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Drought is expected to increase in the frequency and duration associated with climate

change. Although hydraulic function and carbon (C) storage have been widely recognized

as key components to plant survival under a single drought, the physiological responses

to continuous drought remain largely unknown, particularly for high northern temperate

and boreal forests which are sensitive to water stress. In this study, we quantified the

survival, growth, gas exchange, water relations, and nonstructural carbohydrates (NSCs)

in 3-year-old Jezo spruce (Picea jezoensis) seedlings responding to continuous drought

stress. Seedlings were maintained in drought conditions for 392 days, covering two

growing and one dormant winter season. Seedlings subjected to drought showed a

significant decrease in net photosynthesis rate (Anet) and stomatal conductance (gs)

in both growing seasons, and biomass in the second growing season. The seedling

mortality continuously increased to 35.6% at the experimental end. Notably, responses of

C storage and leaf water potential to drought varied greatly depending on seasons. Living

seedlings exposed to drought and control treatments had similar NSC concentrations

in both growing seasons. However, seedlings with concentrations of both the soluble

sugars and starch less than 1% in root died in the winter dormant season. In the

second growing season, compared with the control treatment, droughted seedlings had

significantly lower leaf water potential and stem wood-specific hydraulic conductivity

(Kw). Meanwhile, the leaf predawn water potential did not recover overnight. These

suggest that C starvation might be an important reason for seedlings that died in

the winter dormant season, while in the growing season drought may limit seedling

survival and growth through inducing hydraulic failure. Such seasonal dependence in

hydraulic dysfunction and C depletionmay lead to higher mortality in spruce forests facing

extended drought duration expected in the future.

Keywords: northern temperate forests, drought, mortality, C starvation, dormant season, growing season, Picea
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INTRODUCTION

Climate change has been leading to frequent and continuous
drought globally (Dai, 2013). Extreme drought events could
increase the massive tree mortality, especially in the temperate
and boreal regions, where forests are much sensitive to changes
in water conditions (Allen et al., 2015). For instance, the 2011
unprecedented drought induced the mortality of more than 300
million trees in theUSA (Yan et al., 2022). The severe drought and
massive tree mortality would compromise forest ecosystems, the
regional ecological security, and the terrestrial carbon (C) sink
(McDowell et al., 2020). Thus, understanding the response and
adaptation mechanism of trees to continuous drought is crucial
to predicting how forest ecosystems and the C-cycle feedbacks
respond to climate change (Choat et al., 2018).

Empirical evidence has shown that hydraulic failure is the
primary reason for tree mortality induced by drought (Adams
et al., 2017), which is resulted from the irreversible dysfunction
in xylem water transportation (McDowell et al., 2008). However,
tree mortality under continuous drought may be caused by
both water and C relation which are interdependent inside trees
(McDowell et al., 2008). Continuous drought could not only
inhibit tree water transport, leading to severe xylem hydraulic
dysfunction before death (López et al., 2021) but also hinder
photosynthetic function by inducing embolism in the vascular
conduits, consequently reducing nonstructural carbohydrates
(NSCs) reserve (Ivanov et al., 2019). In turn, C depletion causes
less support for the refilling of the embolisms which is essential
for the repair of hydraulic function (Secchi and Zwieniecki, 2011;
Tomasella et al., 2019, 2021). The complex relationship between
water and C confuses understanding of mechanisms of drought-
induced mortality (Gessler et al., 2018). Furthermore, previous
studies also reported that these two mechanisms occurred in the
same species accounting for tree death, e.g., Pinus edulis (Sevanto
et al., 2014), while the occurrence timing may depend on the
drought stage (Kono et al., 2019). These suggest that the causes of
drought-induced mortality vary with drought duration (Mitchell
et al., 2013; Kono et al., 2019).

In temperate forests, variation in the season and duration
of drought differently affects hydraulic and C dynamics in
trees (Gebauer et al., 2020; Charrier et al., 2021). In summer
(growing seasons), trees require more water for transpiration
and photosynthesis due to relatively high temperatures and
active physiological activities (Morales et al., 2021). It leads
trees to face a high risk of hydraulic failure (Nardini et al.,
2013), accompanied by C depletion under drought conditions
during the growing season (McDowell et al., 2008). In winter
(dormant seasons), the C reserve is critical for tree survival rather
than water transportation because C reserve plays a key role
in cold and frost resistance (Charrier et al., 2021), while severe
embolism (with percentage loss of conductance (PLC) closed to
100%) is not lethal due to the low transpiration and cessation
of water absorption (Christensen-Dalsgaard and Tyree, 2014;
Maruta et al., 2020; Mayr et al., 2020). These findings suggest
that mechanisms of drought-induced tree mortality interact
with seasonality in temperate forest ecosystems. In addition, C
accumulation in trees only occurs in the growing season, which

is critical for the survival and regrowth of trees in the following
seasons (Tixier et al., 2019; D’Andrea et al., 2021). However, most
of the studies generally focus on the response of hydraulic and
C storage to drought conducted in growing seasons. Up to now,
how hydraulic and C storage in trees respond to continuous
drought stress across seasons still remains poorly understood
(Galvez et al., 2013).

Spruce (Picea spp.) is widely distributed in northern temperate
and boreal forests (Brenzel, 2001), and is more sensitive to
water stress than other conifer species (Kharuk et al., 2015).
Drought has been generally considered as a driver to spruce
mortality occurring in the world (Schuldt et al., 2020; Obladen
et al., 2021). In the last two decades, considerable mortality
of Jezo spruce (Picea jezoensis) was also observed in Changbai
Mountains Natural Reserve (CMNR) in northeast China, the
largest primitive temperate forest reserve at the same latitude
in the world. The tree-ring data showed that Jezo spruce might
suffer from the warming-induced water deficit in the early and
late growing season (Yu et al., 2021). To clarify the internal
physiological mechanisms, we conducted a 392-day drought
manipulation experiment on 3-year-old Jezo spruce seedlings
and quantified seedling survival, growth, gas exchange, water
relations, and C storage and dynamics responding to continuous
drought over two growing and one winter dormant seasons. We
explored the following questions: (1) How do the gas exchange,
growth, and C and hydraulic of Jezo spruce seedlings respond to
continuous drought? (2) Whether the cause of drought-induced
mortality of Jezo spruce seedlings varies between seasons during
continuous drought in temperate forests?

MATERIALS AND METHODS

Population Distribution Area
The spruce-fir forest, naturally distributing between 1,100 and
1,800m a.s.l. (above sea level), is one of the main forest types in
CMNR in the north temperate climate zone of eastern Eurasia
(41◦31

′

-42◦28
′

N and 127◦09
′

-128◦55
′

E). The climate here is
classified as the temperate continental monsoon climate with the
characteristics of warm and rainy summer, and cold and dry
winter. The monthly mean temperature ranges between−17.5◦C
in January and 20.1◦C in July. The mean annual precipitation
is 680mm, with 80% of precipitation in the growing season (Yu
et al., 2011, 2013).

Experimental Design
In April 2019, we established the experiment at the Changbai
Mountain Forest Ecosystem Research Station, Chinese Academy
of Sciences. The ambient climate data in the station were shown
in Supplementary Figure S1.

Three-year-old Jezo spruce seedlings were collected from a
local nursery garden and planted into 31 wooden rectangle
containers (length × width × height: 120 × 25 × 25 cm) with 7
individuals per container on 30th April 2019. Wooden rectangle
containers were placed under a transparent rain roof in a forest
gap, avoiding rapid water loss due to strong sunlight exposure.
The light condition was similar in different positions under the
roof according to condition premeasurement. The soil used in the
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TABLE 1 | The seedlings’ size before the experiment. Values were mean ± SE.

The difference in the size between control and drought was not significant (p >

0.05).

Treatment Stem base diameter/mm Height/cm

Control (n = 84) 3.95 ± 0.67 20.25 ± 3.2

Drought (n = 132) 3.98 ± 0.59 21.20 ± 2.81

experiment was obtained from local forests’ topsoil without the
large stone and roots. Since 5th July 2019, 132 healthy seedlings
in 19 containers were not watered throughout the experiment as
the drought treatment, while water was continually supplied to
the amount of 84 homogeneous seedlings in 12 containers in the
control treatment (see the initial seedling status in Table 1). The
significant difference in the size (stem base diameter and height)
between control and drought was not detected (p> 0.05).

The experiment period was from 5th July 2019 to 30th July
2020 (392 days in total), including the first growing season
(GS2019: D1–D88, 5th July to 30th September), winter dormant
season (DP2019: D89–D180, 1st October to 31st December;
DP2020: D181–D301, 1st January to 30th April), and the second
growing season (GS2020: D302–D392, 1st May to 31st July)
referring to Yu et al. (2021). In the dormant season, irrigation
was stopped as the stomatal closure and transpiration stopped,
referring to previous studies (Fajstavr et al., 2019).

During the drought process, the soil water content was
measured with the gravimetric method. The soil water content
was determined as the ratio of water weight to the soil sample
weight (Piper and Fajardo, 2016). The soil water content
was not measured in the winter dormant season due to low
evapotranspiration and soil frost in the study area (Yang et al.,
2006).

According to the phenology, we harvested seedlings on the
D49 (August 2019, themiddle growing season), D127 (November
2019, the early dormant period), D270 (March 2020, the late
dormant period), and D392 (July 2020, the middle growing
season). For each harvest, one container of each treatment was
randomly selected, and all living seedlings in that container were
sampled and then transported to the laboratory in a cooling box.
Collected seedlings were divided into leaves, branches (including
stems and twigs), and roots. Samples were dried at 105◦C for
30min to stop the enzymatic activity, then oven-dried at 65◦C
for 48 h, and finally stored at −20◦C for further NSC analyses
(Huang et al., 2019).

Measurement of Seedling Mortality
To evaluate the effects of drought on seedlings’ survival,
we examined seedling mortality weekly during the growing
season and biweekly during the dormant season. It is
difficult to determine the exact death time of the evergreen
species. In this study, dead seedlings were identified
when all leaves turned yellow and fallen (referring to
previous studies, e.g., Hartmann et al., 2013; Ivanov et al.,
2019). The mortality rate of seedlings was counted during
the experimental period. In this work, we calculated

the mortality rate on the D49, D127, D350, D372, and
D392 as:

Cumulative mortality rate (%) = 100×
∑

ni / N (1)

where i is the days after the treatment; ni is the number
of dead seedlings from D1 to Di; and N is the total
number of seedlings of each treatment at the beginning of
the experiment.

Measurement of Leaf Water Potential
Leaf predawn water potential (ψpd) between 3:00 and 4:00 and
middy water potential (ψmd) between 12:00 and 13:00 from 4 to 7
living seedlings were measured on sunny days (D17, D47, D349,
D370, and D390) using a pressure chamber (PMS1000; Albany,
OR, USA; maximum measurement: 8 MPa). One twig from
each seedling was selected for the measurement. No repeated
measurement was conducted on the same seedling throughout
the experiment.

Measurement of Stem Hydraulic
Conductivity
The hydraulic conductivity was measured on the same seedlings
that were used for leaf water potential measurement at D350,
D371, and D391, respectively. The seedlings were cut at the stem
base in the next early morning (before sunrise) after leaf water
potential measurement. Stems were cut immediately under water
to avoid the formation of embolism during sampling, and were
transported to the laboratory (<100m). In the laboratory, the
stem segment was recut repeatedly under water at two ends to
release the tension. The segment with 7 cm length was used to
measure native hydraulic conductivity (Kh, kg m s−1 MPa−1).
The Kh was measured using a pressure induced by the gravity
of a hydraulic head of 50 cm with the 20mM KCl solution. The
Kh was calculated by: Kh =Jv / (F / L), where Jv is the flow rate
(kg s−1), F is the gravity-induced driving pressure (MPa), and
L is the length of the segment (m). The Kh was divided by the
xylem wood area to calculate the stem wood-specific hydraulic
conductivity (Kw, kg m−1 s−1 MPa−1) (Fang et al., 2018).

Measurement of Net Photosynthesis Rate
and Stomatal Conductance
Net photosynthesis rate (Anet) and stomatal conductance (gs)
were measured between 9:00 and 12:00 on sunny days (D17, D47,
D349, D370, and D390). The measurements were done under the
ambient light (c. 1,000µmol m−2 s−1) and CO2 concentration (c.
400 µmol mol−1). The relative difference in Anet and gs between
drought and control was calculated: Relative to control (%)=100
× (Valuedrought / Meancontrol), where the Valuedrought is the value
of drought seedling and Meancontrol is the mean value of control
at the same time.

Nonstructural Carbohydrates (NSCs)
Quantification
Nonstructural carbohydrate (NSC) concentrations (soluble
sugars + starch) were quantified according to the standardized
protocols by Landhausser et al. (2018). For soluble sugars
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FIGURE 1 | Variation in soil water content (A), and cumulative mortality rate (B) over the experimental period. Green and gray rectangles indicate growing and

dormant seasons, respectively. GS2019, the first growing season (D1–D88); DP2019 and DP2020, the early and late winter dormant seasons (D89–D180 and

D181–D301); and GS2020, the second growing season (D302–D392). Black square and red triangle represent control and drought treatments, respectively. Asterisk

indicates a significant difference (p < 0.05) in soil water content between control and drought treatments, analyzed using Wilcoxon rank-sum test. Values are mean ±

SE (n = 4–6) (A).

extraction, approximately 30mg sample was bathed at 90◦C
for 10min after mixing with 1.5ml 80% (v/v) ethanol. The
mixture was centrifuged at 3,500 rpm for 10min, and the
supernatant was used for soluble sugars quantification. For
soluble sugars quantification, the solution was colored with
phenol-sulfuric and the absorbance was determined at 490 nm
with a microplate reader [Multiskan Sky, Thermofisher Scientific
(China) Co., Ltd.]. For starch digestion, the pellet after soluble
sugars extraction was digested at 85◦C for 1 h with the α-
amylase from Aspergillus oryzae (600 U/ml, Macklin A861434).
The supernatant obtained after centrifuging was further digested
with amyloglucosidase fromAspergillus niger (100 U/ml, Macklin
A800618). For starch quantification, the solution color was
regulated by peroxidase-glucose oxidase, and the absorbance was
determined at 525 nm. Concentrations of soluble sugars, starch,
and NSC were expressed as a percentage of dry matter (% d.w.).

Statistical Analysis
Two-way ANOVA was used to analyze the effects of season,
drought, and their interaction on concentrations of NSC, soluble
sugars, and starch. The difference in variables among control,
drought, and dead seedlings was assessed using least significant
difference (LSD) with package “agricolae” (Mendiburu, 2021).
The difference in soil water content, Anet , and gs between control
and drought seedlings was evaluated using Wilcoxon rank-sum
test with the package “stats” (R Core Team, 2020). In addition, the
difference between ψpd and ψmd at the same date was evaluated
by Wilcoxon rank-sum test. The starch concentration in the root
and the Kw were logarithmic (ln) transformed to meet normality
and homogeneity before the analysis. Statistical analysis for all
data was conducted in R 4.0.0 (R Core Team, 2020).

RESULTS

Response of Seedling Mortality Rate to
Continuous Drought
Soil water content in control ranged from 47.1 to 35.8% in
the GS2019 and stabled at 38% in the GS2020, but in drought
condition rapidly decreased from 47.1 to 19.0% in GS2019 and
from 10.8 to 4.0% in the GS2020 (Figure 1A). Accordingly, from
the DP2019, seedlings exposed to drought showed a considerable
increase in cumulative mortality rate toward the experimental
end (D392) from 9.1 to 35.6% (Figure 1B).

Response of Seedling Growth to
Continuous Drought
Effects of continuous drought on seedling biomass varied
significantly depending on season and organ. The whole-plant
biomass was similar between control and drought treatments
in the GS2019 and DP2019 (Figures 2A,B), but significantly
different in the GS2020 (Figure 2C). Seedlings exposed to
drought were categorized into living and dead individuals to
clarify the detailed response in biomass. Branch biomass of dead
but not living individuals was lower than that of seedlings in
control in the DP2019 (Figure 2B). However, leaf and branch
biomass of both living and dead seedlings was significantly
lower than those in control in the GS2020 (Figure 2C and
Supplementary Table S1). A similar trend was observed in
leaf biomass in the GS2020. Root biomass had no significant
variation between treatments and among organs across the
experimental period.
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FIGURE 2 | Variation in seedling biomass over the experiment period. (A) GS2019, the first growing season (D1–D88); (B) DP2019 and DP2020, the early and late

winter dormant seasons (D89–D180 and D181–D301); and (C) GS2020, the second growing season (D302–D392). In DP2020, the biomass was not measured.

Different capital letters indicate significant differences in total biomass among control, drought living, and dead seedlings on the same sampling date. Different

lowercase letters indicate significant differences (p < 0.05) in leaf (dark gray), branch (light gray), and root (blank) among control, drought living, and dead seedlings on

the same sampling date. Values are mean ± SE (n = 4–7).

Response of Hydraulic Status to
Continuous Drought
Leaf water potential was significantly affected by the interaction
between treatment and season (Figure 3). Leaf ψpd and
ψmd showed no significant difference between control and
drought treatments in the GS2019 (Figures 3A,B), while both
variables in seedlings exposed to drought were much lower
than those to control especially in the middle and late
GS2020 (Figures 3A,B). Specifically, ψpd and ψmd significantly
decreased from −0.9 and −1.4 MPa on D349 to −4.3 and
−4.0 MPa on D390, respectively. ψpd was significantly higher
than ψmd in both control and drought treatments in the
GS2019, while ψpd and ψmd existed no significant difference
under drought condition since middle GS2020 (Figures 3A,B).
In terms of stem hydraulic conductivity, Kw in seedlings

exposed to drought was significantly lower than those of
control in the middle and late GS2020 (Figure 3C). Specifically,
Kw was 27.4 and 20.2% of the control on D371 and D391,
respectively (Figure 3C).

Response of Seedling Gas Exchange to
Continuous Drought
Seedlings exposed to drought showed an evident decrease in
Anet and gs from the GS2019 to GS2020 (Figure 4). Anet was
significantly lower under drought than control since D17 and
accounted for 55.1% of that in control, and reached below zero
in the GS2020. gs under drought had a similar trend with Anet

since D47. The gs under drought decreased to 10.6% of that in
control at the end of GS2020.
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FIGURE 3 | Variation in leaf water potential and stem wood-specific hydraulic conductivity (Kw) in response to continuous drought. Leaf predawn water potential (ψpd,

A) and leaf midday water potential (ψmd, B) under control (black) and drought (red) treatments were measured in the GS2019 (D1–D88) and GS2020 (D302–D392).

Stem wood hydraulic conductivity (Kw, C) was measured in the GS2020. Different letters indicate significant differences among all measurement dates and between

the two treatments on each measurement date (p < 0.05) based on the LSD test. The statistical difference between ψpd and ψmd on the same measurement date is

labeled with (*p < 0.05) and n.s. (not significant) at the bottom in (A). Values are mean ± SE (n = 4–7).

Response of Seedling C Dynamic to
Continuous Drought
Drought treatment, season, and their interaction significantly
affected concentrations of NSC and its components, but
the effect magnitude depended on organs (Table 2 and
Supplementary Tables S2–S4). In two growing seasons, NSC

concentrations were similar irrespective of drought treatment
or organs (Figure 5). The exception was that dead individuals
exposed to drought had higher NSC concentrations in leaves than
control (Figure 5J). However, such response in concentrations of
NSC and its components was opposite in woody organs across
the winter dormant season (except for leaf in the DP2019).
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FIGURE 4 | The relative difference in net photosynthetic rate (Anet) and stomatal conductance (gs) of seedlings exposed to drought and control. Asterisk indicates a

significant difference between drought and corresponding control treatment on the same measurement date (p < 0.05) based on Wilcoxon rank-sum test. GS2019

and GS2020, the first and the second growing seasons (D1–D88 and D302–D392). Values are mean ± SE (n = 4–7).

Especially in roots, concentrations of soluble sugars, starch, and
NSC for dead individuals from drought averagely reached 0.6,
0.4, and 1.0%, respectively. Meanwhile, the concentrations of
soluble sugars, starch, and NSC were 9.8, 15.4, and 11.5% of the
control (Figures 5F,I).

DISCUSSION

Dynamic of Hydraulic and C Under
Continuous Drought
The stomatal closure, one of the earliest reactions to decrease
in the soil water (Figure 4), reduced the canopy water loss
and maintained high water potential in the GS2019 and the
early GS2020 (Figure 3). This behavior suggests a protective
mechanism against embolism (McDowell et al., 2008; Xiong and
Nadal, 2020), which is consistent with the finding from another
spruce species (P. abies) (Hajickova et al., 2021). However, the
water loss did not stop due to passive water loss and incomplete
stomatal closure (Duursma et al., 2019). Moreover, water loss
could be exacerbated by the relatively high temperature in the
growing season (Hartmann, 2015; Yan et al., 2020). The ongoing
water loss could lead to massive embolism, which constrains
xylem water transport (Gebauer et al., 2020). In this study,
two results could support the xylem hydraulic dysfunction in
the GS2020.

First, drought significantly decreased Kw in the middle and
late GS2020 (Figure 3). In this study, the Kw in living seedlings
exposed to drought reduced c. 80% compared to the control,

and complete loss of hydraulic conductivity was detected in
dead seedlings. This is consistent with the previous results that
severe long-term drought led to great damage in stem hydraulic
integrity and hydraulic conductivity (Chen et al., 2020; Li et al.,
2020).

Second, ψpd was similar to ψmd in droughted seedlings since
D370 (Figure 3).ψpd andψmd correspond to the dailymaximum
and minimum leaf water potentials, respectively (Donovan et al.,
2001). ψpd recovers overnight through xylem water transport
under normal water conditions (Gleason et al., 2017). Similar
values of ψpd and ψmd in this study suggest that massive
embolism impaired water transport. Therefore, the hydraulic
dysfunction might be a primary reason for mortality in the
GS2020, which has been proven in field trees and potted seedlings
in many extreme drought events (Adams et al., 2017; Arend et al.,
2021).

Unexpectedly, living seedlings exposed to drought had
similar hydraulic conductivity with control at D351 (Jun,
2020). This might indicate that the hydraulic conductance
is above the critical threshold (McDowell et al., 2019) since
the xylem embolism formed in the winter dormant season
might be repaired (Maruta et al., 2020). It is necessary to
frequently measure hydraulic dynamics after winter drought in
future work.

Under continuous drought, trees may adjust phenology to
maintain the C dynamic (Jin et al., 2018). In the GS2020,
seedlings exposed to drought showed higher NSC but lower
growth than control (Figures 2, 5). It is possible that seedlings
sacrificed growth to maintain higher NSC for subsequent C
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TABLE 2 | Results of two-way ANOVA for effects of season, drought, and their interaction on concentrations of soluble sugars, starch, and NSC among organs.

Tissue Factor Df Sugars Starch NSC

F p F p F p

Leaf Season 3 7.9 <0.001 30.7 <0.001 27.8 <0.001

Drought 2 5.2 0.009 0.4 0.839 3.1 0.054

Season × Drought 5 7.1 <0.001 13.4 0.020 16.1 <0.001

Branch Season 3 3.5 0.023 21.8 <0.001 1.4 0.267

Drought 2 15.8 <0.001 1.0 0.390 12.5 <0.001

Season × Drought 5 3.8 0.006 8.6 <0.001 5.1 0.001

Root Season 3 7.3 0.063 5.6 0.002 6.5 0.090

Drought 2 7.5 0.024 27.9 <0.001 11.7 0.003

Season × Drought 5 17.6 0.003 5.0 0.001 15.9 0.007

Bold indicates statistical significance (p < 0.05).

use (e.g., osmoregulation) (Huang et al., 2021; Luo et al.,
2021). In addition, as a drought-defoliation species, Jezo spruce
fell off leaves to protect the hydraulic system, which may
also stimulate C accumulation in branches and roots (Santos
et al., 2022). However, C reserve may be unavailable under
drought stress, and less change at the time of death (Sala
et al., 2010; Jin et al., 2018; Wiley et al., 2019), which
may lead to high-level NSC in drought and dead seedlings
(Figure 5). Alternatively, seedlings that died in the GS2020
were collected earlier than the drought and control seedlings.
The higher NSC in dead seedlings than living seedlings
exposed to drought might result from an earlier occurrence
of use constraint and (or) the shorter time duration of
negative Anet.

Seedling Survival and C Reserve in the
Winter Dormant Season
The mortality rate increased in the winter dormant season
(Figure 1), suggesting that droughted seedlings might be more
vulnerable in the winter dormant season. The temperature below
−32◦C is expected to induce frost damage to Jezo spruce (data
from https://www.worldplants.ca). The minimum temperature
reached −33.7◦C during the experiment. Furthermore, the
winter drought might aggravate the freezing damage of plants
(Charrier et al., 2015; Fernández-Pérez et al., 2018).

Nonstructural carbohydrate (NSC) plays a critical role in
drought and cold tolerance of temperate trees (Charrier et al.,
2015). In contrast to the growing season, we detected NSC
depletion in the roots of dead seedlings in the winter dormant
season (Figure 5). This is consistent with the results of Galvez
et al. (2013), which showed that insufficient NSC reserve in
roots might be the primary reason for seedling mortality of
two poplar species in the winter dormant season. However, the
concentrations of soluble sugars and starch did not decrease to
zero in dead seedlings, indicating that there may be a minimum
threshold of NSC reserve for tree survival (McDowell, 2011).
In this work, NSC concentration in dead seedlings is consistent
with the life-threatening NSC level in previous drought studies

(Schönbeck et al., 2020), defoliation (Barker Plotkin et al., 2021),
and shade (Weber et al., 2018, 2019).

In this study, drought (living) seedlings had higher or similar
soluble sugars than control (Figure 5). Similar results were also
observed in previous studies, e.g., Chuste et al. (2020) and
Schönbeck et al. (2020). These support the theory that NSC
concentration initially increases and shifts to decrease with
drought persisting (McDowell, 2011). It is possible that NSC
reserve might increase or be stable during the early drought
stage by limiting growth respiration and consuming with drought
persisting (McDowell, 2011). In this work, different death times
among seedlings under drought treatment might indicate the
different exact physiological stress stages among seedlings (Zhang
et al., 2021). However, the reason why seedlings exposed to
the same drought showed different death times should be
further investigated.

The insufficient NSC reserve and severe embolism may
threaten tree survival in the winter (Galvez et al., 2013). Since
the lack of hydraulic conductivity and PLC data in the winter
dormant season, it is unable to assess the direct contribution
of hydraulic dysfunction to seedling mortality during the
dormant season. However, almost complete loss of hydraulic
conductance may not be damaging due to stomatal closure
and reduction in water uptake (Beikircher et al., 2016). As
shown in previous studies (Ogasa et al., 2019; Mayr et al.,
2020), trees that experienced near to 100% PLC in winter
recovered growth in the following seasons, suggesting the whole
tree and tissues were still alive in the winter dormant season.
Thus, future studies are required to explore the appropriate
methods for assessing the linkage between tree mortality and
hydraulic dysfunction in the winter dormant season under
drought stress.

CONCLUSION

This study demonstrated that seedlings subjected to continuous
drought showed a significant decrease in net photosynthesis
rate, stomatal conductance, and biomass in the second than the
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FIGURE 5 | (A–L) Variations in concentrations of nonstructural carbohydrates (NSCs) in each organ under drought treatment over the experimental periods. GS2019,

the first growing season (D1–D88); DP2019 and DP2020, the early and late winter dormant seasons (D89–D180 and D181–D301); GS2020, the second growing

season (D302–D392). Different capital letters indicate significant differences (p < 0.05) in NSC among control, drought living, and dead seedlings. Different lowercase

letters indicate significant differences (p < 0.05) in soluble sugars (lower) and starch (upper) among control, drought living, and dead seedlings. Gray and blank bars

represent the concentrations of soluble sugars and starch, respectively. Result without significant difference was not labeled. Values are mean ± SE (n = 4–7).
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first growing season, while the seedling mortality continually
increased toward the end of the second growing season. Under
drought stress, seedlings with root concentrations of both soluble
sugars and starch less than 1% died in the winter dormant
season. Hydraulic conductivity was significantly lost in the
growing season. These suggest that C starvation may partly
explain seedling mortality in the winter dormant season, while
hydraulic failure may determine seedling survival in following
growing seasons with continuous drought. Two processes may
interactively cause more tree death in northern temperate forests
in the case that the drought duration is projected to extend
associated with climate change in the future.
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