. (2021) used an integrated
data set with two varieties of apple to train Mask-R-CNN
for suppression. Jia et al. (2020) optimized the Mask-R-CNN
model in the backbone net, ROI layer, and FCN layer for
apple harvesting robots. In a research study on strawberry
harvest, the researchers reduced the magnitude of backbone
and mask network and used a process of filtering and grouping
of candidate regions to replace the object classifier and the
bounding box regressor Mask-R-CNN. The new architecture
can process original high-resolution images at 10 frames per
second (Pérez-Borrero et al., 2020). Then, Pérez-Borrero et al.
(2021) proposed a new strawberry instance segmentation
model based on FCN whose FPS rate was six times higher
than those obtained in reference methodologies based on
Mask R-CNN.

As we have discussed in Section “Dataset Acquisition,” a
depth image contains more information. Ganesh et al. (2019)
assessed the performance of Mask-R-CNN by applying three
forms of color space input, RGB images, HSV images, and
RGB + HSV images. The result showed that adding HSV
information to RGB images can decrease false positive rate.
Sa et al. (2016) explored two methods for imagery modality
fusion based on Faster-R-CNN. One is early fusion (Figure 13A)
by augmenting channels of input images from three (red,
green and blue) to four (red, green, blue, and NIR) channels.
Another is later fusion (Figure 13B) that fuses pieces of
classified information of an RGB-trained model and an NIR-
trained model. NIR (near infrared) here refers to images
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TABLE 5 | Summary of related studies on application of CNN-based detection models in growing fruits.

Platform Purpose Detected object
and label

CNN-based
detection model

Following-up works Remarks References

Terrestrial
platform

Yield
estimation

Apple Mask-R-CNN (2D
detection)

SFM photogrammetry is used for
generating 3D point cloud and SVM is
used for removing false positive

Detection accuracy: 76.2% (2D
image detections) and 85.7%
(3D detections). Prediction
precision: R2 = 0.8

Gené-Mola
et al., 2020

Apple YOLOv3 Counting detected fruits for yield
estimation

Detection accuracy: 84% Janowski
et al., 2021

Mango Faster R-CNN The GPS/INS, color cameras with
strobes, and LiDAR used for fruit
locating, tracking, and counting

Prediction accuracy: R2 = 0.94 Stein et al.,
2016

MangoYOLO Correction factors are used for
estimating yield load

Detection precision: 98.3%.
Estimation precision:
4.6–15.2% of packhouse fruit
counts

Koirala et al.,
2019a

Tomato Faster R-CNN Stitching detected images and
compiling a tomato location map of a
greenhouse, estimating tomato size as
per bounding box size.

Model performance: average
precision: 87%, R2 = 0.87

Mu et al.,
2020

Cheery tomato
clusters

YOLOv3 ResNet-50 is used for classifying fruit
clusters and counting total fruit number

Prediction precision:
RMSE = 6.37, MAPE = 13.9%

Wei et al.,
2021

Passion fruit Faster R-CNN Counting detected fruits for yield
estimation

Model performance:
P = 96.2%, R = 93.1%,
F1 = 0.95

Tu et al.,
2020

Oliver Inception-
ResNetV2

Counting detected fruits for yield
estimation

Model performance: F1 = 0.84 Aquino et al.,
2020

Grape clusters MobileNet-V2 DeepLabV3 segmenting each berry for
counting

Berry detection accuracy of
94.0% in the VSP and 85.6% in
the SMPH

Zabawa
et al., 2020

Kiwifruit SSD (with
MobileNetV2,
quantized
MobileNetV2,
InceptionV3, and
quantized
InceptionV3)

Performing on mobiles with Android
system and counting detected fruits for
yield estimation

True detected rate (TDR) of
MobileNetV2, quantized
MobileNetV2, InceptionV3, and
quantized InceptionV3 are
90.8%, 89.7%, 87.6%, and
72.8%, respectively.

Zhou et al.,
2020

Blueberry Mask-R-CNN Using different backbones: ResNet101,
ResNet50 and MobileNetV1 to
Mask-R-CNN and adding a step to
outputs each instance of a blueberry to
quantify the total number of blueberries
in an image.

The best result was obtained
when the ResNet50 backbone
was used achieving a mIoU
score of 0.595.

Gonzalez
et al., 2019

Blueberry Mask-R-CNN 3D minimum bounding box calculating
fruit cluster compactness after 3D
reconstruction and proposing a trait
extraction algorithm to segment
individual 3D blueberries, count berry
number, calculate maturity, and
estimate berry size.

The average counting accuracy
for the 40 samples is 97.3%.
The fruit clusters with a low fruit
number generally have a higher
accuracy, resulting in almost
100% accuracy.

Ni et al., 2021

Multi-fruit Faster-R-CNN with
MIoU

Counting detected fruits for yield
estimation

Model performance: R2 of
mango, pomegranate, tomato,
apple & orange are 0.98, 0.92,
0.96, 0.98, and 0.95

Behera et al.,
2021

Maturity
detection

Apple (“Young Apple,”
“Expanding apple,”
“Ripe apple”)

YOLOv3 Using different data augment methods
and data numbers to comparison.
Detection under occlusion and
overlapping apple conditions and no
apple environment.

Model performance:
F1 = 0.817. Average detection
time: 0.304 s

Tian et al.,
2019

Tomato (“Flower,”
“Green tomato,” “Red
tomato”)

Faster-R-CNN Taking comparison between YOLOv2,
YOLOv3, original Faster-R-CNN,
R-FCN, and proposed model.

Model performance: Mean
average precision: 90.7%.
Average test time: 0.073 s.
Model memory: 115.9 MB

Sun et al.,
2018

Tomato (“Breakers,”
“Turning,” “Pink,” “Light
red,” “Red”)

Own model Using own designed CNN for images
classification

Classification accuracy: 91.9% Zhang L.
et al., 2018

(Continued)
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TABLE 5 | (Continued)

Platform Purpose Detected object and
label

CNN-based
detection model

Following-up works Remarks References

Tomato (“Immature,”
“Breaker,” “Preharvest,”
“Harvest”)

Fuzzing
Mask-R-CNN

Locating the stalk points of ripe
tomatoes by obtaining the contours of
tomatoes from Mask-R-CNN for
harvesting.

Model performance:
P = 96.1%, R = 95.9%.

Huang et al.,
2020

Four blueberry cultivars
(“Immature” and
“Mature”)

Mask-R-CNN Defining and calculating blueberry
maturity and compactness. Assessing
the extracted traits and delineating trait
differences in four blueberry cultivars.

Model performance: Mean
average precision: 78%. R2 of
four cultivars: 0.932, 0.877,
0.859, 0.934.

Ni et al., 2020

Coconut (“coconut”
and “Mature coconut”)

Faster-R-CNN Comparing the performance of
Faster-R-CNN with different
backbones, comparing the
performance of improved model and
other objection detection models.

Model performance: Mean
average precision: 89.4%.
Detection speed: 3.124 s

Parvathi and
Tamil Selvi,
2021

Passion fruit
(“After-mature,”
“Mature,”
“Near-mature,”
“Near-young,” “Young”)

Faster R-CNN Using DSIFT algorithm and LLC
algorithm to extract the features of fruit
from R, G, B channels and send the
representative features to SVM classifier
for maturity indentation.

Detection accuracy: 92.71%
and maturity classification
accuracy: 91.52%

Tu et al.,
2018

Litchi (“Ripe litchi,”
“Expanding litchi,”
“Young litchi”)

YOLOv3-Litchi Comparing the proposed model with
YOLOv2, YOLOv3, and Faster-R-CNN.

Model performance: average
detection time: 0.029 s, mean
average precision: 75.6%,
average precision of young
litchi, expanding litchi, and
expanding litchi is 67.3%,
71.9%, 73.8%.

Wang H.
et al., 2021

Oliver (“ZIG,” “RIG,”
“ZVS,” “RVS,” “ZBS,”
“RBS,” “ZOR,” “ROR”)

Own model Evaluating the efficiency of six
optimizers: Adagrad, SGD, SGDM,
RMSProp, Adam, and Nadam.

Overall accuracy 91.91%,
detection speed:
12.64 ms/frame (CPU)

Khosravi
et al., 2021

Strawberries (“Flower,”
“Flower-Fruit,”
“Green-Fruit,”
“Green-White-Fruit,”
“White-Red-Fruit,”
“Red-Fruit,” and
“Rotted-Fruit”)

YOLOv3 Identify the different ripeness of the
detected fruit.

The mAP of strawberry maturity
classification was 0.89, and the
highest classification AP was
0.94 for fully matured fruit.

Yue et al.,
2020

Cherry (“Cherry,”
“Cherry_1,” “Cherry_2”)

YOLOv4 DenseNet is used to replace the
CSPDarkNet53 in YOLO-V4 and
comparing different models in detecting
ripe cherries

The mAP increased 0.15
comparing with the YOLO-V4
model and the F1 scores, IOU
is 0.947 and 0.856.

Gai et al.,
2021

Aerial
platform

Yield
estimation

Apple, orange FCN A second neural network and a linear
regression were used to count the
number of fruit.

Mean IU of 0.813 on the
oranges and 0.838 on the
apples, a best l2 error of 13.8
on the oranges, and 10.5 on
the apples

Chen et al.,
2017

Green mango YOLOv2 Counting detected fruits for yield
estimation.

The mAP was 86.4%, a
precision was 96.1% and a
recall rate was 89.0%.

Xiong et al.,
2018

Citrus Faster-R-CNN Counting detected fruits and estimate
the weight for yield estimation.

Mean error is 7.22%. Apolo-Apolo
et al., 2020

Citrus YOLOv5 Comparing the proposed model with
different models and different occlusion
degrees.

Accuracy: 93.32%, speed:
180 ms/frame, FPS: 83 s (In
2080ti), recall: 88.78%

Huang et al.,
2022

Melon RetinaNet Estimate the weight of the detected
fruit.

Overall average precision score:
0.92 and F1 is more than 0.9

Kalantar
et al., 2020

Maturity
detection

Strawberries (“Flower,”
“Immature Fruit,”
“Mature Fruit”)

YOLOv3 Identify the different ripeness of the
detected fruit.

For Flower, Immature Fruit, and
Mature Fruit detection from the
test data set at 2 m, the APs
were 0.83, 0.87, and 0.93, the
mAP for the test data set at
2 m was 0.88.

Zhou et al.,
2021

taken by near-infrared imaging technology. There are also
two fusion methods for detecting kiwifruits based on Faster-
R-CNN (Liu et al., 2019). One is similar to the early fusion

(Sa et al., 2016), and the other fuses the feature maps from
two modes displayed in Figure 14. The background objects
of RGB-D images captured with a Kinect V2 camera can be
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TABLE 6 | Summary of related studies on application of CNN-based detection models in fruit harvesting.

Crop
applied

Basic model Data
augment

Dataset Transfer
learning

Detection
rate (%)

Inference speed
(s/image)

References

Apple SSD
√

589 RGB images
√

89.2 – Peng et al., 2018

R-CNN – 270 RGB-D images
√

86.0 – Zhang J. et al., 2018

Faster-R-CNN
√

967 three-modalities images
(RGB, range-corrected
intensity, and depth)

√
94.8 0.074 @548×373 px Gené-Mola et al., 2019a

SSD – 250 RGB-D images – 92.3 2.00 @3840×1080 px Onishi et al., 2019

LedNet
(FPN+ASPP)

√
1,100 RGB images

√
85.3 0.028 @320×320 px Kang and Chen, 2020

Faster-R-CNN
√

12,800 RGB images – 87.6 0.241 @1920×1080 px Gao et al., 2020

Faster-R-CNN
√

800 RGB-D images
√

87.1 0.124 @1920×1080 px Fu et al., 2020b

Faster R-CNN
√

820 RGB images – 92.5 0.058 @100×100 px Wan and Goudos, 2020

Faster-R-CNN
√

675 RGB-D images
√

82.4 0.450 @360×640 px Zhang et al., 2020

Mask-R-CNN – 1,140 RGB images
√

97.3 – Jia et al., 2020

Mask-R-CNN
√

24,005 RGB images
√

58.1 – Dong W. et al., 2021

Mask-R-CNN – 19,528 RGB images – 88.0 0.250 @1280×720 px Chu et al., 2021

DenseNet+FPN
√

953 RGB images
√

93.2 0.023 @200×308 px Xu et al., 2021

Citrus SSD
√

1,660 RGB images
√

91.1 – Peng et al., 2018

Mask-R-CNN – 300 RGB images
√

85.1 0.045 @1024×768 px Liu Y. P. et al., 2018

Mask-R-CNN
√

RGB and RGB-HSV images
√

97.5 0.011 @256×256 px Ganesh et al., 2019

Mask-R-CNN – 5,195 RGB images
√

– – Xiong et al., 2019

Mask-R-CNN – 750 RGB images – 98.2 0.700 @1024×768 px Yang et al., 2019

Mask R-CNN – 5,195 RGB images – 92.2 9.230 @1920×1080 px Yang et al., 2020

Faster R-CNN
√

799 RGB images – 90.7 0.058 @100×100 px Wan and Goudos, 2020

Kiwifruit Faster-R-CNN – 20,160 images
√

92.3 0.274 @2352×1568 px Fu et al., 2018

Faster-R-CNN
√

20,160 images
√

87.6 0.347 @2352×1568 px Song et al., 2019

Faster-R-CNN
√

21,147 RGB images
√

96.0 1.070 @1920×1080 px Mu et al., 2019

Faster-R-CNN – 1,000 NIR images+1,000 RGB
images+1,000 RGB-D images

– 91.7 0.134 @512×424 px Liu et al., 2019

YOLOv3
√

20,160 RGB images
√

90.1 0.034 @2352×1568 px Fu et al., 2021

Strawberry SSD
√

4,550 RGB images
√

87.7 0.23 @360×640 px Lamb and Chuah, 2018

Mask R-CNN – 2,000 RGB images
√

95.8 0.125 @640×480 px Yu et al., 2019

Mask R-CNN
√

– – 81.0 0.620 @640×480 px Ge et al., 2019

Mask R-CNN – – – – – Xiong et al., 2020

Mask R-CNN
√

3000 RGB images – 78.3 0.01 @ 1008×756 px Pérez-Borrero et al., 2020

FCN 3100 RGB images – 93.4 0.03 @ 1008×756 px Pérez-Borrero et al., 2021

Grape Mask R-CNN
√

1,050 RGB-D images – 89.5 1.100 @1920× 1080 px Yin et al., 2021

Litchi SSD
√

636 RGB images
√

86.7 – Peng et al., 2018

Mango Faster R-CNN 822 RGB images – 88.9 0.058 @100×100 px Wan and Goudos, 2020

DenseNet+FPN
√

1694 RGB images
√

93.6 0.023 @500×500 px Xu et al., 2021

Rosa
roxburghii

Faster R-CNN
√

8,475 RGB images – 92.0 0.200 @500×500 px Yan et al., 2019

Guava Mask R-CNN
√

304 RGB-D images
√

53.7 0.250 @512×424 px Lin et al., 2021

Sweet
pepper

Faster-R-CNN
√

122 RGB-NIR images
√

83.8 0.393 @– Sa et al., 2016

Deep CNN
√

960 RGB images – 82.9 – Rehman and Miura, 2021

Cherry
tomato

YOLOv3
√

1825 RGB images – 96.8 0.058 @ 1,292×964 px Chen et al., 2021

filtered by distance threshold and foreground-RGB images, and
Faster-R-CNN with VGG achieved a high average precision
of 0.893 for the foreground-RGB-images (Fu et al., 2020b).
Gené-Mola et al. (2019b) added an imaging modality, the range-
corrected IR intensity proportional to reflectance, based on RGB-
D images. It makes an input image become five channels, and

the F1-score of the detection model improves 4.46% more than
simple RGB images.

In most studies, researchers spent energy optimizing
algorithms. Peng et al. (2018) used SDD and replaced the original
VGG-16 with ResNet-101 to detect apple, citrus, and lichi.
Besides, decreasing layers of the backbone of SSD can achieve
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FIGURE 13 | Diagram of fusion methods in Sa et al. (2016). (A) Early fusion: first, channels of the detected image are augmented from three to four channels.
Second, the augmented image is detected by Faster-R-CNN. Third, NMS (non-maximum suppression) removes duplicate predictions. Finally, the classifier and
regressor calculate the category and coordinate of the bounding box. (B) Late fusion: first, the RGB image and the NIR image are detected by Faster-R-CNN.
Second, the detected outputs from two Faster R-CNN networks are fused. Third, NMS (non-maximum suppression) removes duplicate predictions. Finally, the
classifier and regressor calculate the category and coordinate of the bounding box.

FIGURE 14 | Feature-fusion model in Liu et al. (2019). First, it inputs the RGB and NIR images separately into two VGG16 networks and then combined them on the
feature map; then, the feature map is detected by Faster-R-CNN.

accurate and precise detection in a low-power hardware (Lamb
and Chuah, 2018). Kang and Chen (2020) designed a CNN model
named “LedNet,” which is mainly improved by a lightweight
backbone, FPN, and ASSP, for fruit detection in an apple
orchard. Integration of DenseNet and FPN can obtain small
fruits’ features more correctly (Xu et al., 2021). Fu et al. (2018)
first used a DL model for kiwifruit detection in 2018, and they
developed a kiwifruit detection system based on Faster-R-CNN
with ZFNet for filed images. Three years later, they proposed a
DY3TNet model based on the addition of convolutional layers to
YOLOv3-Tiny for kiwifruit recognition in a wild environment
(Fu et al., 2021). Some scholars are also dedicated to kiwifruit
detection but used Faster-R-CNN with VGG-16; however, the
precision and speed of detection are lower than the results of Fu
et al. (2018). Modification of the pooling layer can also improve
detection accuracy. Yan et al. (2019) changed the Faster-R-CNN
model by replacing the ROI pooling layer with the ROI align
layer. Wan and Goudos (2020) modified the pooling layers and
convolution layers of the existing Faster-R-CNN. In the two
experiments (Yan et al., 2019; Wan and Goudos, 2020), detection
speed and accuracy accomplished prominent improvements. As
we know, most fruits are elliptical in a 2D space. Thus, specialists
presented an ellipse regression model based on Mask-R-CNN
for detecting elliptical objects and inferring occluded elliptical
objects (Dong W. et al., 2021). The original YOLOv3 has low

precision in detecting cherry tomatoes, and DPNs (dual-path
networks) can extract richer features of recognition targets.
Therefore, researchers improved the YOLOv3 model based on
DPNs for identification of cherry tomatoes.

Obstacle Avoidance
Robots should also learn to avoid foliage and branches except
when identifying fruits. For sure, researchers thought of making
robots recognize obstructions while detecting fruits, so robots can
react differently according to different objects. Using the R-CNN
model to detect and locate branches of apple trees in natural
environments can establish a branch of skeletons, so that the arms
of robots can avoid branches while grabbing apples (Zhang J.
et al., 2018). For citrus harvest, Yang et al. (2019) utilized the
Mask-R-CNN model to recognize and reconstruct branches of
citrus trees. Later, the researchers designed a recognition model
based on their previous studies for citrus harvest robots to detect
fruits and branches simultaneously (Yang et al., 2020). Lin et al.
(2021) used a tiny Mask-R-CNN model to identify fruits and
branches of guava trees and reconstructed the fruits and branches
for robotic harvest.

There are some other means for occlusion avoidance
except when detecting obstructions. Rehman and Miura (2021)
presented a viewpoint plan for fruit harvest. They demonstrated
the possible types of a fruit in one scene with the labels “center,”
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“left,” “right,” “occluded,” which are depicted in Figure 15. The
arm of a robot is qualified to determine the harvesting path as per
detected labels. What is more, objective fruits could be classified
into normal, branch occlusion leaf occlusion, slight occlusion
overlapping, or main branch (Liu Y. P. et al., 2018). Also,
a new strawberry-harvesting robot with a more sophisticated
active obstacle separation strategy has been developed, and the
strawberry location detector in the system is based on Mask-R-
CNN (Xiong et al., 2020).

Picking Point Detection
The feasibility of automatic harvesting has been confirmed
broadly. A further important issue is locating harvesting points
precisely that can guarantee that the robot’s grasp of fruits is
accurate and uninjurious. Mask-R-CNN not only can detect an
object accurately but can also generate corresponding masks of
an object region at the pixel level, which can assist in locating
picking points. Longye et al. (2019) segmented and reconstructed
the overlapping citrus using the Mask-R-CNN model and
performing concave region simplification and distance analysis.
Strawberry detection can also employ the Mask-R-CNN model.
Then, picking points are determined by analyzing the shape and
edge of objective masks (Yu et al., 2018). Ge et al. (2019) also
utilized the Mask-R-CNN model to detect strawberries based
on RGB-D images that have depth information of images; they
performed coordinate transformation and density-based point
clustering, and proposed a location approximation method to
help robots locate strawberry fruits. Yin et al. (2021) proposed
segmenting the contours of grapes from RGB images with
Mask-R-CNN and then reconstructing a grape model by fitting
a cylinder model based on point cloud data extracted from
segmented images. By recognizing and calculating the outline of
a bunch of grapes, the arm of robot can grab stalks at the top
of a bunch of grapes. Shake-and-catch harvesting first appeared
in 2010 (He L. et al., 2017). Some researchers used the Faster-
R-CNN model to establish a relationship between fruit location
and branch location (Zhang et al., 2020). Connections can help a
robot to determine shake points.

Generally, researchers detect fruits on the side of trees, but
Onishi et al. (2019) proposed a novel method for inspecting
apples from below. The SSD model is used to detect the 2-D
position of the apple shown in Figure 16A. The stereo camera
ZED provides the 3-D position of the center of the bounding box,
which is like in Figure 16B, and the position can be a picking

point. Then, the robot can move below the target apple to grasp
the fruit according to the predicted position like in Figure 16C.

Fruit Grading
After a fruit is picked, it will gradually flow to the market
and produce economic benefits. Recently, customers have
higher requirements for fruit quality as consumption levels
increase. Hence, it is necessary to evaluate the quality of fruits
before delivering them to consumers because of external and
internal vulnerabilities. Those with better fructifications can be
consumed, and those with worse can be processed to make fruit
foods. Graded-based vendition by detecting internal diseases,
sugar content, surface damages, maturity, size, etc. can promise
both seller and purchaser benefits. In this section, we will
introduce the research on CNN-based fresh fruit grading from
grading as per external traits, grading as per internal traits, and
fruit cultivar classification.

External Trait-Based Grading
External phenotypic characteristics of fruits directly show their
qualities, which affect the sale price and consumer enthusiasm.
Thus, external quality detection plays a significant role in
fruit grading. Many experiments testified that CNNs have
noteworthy superiority in fruit quality grading (Wang et al., 2018;
Jahanbakhshi et al., 2020; Patil et al., 2021). In the research of
Wang et al. (2018), a modified AlexNet model was used to extract
the feature of defects on litchi surface and classify litchi defect
images. The classification precision of the AlexNet-based full
convolutional network is higher than that of linear SVM and
Naive Bayes Classifier. Jahanbakhshi et al. (2020) compared sour
lemon detection performance based on a CNN model with other
image categorization methods and demonstrated the superiority
of the CNN-based model in fruit grading. Patil et al. (2021) also
concluded that CNNs have a faster speed of operation in dragon
fruit grading and sorting by comparing the performance of ANN,
s, and CNN models.

Apple is the most salable and lucrative fruit globally. Some
researchers developed apple defect detection systems for apple
grading. Fan et al. (2020) designed a 4-lane fruit sorting system to
detect and sort defective apples, and a CNN model for a defective
apple sorting system, in which a global average pooling layer was
applied to replace a fully connected layer. Wu, Zhu, and Ren
performed laser-induced light backscattering imaging to capture
apple defect images and designed a simple CNN model to classify

FIGURE 15 | Possible types of fruit in one scene formulated by Rehman and Miura (2021). (A) Center, (B) left, (C) right, and (D) occluded.
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FIGURE 16 | Automatic apple harvesting mode in Onishi et al. (2019). (A) Detection of a two-dimensional position, (B) detection of a three-dimensional position, (C)
approaching the target apple.

scabs on apple surface (Wu A. et al., 2020). Aside from scabs on
apple surface, the CNN model can classify images of apples with
bruises, cracks, and cuts (Nur Alam et al., 2020). Researchers also
conducted related studies on other fruits. Azizah et al. (2017) used
a CNN model to implement mangosteen surface defect detection.
Zeng et al. (2019) constructed an ensemble-convolution neural
net (E-CNN) model based on the “Bagging” learning method
for detection of defects in jujube fruits. Cherries are prone to
abnormal shapes during growth, so some researchers used a
modified AlexNet model to classify cherries according to growth
shapes (Momeny et al., 2020). Wu S. et al. (2020) combined and
investigated several deep learning methods for detecting visible
mango defects and found that VGG-16 has a dominant position
by combining and investigating several DL methods. De Luna
et al. (2019) also demonstrated that the VGG-16 model has better
performance in tomato defect inspection. Some researchers used
a modified ResNet-50 model to extract the features of tomato
surface defects and classify images of tomato defects (Da Costa
et al., 2020). Chen et al. (2021) established an online citrus sorting
system, shown in Figure 17, and a detector named Mobile-
citrus based on Mobile-V2 to identify surface defects in citrus.
Then, the arms of robots arms pick out the defective ones with
the linear Kalman filter model used in predicting the future
path of the fruits.

The external appearance of a fruit sometimes also represents
its freshness. A multi-class classifier based on VGG-16 and
Inception-V3 was built by Ashraf et al. (2019) for detecting fresh
and rotten fruits. Researchers also practiced the advantages of
CNNs in classifying the freshness of apples, bananas, and oranges
(Ananthanarayana et al., 2020).

Internal Trait-Based Grading
Commonly used RGB images cannot acquire internal traits
of fruits, for instance, diseases, sugar content, moisture, etc.
Consequently, many researchers combined CNN-based DL
models with spectrum techniques and made remarkable progress
in internal quality-based grading. The sweetness, crispiness,
and moisture of apples can be detected using hyperspectral
images and 3D-CNN (Wang et al., 2020). Researchers have
also proposed a multi-task model based on 3D-CNN for
predicting the sugar content and hardness of yellow peaches
simultaneously (Xu et al., 2020). Jie et al. (2021) proposed a
non-destructive determination method based on the YOLOv3

algorithm, and hyperspectral imaging technology contraposes
citrus granulation.

CHALLENGES AND FUTURE
PERSPECTIVE

As per the above statements, the appearance of CNN models
is already invigorating the automatic production of fresh fruits.
However, people remain having quite a lot of challenges to face,
because the whole automation of the fruit industry is merely in
the period of development.

Environmental Issues
The problem of fruits being occluded is a difficulty in fruit
detection. Most occlusions are caused by foliage, branches,
trunks, and fruit overlapping in complex fruit-growing
environments. Moreover, varying illumination conditions
are also one of the instability factors in fruit detection. For

FIGURE 17 | Platform setup and computer vision system (Chen et al., 2021).
(A) The citrus processing line was assembled in the laboratory, with a
webcam mounted above the conveyor. (B) The diagram shows an automated
citrus sorting system using a camera and robot arms, and the robot arms will
be implemented in future studies.
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instance, green fruits, such as green citrus, green litchi, avocado,
and guava, conceal in a green background, which results in more
faulty detections of machine visions. Thus, algorithms with high
detection accuracy and speed are the objective of researchers.

In addition to algorithm improvement, human intervention
can also assist in solving environmental issues. It is a feasible
method to increase the visibility of fruits by trimming the
crown of fruit trees and standardizing planting according to the
principles of horticultural operations. For example, a trellised
fruiting wall is suitable for robotic operations during pruning
and harvesting (Majeed et al., 2020). Artificially improving the
lighting of an environment can also reduce uncertainty in the
process of detection. When light is strong, cameras are prone to
overexposure. In response to this problem, some researchers have
adopted a shading platform to reduce the impact of sun exposure
(Gongal et al., 2016; Nguyen et al., 2016; Silwal et al., 2016).
To increase the utilization rate of machines, people will have to
let robots work at night. However, there is insufficient lighting
during night operations, and external light sources are needed to
improve the lighting of an environment (Koirala et al., 2019a).
Most of the current shading devices and light supply devices are
relatively bulky, so it is of commercial value to design a shading
or a lighting system that is simpler and more portable.

Exploration of New Areas
In the process of fresh fruit production from blooming to
marketing, and pollination, pesticide application, harvesting,
sorting, and grading all need a large pool of workers. The
preceding discussion suggests that most applications of CNNs
in fresh fruit production are in the algorithm development
stage. Autonomous operation of robots is mostly used for
fruit harvesting and grading. There are fewer exploitations of
automatic pollination robots for the problem of greenhouse
plants’ insufficient pollination. In current studies, Chunjiang
Zhao utilized the improved YOLOv3 network to identify
tomato flowers in greenhouses and embedded the system in
automatic pollination robots. Phenology distribution monitoring
can govern the timing and dosage of chemistry thinning, which
determines the quality of fruits. Fruit flower phenology involves
a period from the emergence of fruit buds to petal withering
means that monitoring of flower phenology is not only estimating
flower number. Studies on using computer vision to detect
fruit flower phenology are rare, and CNN-based methods are
even less. According to our search, Wang X. et al. (2021)
designed a phenology detection model based on a CNN named
DeepPhenology to estimate apple flower phenology distribution.
Currently, more researchers are utilizing CNN to detect fruit
flowers and achieve the purpose of yield estimation. Perhaps the
application of CNN in fruit flowers phenology estimation is a new
area worth exploring.

Food safety is an issue that concerns people, because
accumulation of pesticides in the human body risks causing
cancers. However, pesticide residues on fruit surfaces are
inescapable, because orchardists will perform pesticide delivery
to guarantee fruit’s healthy growth. CNNs can be used to identify
pesticide residues, but the CNN used in most studies (Yu et al.,
2021; Zhu et al., 2021) is a one-dimensional CNN, and input
data are pre-processing data extracted with a spectrometer. The

process of detection is complicated and cumbersome. Rarely have
researchers used the 2D CNN model to detect pesticide residues
in harvested fruits (Jiang et al., 2019). Although pesticide residues
belong to the external characteristics of fruits, its vision detection
still needs hyperspectral images, because RGB images cannot
capture pesticide residues. The current detection methods have
complex processes out of proportion to the economic benefits
generated by pesticide residue detection. Thus, the feasibility
of using CNNs to detect pesticide residues in fruits should be
studied further. When grading and sorting clustered fruits such
as grapes, litchis, and longan, a manipulator grabs the stalk on
the top of a fruit to minimize damage to the fruit. However, fruits
on the sorting table are arranged disorderly, and stalks are not
arranged neatly on a horizontal plane. Therefore, it is necessary
to use CNNs to determine the robot’s sequence of grabbing of
clustered fruits (Zhang and Gao, 2020).

There is no doubt that CNNs have a developing potential
in fresh fruit production. In future studies, it is promising to
enhance the application areas of CNNs in fresh fruit detection.
It could be a good direction that infuses CNNs into whole
fruit production.

Execution of Multiple Tasks
Fruit surfaces are easily damaged, so the general method is
utilizing a mechanical arm to grab fruits to reduce mechanical
injuries. Most existing CNN-based picking robots are based
on one fruit kind, However, the time of fruit harvest is not
continuous, therefore, robots are, most, of the time idle. That
generates averse economic effectiveness, because robots have high
manufacturing expenses but low use ratio. According to the
advantages of CNNs, they can directly extract features from input
images; therefore, scholars can develop algorithms that can detect
and locate a variety of fruits (Saedi and Khosravi, 2020). The
mode of multitask operations can improve the use ratio of harvest
robots that ensures fruit harvest robots’ commercial value.

In CNN-based fruit quality grading, detection methods based
on RGB images can only identify external defects, and detection
methods based on hyperspectral and infrared images are focused
more on internal trait detection. Results of a single detection
technique are biased. Simultaneous detection of multiple quality
parameters and comprehensive evaluation are a good improving
trend. In addition, detection algorithms and hardware should be
optimized with increasing detection difficulty.

CONCLUSION

The perishability and fragility of fruits make fruits use more
labor force for careful care during the production process, which
is also the reason why most fruits are expensive. At present,
many researchers are bringing artificial intelligence into the field
of fruit production and are carrying out a series of research
studies on the use of machine vision to identify fruits. In this
article, the principle of CNNs and implementation of CNN-
based detection methods is elaborated, enabling researchers
to better understand CNNs and their applications in fruit
detection. This review emphasizes the application of CNNs
in fresh fruit production, including detection of fruit flowers,
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detection of fruits in the expansion period, detection of fruits
in the harvest period, and detection of fruits before entering
the market. We have performed a lot of investigations and
analyses of literature in this area and presented in detail the
convolution models, improvement points, training methods,
detected objects, and final detection results in these studies.
Through our investigation of experiments, we found that CNNs
do have exceptional performance in the detection of fruits.
However, this does not mean that fruit detection should evolve
toward a single direction of detection based on CNNs. Through
our comprehension and comparison of current research,
we summarized the challenges that researchers encountered
when using CNNs for fruit recognition and discussed future
development trends.
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