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The scarce availability of efficient and eco-friendly nematicides to control root-knot

nematodes (RKN),Meloidogyne spp., has encouraged research toward the development

of bionematicides. Naphthoquinones, juglone (JUG) and 1,4-naphthoquinone (1,4-NTQ),

are being explored as alternatives to synthetic nematicides to control RKN. This study

expands the knowledge on the effects of these natural compounds toward M. luci

life cycle (mortality, hatching, penetration, reproduction). M. luci second-stage juveniles

(J2)/eggs were exposed to each compound (250, 150, 100, 50, and 20 ppm) to monitor

nematodemortality and hatching during 72 h and 15 days, respectively. Tomato seedlings

were then inoculated with 200 J2, which had been exposed to JUG/1,4-NTQ for 3

days. The number of nematodes inside the roots was determined at 3 days after

inoculation, and the final population density was assessed at 45 days after inoculation.

Moreover, the potential mode of action of JUG/1,4-NTQ was investigated for the first

time on RKN, through the assessment of reactive oxygen species (ROS) generation,

acetylcholinesterase (AChE) in vitro inhibitory activity and expression analysis of ache and

glutathione-S-transferase (gst) genes. 1,4-NTQ was the most active compound, causing

≥50% J2 mortality at 250 ppm, within 24 h. At 20 and 50 ppm, hatching was reduced

by ≈50% for both compounds. JUG showed a greater effect on M. luci penetration and

reproduction, decreasing infection by ≈80% (50 ppm) on tomato plants. However, 1,4-

NTQ-induced generation of ROS and nematode vacuolization was observed. Our study

confirms that JUG/1,4-NTQ are promising nematicidal compounds, and new knowledge

on their physiological impacts on Meloidogyne was provided to open new avenues for

the development of innovative sustainable nematicides.
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INTRODUCTION

To date, with 105 valid species described, the genusMeloidogyne
[root-knot nematodes (RKN)] are among the top 10 plant-
parasitic nematodes (PPN) in plant pathology with major
ecological and economic impact worldwide (Jones et al., 2013;
Ghaderi and Karssen, 2020). RKN are able to parasitize almost
any species of plants, and due to their wide distribution in most
agricultural areas all over the world, it seems understandable
to estimate higher economic losses due to Meloidogyne species.
Despite the lack of actual and global data on their real economic
impact, Hussey and Janssen (2002) reported that every year,
RKN are responsible for 5% of the crop losses, but this value
is probably underestimated because plant symptoms caused
by RKN are non-specific and losses are often attributed to
other causes.

M. arenaria, M. hapla, M. incognita, and M. javanica are
regarded as the most common RKN species; however, other
species with apparently restricted distribution are considered
species of emerging importance. M. luci is included in the
Alert List of Pests of the European and Mediterranean Plant
Protection Organization since 2017, as it represents a threat
to the production of several important crops in European
countries, where this species has been detected (Greece, Italy,
Portugal, Slovenia, Turkey), but also in other parts of the
world (Brazil, Chile, Guatemala, and Iran) (EPPO, 2017, 2021).
Although M. luci has already been detected associated with
economically important crops, no data are available on its
real impacts on the quality and quantity of crop production.
However, host suitability studies carried out in pots have shown
that significant economic losses can be predicted due to M.
luci (Maleita et al., 2018, 2022; Aydinli et al., 2019; Sen and
Aydinli, 2021). In Portugal, M. luci was found the parasitizing
roots of potato (Solanum tuberosum), tomato (S. lycopersicum),
the ornamental plant Cordyline australis, and the weed Oxalis
corniculata (Maleita et al., 2018; Santos et al., 2019; Rusinque
et al., 2021).

Many strategies have been applied in RKN management.
For the last 50 years, control of RKN largely depend on the
use of synthetic nematicides, readily available in the market,
rapid-acting, and highly reliable (Zasada et al., 2010; Desaeger
et al., 2017). Nevertheless, many nematicides are being banned
from the market or their use restricted (Nyczepir and Thomas,
2009; Johnson et al., 2012; Ebone et al., 2019). Concerns
about the impacts of chemical nematicides on human health
and the environment led many regulatory agencies, such as
European Food Safety Authority (EFSA) and US Environmental
Protection Agency (EPA), to strengthen pesticide regulation
(European Commission, 2009a,b; Kopits et al., 2014). Today,
the need for searching environmental friendly nematicides,
deriving from plant extracts, posing low risks to humans or
animals, is widely consensual (Haydock et al., 2006; Chen et al.,
2020).

Several plant secondary metabolites (alcohols, aldehydes,
fatty acid derivatives, terpenoids, and phenolics) have been
identified as nematicidal compounds and/or with effects on

second-stage juveniles (J2) hatching, paralysis and nematode
root attraction, penetration, and reproduction (Aoudia et al.,
2012; Ntalli and Caboni, 2012; Caboni and Ntalli, 2014;
Aissani et al., 2015; Lu et al., 2017; Sikder and Vestergård,
2020).

Naphthoquinones (NTQ) are naturally occurring compounds
in several families of plants, such as Ancistrocladaceae,
Avicenniaceae, Balsaminaceae, Bignoniaceae, Boraginaceae,
Dioncophyllaceae, Droseraceae, Ebenaceae, Gentianaceae,
Iridaceae, Juglandaceae, Plumbaginaceae, Scrophulariaceae,
and Verbenaceae, algae, fungi, lichens, and animals, such
as beetles and arachnids (Raspotnig et al., 2005; Pankewitz
and Hilker, 2008; Babula et al., 2009). Among NTQ,
juglone (5-hydroxynaphthalene-1,4-dione; JUG) and 1,4-
naphthoquinone (naphthalene-1,4-dione; 1,4-NTQ) were
shown to have nematicidal activity, among other properties
(insecticide, herbicidal, anti-inflammatory, antibacterial,
antifungal, anticancer, and cytotoxic properties) and thus are
promising compounds to develop novel, natural, and effective
nematicides, with lower environmental half-lives than traditional
nematicides (Babula et al., 2009; Fischer et al., 2012; Esteves
et al., 2017; Maleita et al., 2017; Wang et al., 2017; Cha et al.,
2019; Laxmikant, 2019; Aminin and Polonik, 2020; Islam and
Widhalm, 2020). However, knowledge on the effects of these
compounds through RKN life cycle and their potential mode(s)
of action are still unknown. A possible mode of action is the
inhibition of the acetylcholinesterase (AChE) enzyme, which
is responsible for the termination of impulse transmissions
at cholinergic synapses within the nervous system by rapid
hydrolysis of the neurotransmitter acetylcholine. When it is
inhibited, there is an excessive accumulation of acetylcholine,
leading to nematode hyperactivity, incoordination, and
finally paralysis and death (Piotte et al., 1999). Considering
this mechanism of action, AChE is the target of some
pesticides, which inhibit the enzyme, such as carbamates
and organophosphates (Al-Rehiayani, 2008). Therefore, assays
should be conducted to analyze nematicidal effect of JUG
and 1,4-NTQ and possible action on AChE enzyme. The in
vitro inhibition potency of some widely used nematicides has
been already evaluated to control PPN, such as M. javanica,
Heterodera avenae, and Tylenchulus semipenetrans, pathogens
that are damaging to a wide range of crops (Islam and Widhalm,
2020).

Another hypothesis is the generation of reactive oxygen
species (ROS) as a consequence of the reaction of quinones with
glutathione (GSH) (Inbaraj and Chignell, 2004). ROS are strong
oxidizing agents that are associated with several toxic effects
playing a significant role in cell death (Widhalm and Rhodes,
2016).

The objectives of the study were as follows: (1) to evaluate
the effects of JUG and 1,4-NTQ on the in vitro mortality,
hatching, penetration, and reproduction of M. luci on tomato
plants and (2) to infer their mode of action through the
assessment of ROS generation, AChE in vitro inhibitory activity
and expression analysis of ache and glutathione-S-transferase
(gst) genes.
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MATERIALS AND METHODS

General Experimental Procedures
Pure bioactive compounds, JUG and 1,4-NTQ (Sigma-
Aldrich, purity >97 and ≥96.5% w/w, respectively), were
solubilized in Tween R© 80 (Sigma-Aldrich, suitable for cell
culture) at 2,500 ppm aqueous solution to obtain final
concentrations ranging from 20 to 2,000 ppm, depending
on the bioassay. Each concentration of bioactive compounds
was prepared individually. Water and Tween R© 80 were
used as the controls in mortality, hatching, penetration,
and reproduction bioassays. All bioassays were repeated
two times, except penetration and reproduction bioassays.
Solutions were stirred for 3 days, at 37◦C, at 100 rpm, away
from light.

Root-Knot Nematode Isolate
An isolate of M. luci obtained from potato roots in Sepins
(Cantanhede), Coimbra, Portugal (Maleita et al., 2018) was
maintained on tomato cv. Coração-de-Boi, in pots containing
sterilized sandy loam soil and sand (1:1 v/v), at 25 ± 2◦C in
a growth chamber. The isolate identification was confirmed by
esterase phenotype analysis (Maleita et al., 2018).

Mortality Bioassay
M. luci egg masses were handpicked from infected roots and
placed in a hatching chamber. Hatched J2 from the first 24 h
were discarded and subsequent J2, from the second 24 h,
were collected. From these, 20 nematodes were handpicked
individually into excavated glass blocks containing 1ml of each
JUG/1,4-NTQ concentration (20, 50, 100, 150, and 250 ppm).
Glass blocks were maintained in a moist chamber, in the dark,
at 22◦C. J2 mortality was monitored at 6, 12, 24, 48, and 72 h
after exposure. At each observation time, nematodes not showing
movements when touched with a bristle were transferred to water
and considered dead if they still failed to react. Each treatment
consisted of four replicates.

Hatching Bioassay
M. luci egg masses were collected from infected tomato roots and
eggs were extracted using 0.52% sodium hypochlorite (NaOCl;
Acros Organics B.V.B.A.) solution (Hussey and Barker, 1973).
A total of fifty eggs (≈100 µl) were transferred into a 10-µm
sieve placed in a glass block, and 1.5ml of each JUG/1,4-NTQ
concentration (20, 50, 100, 150, and 250 ppm) was added. The
concentration of JUG/1,4-NTQ 20 and 50 ppm solutions was
confirmed by high-performance liquid chromatography (HPLC)
(data not shown; Seabra et al., 2019). Nematode hatching was
monitored daily for 3 days and afterwards at 2-day intervals
for 15 days, and it was assumed that NTQ activity was
preserved during the tested period. Each treatment consisted of
four replicates.

Penetration and Reproduction Bioassays
J2 were obtained as referred above for the mortality bioassay:
hatched J2 from the second 24 h and thereafter were collected and
stored at 4◦C, until a maximum of 3 days. Before inoculation,
M. luci J2 were exposed for 3 days to JUG/1,4-NTQ solutions

of 20 and 50 ppm; water and 2,500 ppm Tween R© 80 were
included as controls. A number of forty-eight tomato cv.
Coração-de-Boi plants (3 weeks old) were transferred to pots
(50 cm3) containing autoclaved sandy loam soil, sand, and
substrate (1:1:1, v/v), and each was inoculated with 200 M.
luci J2 (initial nematode population density, Pi). Only the
mobile J2 were considered to define the volume of nematode
suspension to be inoculated. Then, 3 days after inoculation, four
roots/treatment were removed, roots were washed, stained with
fuchsin acid (Sigma-Aldrich, purity≥70%, w/w), and the number
of nematodes inside the roots was recorded. The remaining five
tomato plants/treatment were transferred into new pots (150
cm3). At 45 days after inoculation, the plants were harvested, and
the root systems were washed carefully. The number of galls and
egg masses per plant was recorded and categorized using a 0–5
scale (0 = no galls, 1 = 1–2, 2 = 3–10, 3 = 11–30, 4 = 31–100, 5
≥ 100 galls) (Taylor and Sasser, 1978). Eggs were extracted from
each root system using a 1%NaOCl solution (Hussey and Barker,
1973), the final nematode population (Pf) was determined, and
the reproduction factor (Rf= Pf/Pi) was calculated.

Acetylcholinesterase Inhibitory Activity
Assay
Hydrochloric acid (HCl, 37%, p.a.) was purchased from
Carlo Erba. AChE (Type VI-S, 500 U/mg protein), 5,5-
dithiobis[2-nitrobenzoic acid] (DTNB, ≥98%), acetylthiocholine
iodide (AChI, ≥98%), ethanol (≥99.8%, p.a.), and
tris(hydroxymethyl)aminomethane (Tris Buffer) were obtained
from Sigma-Aldrich.

AChE inhibitory activity in vitro assay was performed
according to the modified procedure described by Ellman et al.
(1961), and as previously carried out by Gaspar et al. (2020a,b).

Briefly, DTNB (3mM, 500 µl), AChI (15mM, 100 µl),
Tris–HCl buffer at pH 8 (50mM, 275 µl), and the JUG/1,4-
NTQ (100 µl) were added to a 1-ml cuvette. Compounds
JUG/1,4-NTQ were solubilized in ethanol and Tris-HCl buffer
(50:50, v/v) and homogenized. The concentrations were based
on preliminary assays and were 100, 250, 500, 1,000, and
2,000 ppm for JUG and 200, 250, 500, 1,000, and 2,000
ppm for 1,4-NTQ. The enzyme AChE (0.28 U/ml, 25 µl)
was then added to start the reaction, which was monitored
for 5min, at 25◦C and 405 nm (UV–vis spectrophotometer,
Jasco, Model V650) for the determination of the reaction rate.
The AChE activity was calculated as a percentage of this
velocity compared to the control (ethanol:Tris-HCl buffer, 50:50
v/v), and the inhibitory activity was calculated by subtraction.
The blank was performed for each sample and concentration,
and using all reagents, except the enzyme to reduce the
possible NTQ interference in the measured absorbance. For
each sample, the assay was conducted in triplicate, with
five concentrations.

Additional studies with several concentrations of the
surfactant Tween R© 80 (100, 2,500, and 5,000 ppm) were also
conducted to understand about its possible action on AChE
activity, since it is used to prepare the JUG/1,4-NTQ solutions
used in nematode bioassays.

Frontiers in Plant Science | www.frontiersin.org 3 May 2022 | Volume 13 | Article 867803

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Maleita et al. Naphthoquinones—Promising Nematicides

TABLE 1 | Primer sets used in the PCRs.

Enzyme name Primer name Primer sequence 5′
→ 3′ References

Acetylcholinesterase AChE_F AACCGCAATCCAGACAATTCTTAT Cui et al., 2017

AChE_R TCTTCTTGGCCCAGTTCCTATTCG

Glutathione S-transferase GST_F GAAAAATGGCCAGCCGAGAA Duarte, 2014

GST_R GAAGGATTGCGCCGCTC This studya

β-actinb Actin_F GATGGCTACAGCTGCTTCGT Duarte, 2014

Actin_R GGACAGTGTTGGCGTAAAGG

aDesigned after amplification, cloning, and sequencing of gst M. luci fragment with MIHA-GSTS-1f/r primers described in Duarte (2014).
bPositive control.

Reactive Oxygen Species Assay
Production of ROS was evaluated by microscopic observation.
M. luci J2 were incubated at 22◦C for 3 days to JUG/1,4-
NTQ at 20, 50, 100, 150, and 250 ppm. Water and Tween R©

80 were also included as controls. After exposure, nematodes
were washed two times with sterilized water, pelleted (336 g for
2min), and incubated for 40min in 2′,7′-dichlorofluorescein
diacetate 20µM (Sigma-Aldrich) at 20◦C. Then, the nematodes
were washed two times with sterile water, transferred to a 24-
well plate, and paralyzed by the addition of 10mM sodium
azide (Sigma-Aldrich) (Sun et al., 2017; Rangsinth et al., 2019).
Nematodes were randomly photographed using a Zeiss Observer
Z.1 inverted microscope (Carl Zeiss) equipped with an AxioCam
HRm camera and Zen Blue 2012 software, using a N-Achroplan 5
× /0.15 or a LD Plan-Neofluar 40× /0.6. All conditions within an
experiment were processed simultaneously and imaging settings
(exposure time) were conserved.

Gene Expression Analysis
The expression of ache and gst genes encoding an enzyme
responsible for the primary termination of cholinergic nerve
impulse transmission and an enzyme related to protection against
the plant defense, respectively, were evaluated.

Approximately 20,000 J2 were incubated in JUG/1,4-NTQ
20 ppm, at 25◦C also in the dark. Water and Tween R© 80 at
2,500 ppm were used as controls. After 24 and 72 h, J2 were
concentrated by centrifugation for 2min at 336 g, washed three
times with sterilized water and two times with RNAse-free water,
and stored at−80◦C, until RNA extraction.

Total RNA were extracted from J2 of M. luci and isolated
with TRIzol reagent (Invitrogen). Nematodes were homogenized
in TRIzol reagent (Sigma-Aldrich) through six freeze-thawing
cycles in TyssueLyser (liquid nitrogen; 37◦C; and 30 s at
50Hz, respectively). Afterward, the RNA was purified using the
Direct-zol RNA kit (Zymo research), and any remaining DNA
was digested using the TURBO DNA-free kit (Ambion). The
concentration and purity of the RNA were determined in a
Nanodrop 2000c spectrophotometer (ThermoFisher), and the
samples were stored at−80◦C.

The RNA was converted into cDNA by reverse transcription
(RT) using the iScriptTM Reverse Transcription Supermix Kit
(Bio-Rad Laboratories) in a volume of 20 µl, according to

the instructions, and the samples were stored at −20◦C, until
polymerase chain reaction (PCR) analysis. Primer sets used are
described in Table 1. The GST reverse primer (GST_R) was
designed after amplification, cloning, and sequencing of gst M.
luci fragment with MIHA-GSTS-1f/r primers (Table 1) (Duarte,
2014). PCR were performed in a 25 µl volume containing 1×
Taq reaction buffer, 1.5mMMgCl2, 0.2mM dNTPs, 0.4µM each
primer, 2.5U of Taq DNA polymerase (Bioline), and 25 ng of
nematode cDNA as a template. An internal control—β-actin—
was included. The amplifications were carried out in an MJ Mini
Thermal Cycler (Bio-Rad) using the following conditions: an
initial denaturation at 94◦C for 3min; followed by 30 cycles of
denaturation at 94◦C for 30 s, annealing at 52 and 53◦C for 30 s
for ache and gst, respectively, extension at 72◦C for 30 s, and
a final extension for 10min at 72◦C. PCR were analyzed on a
1% agarose gel electrophoresis in 1× Tris-borate EDTA buffer
stained with GreenSafe (NZYTech).

Statistical Data Analyses
Data on M. luci J2 mortality were converted to percentage
cumulative mortality, corrected by Schneider Orelli’s formula
with reference to water, used as experimental control:

Cumulative mortality

=

(

%mortality in treatment %mortality in control

100 %mortality in control

)

× 100

The effects of JUG and 1,4-NTQ on mortality, hatching,
penetration, and reproduction were compared in one-way
analysis of variance (ANOVA) followed by post-hoc Fisher’s
least significant difference (LSD) statistical test. Data on J2
mortality, during exposure in JUG, and J2 penetration were
transformed (logarithmic and square root, respectively) to
fulfill the assumptions of ANOVA (normality and variance
homogeneity). Even after transformation of data on effect of
1,4-NTQ on J2 mortality, the assumptions of ANOVA were not
fulfilled. Nonetheless, data were compared in ANOVA followed
by post-hoc Fisher’s LSD statistical test. A parametric test seemed
to be more robust than a non-parametric test. Statistical analyses
of the data were performed using Statsoft Statistica, version 7
for Windows.
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FIGURE 1 | Corrected cumulative mortality (%) of Meloidogyne luci

second-stage juveniles exposed to different concentrations of juglone (JUG, A)

and 1,4-naphthoquinone (1,4-NTQ, B). Data are an average of four replicates,

and bars represent standard errors. Average followed by the same lower case,

at the same exposure time, do not differ significantly (p > 0.05) according to

the Fisher’s LSD test. *At 6 and 12 h after exposure, no significant differences

were found. ** IV and VI were significantly different from I, II, and III; V does not

differ significantly from all treatments.

Data on J2 mortality (48- and 72-h observations) and
hatching inhibition (15-day observation) were subjected to
Probit analysis (Finney, 1971), using PriProbit 1.63 software,
and the lethal concentrations causing 50% mortality and 50%
hatching inhibition (LC50) calculated. The concentration of
bioactive compound able to inhibit 50% of the AChE activity
(IC50) was also computed.

RESULTS

Mortality Bioassay
According to our experiments,M. lucimortality was significantly
affected by the exposure to JUG and 1,4-NTQ (p > 0.05),
for concentrations ≥100 ppm, and, in general, increases as
compounds concentration increased. Nonetheless, compounds
were not equally effective (Figure 1). 24 h after exposure to NTQ,
JUG only induced 10% mortality, whereas 46% mortality was
observed in 1,4-NTQ. JUG induced 32–70% mortality within
48 h, and 1,4-NTQ induced 61–96%, at 150 and 250 ppm,
respectively (Figure 1). At 72 h after exposure, 1,4-NTQ induced

TABLE 2 | Estimated values of lethal concentration (ppm) necessary to result in

50% Meloidogyne luci second-stage juveniles’ mortality and hatching inhibition

(LC50), after exposure to juglone (JUG) and 1,4-naphthoquinone (1,4-NTQ).

Bioassay Time after exposure LC50 (ppm)

JUG 1,4-NTQ

Mortality 48 h 174.45 131.76

72 h 127.75 111.45

Hatching inhibition 15 days 31.81 28.72

99% mortality and JUG 87%, at 250 ppm. A similar effect was
detected for compounds at 100 ppm (38 and 40%, respectively)
(Figure 1).

Estimated values of LC50, at 48 h after exposure, were 174.45
and 131.76 ppm to JUG and 1,4-NTQ, respectively, and 127.75
and 111.45 ppm at 72 h after exposure (Table 2). Therefore, 1,4-
NTQ was more effective than JUG to induceM. lucimortality. At
24 h of exposure and for compound concentrations ≥100 ppm,
most J2 remained alive but were immobile and only recovered
themovement after being touchedwith a bristle. Dead nematodes
showed, in general, a straight shape and vacuoles formation
(Figures 5, 6).

M. luci mortality in Tween R© 80 (2,500 ppm), used for JUG
and 1,4-NTQ solubilization, was not significantly different from
that observed in water (control) and in the two NTQ, at 20 and
50 ppm, within 72 h after exposure (Figure 1).

Hatching Bioassay
Both compounds have similar effects on hatching, inhibiting
≥49% J2 hatching within 15 days. At 20 and 50 ppm, J2 hatching
was reduced by ∼50% for both compounds reaching 96% at
250 ppm (Figure 2). In controls, water and Tween R© 80 at 2,500
ppm (surfactant used to NTQ solubilization), 100% ofM. luci J2,
were hatched.

Estimated values of LC50, at 15 days after exposure, were 31.81
and 28.72 ppm to JUG and 1,4-NTQ (Table 2).

Penetration and Reproduction Bioassays
Juglone arose as most efficient than 1,4-NTQ restricting
significantly nematode root penetration and reproduction at 50
ppm. At this concentration, the number of J2 found inside the
roots decreased ∼69% for 1,4-NTQ and 80% for JUG when
compared to water control. Penetration in water control was
not significantly different from that observed in the Tween R© 80
solvent solution and in both bioactive compounds at 20 ppm
(Figure 3).

In terms of M. luci reproduction, 45 days after inoculation,
in the water and Tween R© 80 (2,500 ppm) controls, tomato cv.
Coração-de-Boi root systems were highly infected with GI =

5 and Rf values of 268.5 and 344.8, respectively (Table 3). No
significant differences were found between the controls. M. luci
J2 developed and reproduced, after exposure to the bioactive
compounds at 20 and 50 ppm, but the number of egg masses,
Pf, and eggs/egg masses varied among treatments (Table 3).
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FIGURE 2 | Meloidogyne luci second-stage juveniles (J2; %) hatched for 15 days. Eggs were soaked in water, 2,500 ppm Tween® 80 solution, and juglone and

1,4-naphthoquinone at different concentrations. Each bar represents the average ± standard deviation of four replicates and bars denoted by different letters differ

significantly at p > 0.05, according to the Fisher’s LSD test.

FIGURE 3 | Number of Meloidogyne luci second-stage juveniles (J2) found

inside tomato cv. Coração-de-Boi roots, 3 days after inoculation. Before

inoculation, J2 were soaked for 3 days in water, 2,500 ppm Tween® 80

solution, and juglone and 1,4-naphthoquinone at 20 and 50 ppm. Each bar

represents the average ± standard deviation of four replicates and bars

denoted by different letters differ significantly at p > 0.05, according to the

Fisher’s LSD test.

Although no significant effects were observed between the M.
luci reproduction in water control and after exposure to 20 ppm
of both compounds, the number of egg masses and Pf across
treatments indicated significant differences between the bioactive
compounds at 50 ppm and both controls (p > 0.05; Table 3).
The number of eggs/egg masses after exposure to JUG 50 ppm
decreased significantly, in ∼32–33% when compared to water
and Tween R© 80 (2,500 ppm) controls (p > 0.05; Table 3).

Acetylcholinesterase Inhibitory Activity
Assay
Considering the effect of JUG and 1,4-NTQ on AChE activity,
both compounds had similar inhibition of this enzyme activity,
for concentrations over 200 ppm, and no effects are expected
at 20 ppm. Results are expressed as IC50 values and AChE

inhibitory curves are presented in Figure 4. The ethanol:Tris-
HCl (50:50, v/v) buffer solution did not inhibit the AChE activity,
and therefore, it was used for the solubilization of compounds.

For JUG, the IC50 was 1,097 ± 50 ppm, while for 1,4-NTQ,
it was 1,274 ± 42 ppm. Considering the AChE inhibitory curves
and the IC50 values, JUG was slightly more active than 1,4-NTQ,
and both compounds showed inhibition of this enzyme activity,
between 200 and 2,000 ppm, with values close to 100% inhibition
for JUG at the highest concentration (Figure 4).

Additional experiments were conducted to analyze the
possible inhibitory effect of Tween R© 80 on AChE activity, and
about 4 and 10% inhibition were observed at 2,500 and 5,000
ppm, respectively. This means that the Tween R© 80 (2,500 ppm)
has very low inhibitory activity on AChE, and it may be used
in the assays, with caution and always performing the control
(Supplementary Material).

Reactive Oxygen Species Assay
After nematode staining with 2′,7′-dichlorofluorescein diacetate
(ROS indicator) and fluorescence monitoring, no J2 treated
with water or Tween R© 80 at 2,500 ppm (controls) generated
ROS fluorescence or vacuoles development (Figures 5, 6). M.
luci J2 treated with JUG did not exhibit ROS fluorescence
but the formation of small and multiple vacuoles associated
with mortality was observed whereas J2 treated with 1,4-NTQ
exhibited ROS fluorescence for concentrations ≥100 ppm, and
multiple giant vacuoles in the central and tail region were
detected associated with nematode death. Several J2 exposed to
100 ppm 1,4-NTQ remained mobile and did not show vacuoles
or ROS production (Figure 6,a).

Gene Expression Analysis
Reverse transcription polymerase chain reaction, using the
primers for ache and gst genes, displayed the expression of these
genes inM. luci J2. Amplification of the β-actin gene was used as
an internal control (Figure 7). The specific band for the ache gene
has a molecular weight of∼150 bp and for the gst gene of 100 bp
(Figure 7). The cDNA fragments of ache have a clear difference
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TABLE 3 | Number of galls (G) and egg masses (EM) and respective indices (GI, EMI), final population density (Pf), number of eggs/EM, and reproduction factor (Rf) of

Meloidogyne luci, 45 days after inoculationa.

Treatment G GIb EM EMIb Pf Eggs/EM Rfc

Controls Water >100 5 76.8 ± 8.3b,c 4 53,707 ± 10,604a,b 694.3 ± 77.7a 268.5

Tween® 80 >100 5 97.6 ± 15.1a 4 68,967 ± 13,794a 704.0 ± 71.5a 344.8

JUG 20 ppm >100 5 63.8 ± 17.5c 4 39,850 ± 13,306b,c 620.9 ± 85.7a 199.3

50 ppm >100 5 22.8 ± 7.5e 3 10,893 ± 4,166d 470.8 ± 87.5b 54.5

1,4-NTQ 20 ppm >100 5 93.0 ± 18.3a,b 4 66,467 ± 16,677a 710.5 ± 81.1a 332.3

50 ppm >100 5 41.4 ± 5.4d 4 26,825 ± 8,509c 635.6 ± 151.6a 134.1

aData are means of five replicates ± standard deviation. Means in each column followed by the same combination of letters do not differ significantly at p > 0.05, according to the

Fisher’s LSD test.
bGI and EMI (0–5): 0 = no galls/egg masses, 1 = 1–2, 2 = 3–10, 3 = 11–30, 4 = 31–100, 5 ≥ 100 galls/egg masses per root system.
cRf = Pf/initial population density (200 second-stage juveniles).

in band intensity after 24 h of J2 exposure to JUG and 1,4-
NTQ and after 72 h of exposure to 1,4-NTQ when compared to
those obtained in water. Tween R© 80 (2,500 ppm) itself seems to
slightly affect the ache gene expression. For gst and β-actin genes,
the cDNA fragments were equally amplified in all treatments
(Figure 7).

DISCUSSION

JUG and 1,4-NTQ were shown to be active against M. luci,
inducing J2 mortality and inhibited hatching, penetration, and
reproduction on tomato. Previously, few studies have been
conducted to evaluate the in vitro and semi-in vivo nematicidal
activity of these compounds against PPN (Mahajan et al., 1992;
Dama, 2002; Esteves et al., 2017; Maleita et al., 2017; Cha et al.,
2019; Laxmikant, 2019). According to Mahajan et al. (1992),
JUG revealed a high degree of nematicidal activity promoting
100% M. incognita mortality at 1,100 ppm, within 48 h. Later,
it was demonstrated that a concentration of 20 ppm JUG was
efficient against M. javanica causing 97.94% mortality within
24 h (Dama, 2002). More recently, the nematicidal activity of
JUG and 1,4-NTQ against the RKNM. hispanica, the root lesion
nematode Pratylenchus thornei, and the pinewood nematode
Bursaphelenchus xylophilus was proven (Esteves et al., 2017;
Maleita et al., 2017; Cha et al., 2019). JUG and 1,4-NTQ 250
ppm caused 100% mortality in M. hispanica J2, after 24 and
12 h of exposure, respectively. 1,4-NTQ was most effective than
JUG at 50 ppm, causing 42% M. hispanica J2 mortality (Maleita
et al., 2017). Both compounds also induced >90% B. xylophilus
mortality at 250 ppm, within 6 h and 100% P. thornei mortality
within 24 h at 500 ppm (Esteves et al., 2017; Cha et al., 2019).
Only Maleita et al. (2017) and Cha et al. (2019) studied the
effects of these NTQ through semi-in vivo assays demonstrating
the potential applications of these compounds in agriculture
and forest industry. Incubation of M. hispanica J2 in a Juglans
nigra extract, enriched in JUG and 1,4-NTQ, affected significantly
nematode root penetration, and a reduction on reproduction
was perceived (Maleita et al., 2017). The population of B.
xylophilus decreased significantly, in Pinus thunbergii blocks,
after treatment with JUG (Cha et al., 2019).

FIGURE 4 | Acetylcholinesterase (AChE) inhibitory curves and respective R2

values obtained for juglone (A) and 1,4-naphthoquinone (B).

According to our experiments, 1,4-NTQ was most active
than JUG on M. luci J2 mortality, despite being less effective
against M. hispanica in the previous experiments (Maleita et al.,
2017). Differences in the results obtained may be due to the
use of a different surfactant (Triton X-100 vs. Tween R© 80) to
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FIGURE 5 | In vitro production of reactive oxygen species in Meloidogyne luci second-stage juveniles, after exposure for 3 days to juglone (JUG) and

1,4-naphthoquinone (1,4-NTQ) at different concentrations. *Similar results were obtained for referred concentrations; images presented correspond to the higher

concentration. Scale bars = 100µm.

solubilize the bioactive compounds (Maleita et al., 2017) or a
different sensitivity of these RKN species to the compounds. M.
incognita isolates were reported as more sensitive to fluensulfone

than M. javanica, whereas M. javanica was more sensitive
to fluopyram, with a significant difference in median lethal
concentrations (Oka and Saroya, 2019).
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FIGURE 6 | Effects of juglone (JUG) and 1,4-naphthoquinone (1,4-NTQ) on reactive oxygen species production in Meloidogyne luci second-stage juveniles’ mortality.

Nematodes were exposed to JUG and 1,4-NTQ at 100 and 250 ppm for 3 days. At 1,4-NTQ 100 ppm, some nematodes remained mobile (a) and others were dead

(b). Scale bars = 50µm.

Both compounds have similar effects on hatching, but JUG
arose as most efficient than 1,4-NTQ restricting significantly
nematode root penetration and reproduction at 50 ppm. The
NTQ, JUG and 1,4-NTQ, can be obtained from different
plant species, such as Pterocarya fraxinifolia, Carya spp.,
Lomatia spp., Caesalpinia sappan, Eleutherine palmifolia, among
others, and are found at higher concentrations in Juglans
sp. tissues, depending on processing measures and solvent
used for extraction (Borazjani et al., 1985; Lee and Lee,
2006; Solar et al., 2006; Jakopic et al., 2007; Cosmulescu
et al., 2010, 2011; Widhalm and Rhodes, 2016; Maleita
et al., 2017; Deans et al., 2018; Mahdavi et al., 2019;
Annisa et al., 2020; Medic et al., 2021a,b). For example,
Maleita et al. (2017) reported concentrations of 49.4 and 36.8
mg/g of extract of JUG and 1,4-NTQ, respectively, from in
natura J. nigra with effects on M. hispanica J2 mortality
and penetration; and McKenry and Anwar (2003) stated a
reduction of 75% on M. incognita population, compared to
the phenamiphos, after treatment of planted grapevines with a
Juglans spp. tea.

Nowadays, pesticide registration is a very complex and
highly regulated process. The risk assessment of JUG and
1,4-NTQ on the soil environment, which is an important
source of concern for soil-applied nematicides, has been
assessed previously for 1,4-NTQ (Chelinho et al., 2017).
Although a dose–response was observed in plants (Zea mays
and Brassica napus), non-target nematodes, and other soil
invertebrates (Eisenia andrei, Folsomia candida, Enchytraeus
crypticus), results showed that a concentration of ≈20 mg/kg
1,4-NTQ is likely to be environmentally safe (Chelinho et al.,
2017).

Several studies have also been developed and reported the
effect of JUG on the growth and development of several
economically important plants, including aubergine (Solanum
melongena), cabbage (Brassica oleracea), corn (Zea mays),
cucumber (Cucumis sativus), lettuce (Lactuca sativa), pepper
(Capsicum annuum), and tomato, to concentrations between
10µM and 1mM (Kocaçaliskan et al., 2019; Islam andWidhalm,
2020). For tomato crop, with potential yield losses of 25–100%
due to RKN (Seid et al., 2015), concentrations of 1mM JUG
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FIGURE 7 | Expression of the genes acetylcholinesterase (ache), glutathione-S-transferase (gst) and β-actin by PCR amplification of cDNA from Meloidogyne luci

second-stage juveniles after exposure for 24 h (1) and 72 h (2) to 1,4-naphthoquinone (N) and juglone (J) 20 ppm. Water (H) and Tween® 80 at 2,500 ppm (T) were

used as controls. M - DNA Marker (HyperLadder II; Bioline).

(Kocaçaliskan and Terzi, 2001) and ≥192 mg/Kg of JUG/1,4-
NTQ (Maleita et al., unpublished results) caused a decrease in
seed germination and seedling growth. The available results
lead to consider that the JUG and 1,4-NTQ concentration
needed to reduce M. luci penetration and reproduction (50
mg/kg) may be lower than the concentrations that negatively
impact tomato development, and no significant effects are
expected on non-target plants and soil organisms, including
non-target nematodes.

To further develop the potential use of JUG and 1,4-
NTQ as natural product-based nematicides, it is essential
to improve the knowledge about the bioactive compound
mode(s) of action. According to Inbaraj and Chignell (2004),
the cytotoxicity of quinones is due to a redox cycling and
reaction with GSH, resulting in the generation of ROS and
decreasing the GSH intracellular levels which leads to significant
overexpression of gst gene, respectively (Sytykiewicz, 2011).
Glutathione transferases are a large family of enzymes involved in
detoxification metabolism limiting oxidative damage of cellular
macromolecules. These enzymes, produced by several organisms,
are secreted by RKN during parasitism, protecting the parasite
against ROS, but transcripts of the gene are also found in RKN J2
(Dubreuil et al., 2007).

The 1,4-NTQ has a general biological tendency to accept
electrons originating highly reactive and unstable species that
can be then auto-(re)oxidized, by molecular oxygen or by other
chemical species, leading to the formation of the original NTQ
and of highly ROS (Widhalm and Rhodes, 2016). Nevertheless,
JUG may have pro- or antioxidant characteristics depending on
the concentration, and generation of ROS can be not reported
at lower concentrations due to the antioxidant activities of the
compound (Chobot and Hadacek, 2009; Jha et al., 2015; Ahmad
and Suzuki, 2019).

The vacuolization ofM. luci J2 after exposure to 1,4-NTQ and
the lack of fluorescence of nematodes exposed to JUG observed in

this study suggest that the mode of action of the two compounds
is probably different at 20 ppm. The 1,4-NTQ induced the
formation of ROS and the development of multiple fused giant
vacuoles inside nematodes; however, the transcriptional activity
of gst was similar to the control. Glutathione-S-transferases are
a large family of enzymes; therefore, further gene expression
studies on a broader range of gst are needed to clarify the role
of these enzymes on the metabolization of reactive compounds.
Treatment with JUG 20 ppm induced the formation of multiple
and small vacuoles, but no ROS formation was detected.
Results may be related to the pro-antioxidant activity of JUG,
which impedes the generation of ROS at lower concentrations.
Consecutively, JUG may not influence GSH in RKN, and thus
not inducing an overexpression of the gst gene.

Considering the effect of JUG and 1,4-NTQ on AChE activity,
both compounds had similar inhibition of this enzyme activity,
for concentrations over 200 ppm, and no effects are expected
at 20 ppm. At a molecular level, a decrease in intensity of ache
cDNA fragments at 24 h was found in nematodes exposed to 20
ppm JUG and 1,4-NTQ, compared to respective water control,
which may indicate that, although at low concentrations of these
compounds it is not possible to observe biological changes, the
expression of these nematode genes seems to be affected. AChE
is responsible for nematode nerve impulse transmission, and
it is the predominant target of chemical nematicides used in
agriculture against PPN, reducing the parasitic ability of the
nematodes and impairing the life cycle completion (Combes
et al., 2001; Cui et al., 2017). The results reveal that the 1,4-
NTQ and JUG compounds slightly affect direct or indirectly
nematode nerve impulse transmission, which was verified by
J2 immobility, reacting only after being touched with a bristle.
Nevertheless, multiple molecular forms of AChE were found in
Meloidogyne spp., which specific functions were not identified
in mutation studies, suggesting an overlapping function of the
different classes (Chang and Opperman, 1991).
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Therefore, the mode of action of these compounds on M.
luci should be further investigated. Future studies on the M. luci
transcriptome analysis after exposure to these NTQ will help
to better understand the mode of action of these compounds
on RKN.

In conclusion, the bioactive compounds JUG and 1,4-
NTQ are very promising and attractive alternatives to
the use of synthetic nematicides to control PPN, such
as the RKN M. luci. The negative impact observed on
hatching, root penetration, and reproduction of M. luci
after exposure to JUG/1,4-NTQ at 50 ppm suggests that
these compounds may be helpful in reducing the M. luci
population in soil, contributing to limit the crop damage
caused by this nematode to a level economically acceptable.
Although 1,4-NTQ was shown to be most active than JUG
on M. luci J2 mortality, low concentrations of JUG were
efficient in restricting significantly nematode root penetration
and reproduction. Thus, research on the development of
nematicide formulations containing mixtures of both NTQ
should be considered in the future. The development of
bionematicide product based on NTQ compounds also opens
the opportunity for valorization of agro-industrial byproducts,
through the extraction of these compounds from walnut
husk residues.
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