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The pomegranate kernel oil has gained global awareness due to the health benefits 
associated with its consumption; these benefits have been attributed to its unique fatty 
acid composition. For quality control of edible fats and oils, various analytical and 
calorimetric methods are often used, however, these methods are expensive, labor-
intensive, and often require specialized sample preparation making them impractical on 
a commercial scale. Therefore, objective, rapid, accurate, and cost-effective methods are 
required. In this study, Fourier transformed near-infrared (FT-NIR) and mid-infrared (FT-MIR) 
spectroscopy as a fast non-destructive technique was investigated and compared to 
qualitatively and quantitatively predict the quality attributes of pomegranate kernel oil (cv. 
Wonderful, Acco, Herskawitz). For qualitative analysis, principal component analysis (PCA) 
and orthogonal partial least squares discriminant analysis (OPLS-DA) was applied. Based 
on OPLS-DA, FT-MIR spectroscopy resulted in 100% discrimination between oil samples 
extracted from different cultivars. For quantitative analysis, partial least squares regression 
was used for model development over the NIR region of 7,498–940 and 6,102–5,774 cm−1 
and provided the best prediction statistics for total carotenoid content (R2, coefficient of 
determination; RMSEP, root mean square error of prediction; RPD, residual prediction 
deviation; R2 = 0.843, RMSEP = 0.019 g β-carotene/kg, RPD = 2.28). In the MIR region of 
3,996–1,118 cm−1, models developed using FT-MIR spectroscopy gave the best prediction 
statistics for peroxide value (R2 = 0.919, RMSEP = 1.05 meq, RPD = 3.54) and refractive 
index (R2 = 0.912, RMSEP = 0.0002, RPD = 3.43). These results demonstrate the potential 
of infrared spectroscopy combined with chemometric analysis for rapid screening of 
pomegranate oil quality attributes.

Keywords: Punica granatum L., oil quality, partial least squares regression, discriminant analysis, infrared 
spectroscopy
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INTRODUCTION

Pomegranate and its co-products have gained traction in research 
and application for their nutraceutical and medicinal properties 
(Seeram et  al., 2006; Opara et  al., 2009). Pomegranate fruit 
can be divided into two fractions: edible and non-edible fractions. 
The edible portion contains arils and each aril contains a kernel 
(woody portion; O’Grady et  al., 2014; Arendse et  al., 2016). 
Pomegranate oil is derived from the kernel of the fruit and 
studies over the years have reported that the oil derived from 
the kernels have radical scavenging activity, anti-inflammatory, 
anti-tumoral and anti-diabetic properties (Lansky et  al., 2005; 
Lansky and Newman, 2007; Jing et  al., 2012; Fernandes et  al., 
2015; De Melo et  al., 2016). These properties have been linked 
to its unique phenolic and fatty acid composition (Seeram 
et  al., 2006; Khoddami et  al., 2014; Fernandes et  al., 2015). 
Pomegranate oil carries a higher premium compared to other 
oils such as olive and avocado oil, the premium may be  due 
to its unique fatty acid composition only found within 
pomegranates as well as its high phytochemical composition. 
Thus pomegranate oil, among others is highly susceptible to 
adulteration with cheaper alternatives (Uncu et  al., 2020).

To evaluate the chemical constituents in oil products, standard 
analytical methods such as high-performance liquid 
chromatography and various colorimetric methods are used 
(Dieffenbacher and Pocklington, 1991; Aluyor et al., 2009). These 
methods are used to provide precise and accurate measurements 
of quality attributes. However, their approach is often time-
consuming, expensive, and not always practical for large-scale 
commercial applications as it involves the use of trained sensory 
panelists or individuals. These drawbacks have promoted research 
interest in developing objective and non-invasive techniques 
for faster and less expensive assessment of oil quality attributes.

Due to its rapid, accurate, simple, and cost-effective way 
to evaluate chemical constituents, infrared (IR) spectroscopy 
in combination with chemometrics is one of the widely used 
non-destructive tools used by the food and beverage industry 
for quality testing and analysis (Sinelli et  al., 2010; Becker 
and Yu, 2013; Shi and Yu, 2017). IR spectroscopy is appropriate 
for predicting compounds containing polar functional groups 
such as –OH, C–O, and N–H. In the agricultural industry, 
IR spectroscopy in the near-infrared (NIR, 12,500–4,000 cm−1) 
and the mid-infrared (MIR, 4,000–400 cm−1) spectral region 
has been applied as a non-destructive analytical tool. Fourier 
transform infrared spectroscopy (FT-IR) uses the mathematical 
process (Fourier transform) to translate the raw data 
(interferogram) into the actual spectrum. FT-IR spectrometers 
have recently replaced dispersive instruments, due to their 
superior speed and sensitivity. FT-IR spectrometers have several 
prominent advantages over dispersive IR spectrometers. A better 
signal-to-noise ratio of the spectrum compared to the previous 
generation infrared spectrometers. FT-IR spectrometers have 
a higher wavenumber accuracy and low error range (±0.01 cm−1). 
Their scan time is short (approximately 1 s) and has a high 
resolution (0.1–0.005 cm−1; Hsu, 1997).

In combination with chemometric tools, both Fourier 
transform near-infrared spectroscopy (FT-NIRs) and Fourier 

transform mid-infrared spectroscopy (FT-MIRs) has several 
advantages and limitations. For instance, FT-NIRs has 
inexpensive components due to low-cost materials such as 
glass and quartz compared to FT-MIRs. FT-NIRs also use 
more robust components, and it is easier to manufacture 
rugged instruments, involving no moving parts. FT-MIRs in 
contrast contain more spectral information due to the higher 
resolution of the fundamental vibrational absorption bands 
and can identify very complex or similar structures compared 
to the broad overtone and combination absorption bands in 
the NIR region (Socaciu et  al., 2009; Manley, 2014; Shi and 
Yu, 2017). Another advantage of FT-MIRs includes fundamental 
vibrations of molecular bonds within a sample that occur in 
the “fingerprint” region, making the spectral profiles very 
sensitive; even very similar molecules can produce quite distinct 
spectral bands. Compared to FT-NIRs, the absorption bands 
of the spectra are very broad and overlapped as a result of 
many chemically different samples which give rise to almost 
indistinguishable spectral profiles. A detailed description of 
their advantages and limitations has been reviewed by Arendse 
et  al. (2020).

FT-IR spectroscopy has been successfully used to classify 
geographical locations to classify geographical sources of oils 
(Lin et  al., 2012) and detect adulteration in a variety of oil 
products (Yang et al., 2005; Gurdeniz and Ozen, 2009). Several 
studies have highlighted the application of IR spectroscopy 
for varying analytical quality attributes evaluation for a variety 
of oil products. Some of the major attributes accessed using 
IR spectroscopy include phenolic content, carotenoid content, 
peroxide value, refractive index, yellowness index, and fatty 
acids composition. These have been carried out for different 
oil products like olive oil (Inarejos-García et  al., 2013; Cayuela 
and García, 2017), palm oil (Mba et  al., 2014), maize oil 
(Kahrıman et  al., 2019) and vegetable oil (Pereira et  al., 2008).

Considering that the chemical composition of pomegranate 
oil may differ depending on the cultivar or growing region. 
To our knowledge, limited studies for the application of both 
FT-NIRs and FT-MIRs for evaluating quality attributes of 
pomegranate kernel oil, but also limited studies involved testing 
the robustness of PLS calibration models. The robustness of 
calibration models has become a critical issue in the application 
of vibrational spectroscopic techniques and an active area of 
research (Nicolaï et al., 2007; Magwaza et al., 2014). Our study 
attempts to evaluate the effects of cultivar differences on the 
robustness of calibration models and the ability of both FT-NIRs 
and FT-MIRs to qualitatively classify pomegranate oil based 
on different cultivars. The development of methods that combines 
FT-IR spectroscopy and chemometrics has the potential of 
providing novel input into non-destructive oil quality prediction 
for both authentication and adulteration application. Therefore, 
this study is aimed at investigating the feasibility of Fourier 
transform near-infrared and mid-infrared spectroscopy in 
evaluating pomegranate kernel oil quality both qualitatively 
[using principal component analysis (PCA) and orthogonal 
partial least squares discriminant analysis (OPLS-DA)] and 
quantitatively [via partial least squares regression (PLSr)]. 
However, very few studies on Vis/NIRS applications in fruit.
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MATERIALS AND METHODS

Fruit Supply and Processing
Three different pomegranate cultivars (cv. Wonderful, Acco, 
Herskawitz) were procured from Sonlia pack-house, Wellington, 
Western Cape region. A total of 180 fruit or 60 fruit per 
cultivar was used for this study. At the research laboratory, 
fruit without any physical defects was sorted and manually 
cut open for the edible aril portion at ambient conditions 
(21°C ± 65% RH). Cheesecloth was employed to separate kernels 
from the arils. Kernels were extracted from arils and then 
washed with distilled water to eliminate the residual aril sacs 
before being dried at a temperature of 60°C for 24 h in a hot 
air oven (PROLAB, South  Africa). Pomegranate kernels were 
dried to a moisture content of 1.7 wt. % (dry basis). After 
drying the seed the final seed weight averaged 12 ± 2.5 g per 
fruit. Dried pomegranate kernels were then packed in a 
polyethylene bag and stored at −20°C until further processing.

Oil Extraction and Yield
In this study, pomegranate oil was extracted using the solvent 
extraction method as described by Ampem (2017). Dried kernels 
were grinded into a powder with a particle size of 0.25 mm 
using a Sunbeam coffee grinder (Model SCG-250, 60 g capacity, 
South  Africa) in preparation for oil extraction (Eikani et  al., 
2012). Hexane solvent was used to extract oil from the kernel 
powder. Pomegranate kernel powder (30 g) was weighed into 
a glass flask and extracted twice, respectively, with 300 ml of 
hexane solvent at a time, reaching a total volume of 600 ml 
solvent solution for each sample. The mixture (600 ml) was 
sonicated in an ultrasonic bath (Model DC 400H, Haifa, Israel) 
which was operated at 40°C for 40 min. The oil filtrates from 
repeated extractions were pooled and recovered through 
distillation using a rotary evaporator (Heidolph Instruments 
GmbH & Co. KG, Germany). Thereafter, samples were placed 
within a vacuum oven at 60°C for 1.5 h to remove any remaining 
hexane solution (Parashar et  al., 2009). A total of 6 ml oil was 
obtained from each fruit and transferred into a 9 ml glass 
tube and stored in a dark environment at room temperature 
until further analysis. A total of 45 oil samples composed of 
15 samples each from three different cultivars (Acco, Wonderful, 
Herskawitz) were used for this study.

Spectral Acquisition
The Alpha-P ATR FT-IR spectrometer (Bruker Optics, Ettlingen, 
Germany) and the Multi-purpose analyser (MPA) spectrometer 
(MPA, Bruker Optics, Ettlingen, Germany) were used for spectral 
data acquisition. Samples were kept in 8 mm glass vials, and 
sample temperature was maintained at ±50°C using a heating 
block before spectra recording. This was to ensure that sample 
temperature was stable as studies have shown temperature to 
impact the intensity of the bands (Jiang et  al., 2008; Cayuela 
and García, 2017; Özdemir et  al., 2018). The temperature of 
50°C was chosen through preliminary trials and consultation 
with Bruker Optics, South  Africa. For the MPA spectrometer, 
the spectral data were acquired over the range of 12,500 to 

4,000 cm−1 (scanning resolution 4 cm−1; scanner frequency 10 kHz; 
background with air, 128 scans). The spectral acquisition occurred 
almost immediately for the Multi-purpose analyser (MPA) 
spectrometer since the instrument does not have a temperature 
control system. For the Alpha-P ATR FT-IR spectrometer, 
sample spectral data were acquired over the range of 4,000–
400 cm−1. The Alpha-P spectrometer was equipped with a 
diamond crystal plate (area 2 mm2) that maintained the sample 
temperature at 50°C. The temperature was monitored using 
OPUS software and spectral acquisition would only occur when 
the diamond crystal plate and sample reached a temperature 
of 50°C. The average time taken to acquire spectral data for 
one sample was 120 s using the following instrument settings: 
4 cm−1 resolution scan, 10 kHz scanner frequency and 128 
averaged scans per spectrum. The sample stage was cleaned 
in-between measurements with soft paper and undiluted methanol 
to avoid cross-contamination (Foudjo et  al., 2013).

Reference Measurements
Refractive Index
The refractive index of pomegranate oil was measured at ambient 
temperature (21 ± 3°C) with a calibrated Abbé refractometer, 
Model 302 (ATAGO Co. Ltd., Japan). Three drops of pomegranate 
oil were loaded onto the refractometer prism, and refractive 
index values were reported as mean ± standard error (SE, n = 3) 
for each sample. After each measurement, the prism was cleaned 
with petroleum ether followed by distilled H2O and dried with 
tissue paper.

Yellowness Index
Yellowness index indicates the degree of yellowness associated 
with scorching, soiling, and general product degradation by 
light, chemical exposure, and processing. The yellowness index 
of pomegranate oil was evaluated based on the CIE L*a*b* 
coordinates from a calibrated Minolta Chroma Meter, Model 
CR-400 (Japan). The yellowness index was calculated as described 
by Pathare et  al. (2013).

 
YI b

L
=

∗ ∗

∗
142 86.

 
(1)

Total Phenolic Content
Total phenolic content was measured using the Folin–Ciocalteau 
(Folin C) assay as reported by Makkar et  al. (2007) with 
modification, according to Fawole et  al. (2012). Briefly, 
pomegranate oil (0.5 ml) was dissolved in 14.5 ml of 50% 
aqueous methanol. An aliquot of 50 μl was diluted with 450 μl 
of 50% methanol (v/v) before the addition of 1 N Folin C 
(500 ml) and 2% sodium carbonate (2.5 ml). The mixture was 
vortexed and stored in a dark environment for 30 min before 
the absorbance was recorded at 760 nm against blank aqueous 
methanol. The total phenolic content of pomegranate kernel 
oil was extrapolated and reported as milligram gallic acid 
equivalent (mg GAE/g oil). The results for each sample were 
presented as mean ± SE (n = 3).
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Total Carotenoid Content
Total carotenoid content was evaluated as decribed by Biehler 
et  al. (2010) and Siano et  al. (2015) with modification. In 
brief, pomegranate oil (0.1 ml) was dissolved in 10 ml dimethyl 
sulfoxide (DMSO). The total carotenoid content of the resulting 
mixture was recorded at 440 nm and 460 nm, against a blank 
DMSO solvent. A standard curve consisting of 0.02–0.15 mg/ml  
DMSO solution was prepared following the same procedure. 
The results for total carotenoid content were expressed as gram 
(g β-carotene/kg) of pomegranate oil, and the results for each 
sample were presented as mean ± SE (n = 3).

Peroxide Value
Peroxide value was performed as described by Ampem (2017). 
Briefly, pomegranate oil (0.2 ml) was dissolved in 9 ml of 
chloroform: methanol mixture (7:3 ratio) in screw-capped vials. 
The resultant solution was mixed with 50 μl of 10 Mm xylenol 
orange methanol solution and 50 μl of 36 Mm iron (II) chloride 
solution and vortexed, respectively. The peroxide value of the 
resulting mixture was estimated following absorbance reading 
at 560 nm. Peroxide value was expressed in milli-equivalents 
(meq) of active oxygen per kilogram of oil and calculated 
using the following equation:

 

( )
55.84 2
− ×

=
× ×

S BA A mi
PV

W  
(2)

Where
PV = peroxide value.
AB = absorbance of the blank.
AS = absorbance of the sample.
mi = the inverse of the slope (Obtained from calibration curve).
W = weight of the sample (g). 55.84 is the atomic weight 

of iron.

Chemicals and Reagents
All chemical reagents were obtained from Sigma–Aldrich–Fluka 
Co. Ltd. (South Africa) unless otherwise stated.

Chemometric Data Analysis
The spectral acquisition occurred with OPUS software (version 
7.0), while data processing and analysis were achieved with 
SIMCA and OPUS software. Qualitative analysis (modeling of 
cultivar difference) was carried out using PCA and OPLS-DA 
using SIMCA software, and quantitative analysis (developing 
calibration models) was carried out with PLSr using OPUS 
software. For this study, several preprocessing methods were 
evaluated, baseline correction spectra were subjected to several 
filtering techniques, which included Savitzky–Golay 
transformation (first derivative), multiplicative scattering 
correction (MSC), and standard normal variate (SNV) correction. 
Separate OPLS-DA models were built for both NIR and MIR 
spectral data, each pair of two successive stages by using a 
dummy variable with a value of 1 assigned to samples that 
belonged to a specific group and a value of 0 to samples that 
did not belong to that group.

Partial Least Square (PLS) Regression Analysis of 
Spectral Data
For the quantitative analysis of spectral data, the spectral 
parameters used for multivariate analysis were optimized by 
subjecting spectral data to the software’s “Optimise” function. 
This function provides a combination of parameters such as 
different pre-processing methods and wavenumber regions and 
ranks results based on the number of latent variables and 
root-mean-square error of cross-validation (RMSECV) values.

The development of calibration models for the infrared (NIR 
and MIR) spectra was performed by applying partial least squares 
regression analysis (including mean centering). Spectral outliers 
were identified as having high residual variance from the zero 
line. Concentration outliers present in the dataset were removed 
and successive rounds of PLSr were done with the reduced 
dataset. A total of three outliers were removed, and the resultant 
calibration models were validated with the test dataset. For PLSr 
analysis, cross-validation was applied by the Leave-one-out method, 
which calculates potential models excluding one observation at 
a time. Calibration models was developed by combining all 
three cultivars and then randomly splitting the dataset into 2:1 
subsets, i.e., calibration (70%) and prediction (30%) sets, each 
subset containing sufficient samples of each cultivar.

The performance of PLS models was evaluated according 
to the following prediction statistics: coefficient of determination 
[R2; Eq. (3)], root mean square error of validation [RMSEV; 
Eq. (4)] and root mean square error of prediction [RMSEP; 
Eq. (5)]. Other statistical indicators for this study include 
models bias [Eq. (6); which gives an indication of the systematic 
error in the predicted values and its calculated values] and 
the residual prediction deviation [RPD; Eq. (7)] value, which 
is defined as the ratio of the standard deviation of the reference 
data of the validation set to the RMSEP value (which indicates 
the efficiency of calibration models). RPD values can be  used 
to evaluate the performance of the developed models (Williams, 
2014). According to Nicolaï et  al. (2007), models with RPD 
values below 1.5 is unreliable, while values between 1.5 and 
2.0 indicate models can be  used for rough prediction, while 
RPD values between 2.0 and 2.5 can be  used for quantitative 
predictions, any values above 3 are considered satisfactory. 
The best-performing models were selected based on the best 
overall performance (low RMSEP, low RMSEV, high R2, and 
higher RPD, and low bias).

 
R

y y

y y
cal act

cal mean

2

2

2
1= −

∑ −( )
∑ −( )  

(3)

 
RMSEE

M R
SSE=

− −
×

1
1  

(4)

 
RMSEP

y y
n

pred act= ∑
−( )2

 
(5)
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Bias

n
y ypred act= ∑ −( )1 2

 
(6)

 
RPD SD

RMSEP
=

 
(7)

Where n is number of spectra, yact is actual value, ymean is 
mean value, ycal is calculated value, ypred is the predicted value 
of the attribute, M is the number of calibration samples, R is 
the rank, SSE is the sum of squared error, SD is the standard 
deviation of reference values.

Statistical Analysis
To demonstrate that the prediction of the different selected 
quality parameters is from the actual IR spectra and not due 
to possible correlations with the other measured parameters, 
the reference data was subjected to Pearson’s correlation test 
using Statistica software (Statistica 16.0, StatSoft Inc., Tulsa, 
OK, United  States).

RESULTS AND DISCUSSION

Distribution of Calibration and Validation 
Reference Data
For this study, reference data for the different parameters were 
normally distributed around the mean (Table  1). According 
to Lu et  al. (2006), the accuracy and validation of calibration 
models normally depend on large variation in the present 
within the sample set in the physical and biochemical reference 
data. However, reports have indicated superior model accuracies 
using NIR spectroscopy when data with a large sample variation 
within the calibration and validation set is being considered 
(Magwaza et  al., 2013, 2014). Table  2 presents the standard 
deviation, minimum-to-maximum range, and CV% statistics 
of most of the parameters. Most parameters had high CV% 
values of up to 43% for both calibration and validation data 
sets covering a wide range of values, aside from the refractive 
index. Pearson correlation was applied to investigate the 
interrelationships between selected reference data of pomegranate 
oil. From the result, it can be  deduced that the prediction of 
these quality parameters (phenolics, carotenoids), and their 
concentrations should not correlate with one another. Correlation 

tests indicate that no correlation was observed between chemical 
indices such as phenolic and carotenoid content (0.227). Similarly, 
phenolic and carotenoid content showed no correlation with 
peroxide value (−0.009, 0.334) refractive index (0.260, 0.176) 
or oil yellowness index (0.172, 0.215). These results suggest 
that the prediction of the different studied parameters is actually 
from the IR spectra.

FT-NIR and FT-MIR Spectral 
Characteristics of Pomegranate Oil
NIR spectroscopy is a powerful non-destructive technique used 
for the detection of various compounds, the NIR spectrum 
provides information on the vibrational absorption of hydroxyl 
(O–H), amido (N–H), and C–H bonds. The average for both 
NIR and MIR spectra of pomegranate oil is presented in 
Figure  1. Pomegranate is highly abundant in punicic acid 
(C18:3-9c), linoleic acid (C18:2), and oleic acid (C18:1). Band 
assignment was done according to the literature (Foudjo et  al., 
2013; Inarejos-García et  al., 2013; Özdemir et  al., 2018). In 
the NIR region, bands around 8,451 cm−1 arise from second 
overtones of C–H stretching vibrations, while those at 7,502 
and 7,498 cm−1 are due to the combination bands of C–H in 
fatty acids. The bands at 5,774 and 5,450 cm−1 can be  ascribed, 
according to literature, from the first overtone of C–H stretching 
vibrations of methyl, methylene, and ethylene groups (Sinelli 
et  al., 2011; Özdemir et  al., 2018). Small bands at 4,659 and 
4,597 cm−1 are associated with combination bands of C–H and 
C–O stretching vibration. Several bands dominate the MIR 
spectra at 2,918, 2,556, 1,837, 1,463, 1,377, 1,238, 1,163, 1,114, 
1,099, and 721 cm−1. The absorbance band at 3,013 cm−1 has 
been associated with the stretching of the functional group 
=C-H (cis-) found in unsaturated fatty acids such as punicic 
acid (Guillén and Cabo, 1997). Absorbance at 2,924 and 
2,852 cm−1 are due to bands from asymmetric CH2 stretching 
vibration of acyl chains and methylene chains in fatty acids 
(punicic acid, linoleic acid, and oleic acid; Guillén and Cabo, 
1997; Sun, 2009). The major band at 1,743 cm−1 arises from 
C=O stretching vibrations of ν(C=O) ester in fatty acids (Guillén 
and Cabo, 1997, Sun, 2009). The band at 1,238, 1,163 and 
1,114 cm−1 has been associated with C-O or CH2 stretching 
or bending vibration out-of-plane of functional groups from 
fatty acids (Guillén and Cabo, 1997; Rohman and Che, 2011). 
The band at 721 cm−1 corresponds to the CH2 rocking mode 
(Yang et  al., 2005; Sinelli et  al., 2010). The spectral profile for 
pomegranate oil is comparable to those reported for other oil 

TABLE 1 | Mean, standard deviation (SD), range, and coefficient of variation (CV) for calibration and validation subsets for selected parameters of pomegranate kernel 
oil (sample number = 42).

Parameters Calibration set Validation set Overall 
CV%

Mean SD Min Max Mean SD Min Max

Peroxide value 7.311 4.219 1.745 16.342 7.478 3.873 1.943 13.517 54.758
Refractive index 1.520 0.0008 1.517 1.523 1.521 0.0010 1.519 1.522 0.0628
Total carotenoid content (g β-carotene/kg) 0.0977 0.0418 0.0640 0.270 0.100 0.0436 0.0650 0.232 43.158
Total phenolic content (mg GAE/g oil) 3.987 0.745 3.113 5.221 3.702 0.436 3.223 4.343 15.247
Yellowness index 54.226 18.540 23.141 97.280 55.690 21.842 23.946 96.416 36.706
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A B

FIGURE 1 | Representative absorbance spectra for ATR-FT-MIR (A) and FT-NIR (B) of pomegranate kernel oil.

samples like avocado oil (Foudjo et  al., 2013), virgin olive oil 
(Dupuy et  al., 2010; Sinelli et  al., 2010), rapeseed oil blend 
(Ma et  al., 2014), and palm oil (Mba et  al., 2014).

Qualitative Analysis of Pomegranate Oil 
Using PCA and OPLS-DA
Unsupervised Clustering (PCA)
PCA is, arguably, one of the most useful and widespread 
unsupervised methods used in chemometrics for its exploratory 
data analyses (Cozzolino et al., 2011; Jolliffe and Cadima, 2016). 
PCA was carried out to explore the possible clustering of 
samples and evaluate the influence of cultivar on oil quality. 

PCA is a statistical technique that is used to investigate the 
structure of a data set and attempts to model the total variance 
of the original data set via the uncorrelated principal components 
(Filzmoser and Todorov, 2011; Gautam et  al., 2015). PCA 
maximizes the variation in the data set projects the main 
variation onto a few latent variables and presents sample 
groupings as clusters in PCA score plots with the corresponding 
loadings plots (Wold et  al., 1987).

Preliminary assessment of both NIR and MIR spectra was 
performed using PCA, to examine the effects of cultivar differences 
on pomegranate oil quality. For NIR baseline-corrected 
spectra, the first two principal components (PC) were used in 

TABLE 2 | Model evaluation statistics for quality parameters of pomegranate kernel oil as determined from FT-NIR and FT-MIR spectroscopy (sample number = 42).

Parameter Acquisition 
mode

Pre-processing Wavenumbers 
range (cm−1)

Calibration Validation

LV R2 RMSEV R2 RMSEP RPD Bias Slope Corr.

Peroxide value FT-NIRs 1st + MSC 7,500–6,098, 
5,450–4,597

3 0.833 1.68 0.833 1.78 2.80 −0.866 0.823 0.935

FT-MIRs 2nd 3,996–2,556 3 0.959 0.99 0.919 1.05 3.54 −0.036 0.829 0.965
Refractive 
index

FT-NIRs 2nd 9,400–6,098, 
5,450–4,597

4 0.904 0.0003 0.863 0.0003 3.44 −0.000 0.906 0.956

FT-MIRs 2nd 3,996–1,118 4 0.960 0.0002 0.912 0.0002 3.43 0.000 0.867 0.958
Total 
carotenoid 
content

FT-NIRs SLS 7,498–940, 
6,102–5,774

5 0.892 0.015 0.843 0.019 2.28 −0.003 0.893 0.944

FT-MIRs 2nd 3,996–3,635, 
2,558–1837, 

760–399

3 0.958 0.002 0.632 0.007 1.72 0.002 0.543 0.836

Total phenolic 
content

FT-NIRs SLS 7,502–4,597 2 0.332 0.85 0.185 1.39 1.26 0.657 0.226 0.774

FT-MIRs 1st 3,996–3,965, 
1,479–758

2 0.635 0.47 0.568 0.37 1.57 −0.066 0.879 0.814

Yellowness 
index

FT-NIRs 2nd 8,451–7,498, 
6,102–4,597

5 0.556 13.60 0.531 14.30 1.49 2.64 0.543 0.740

FT-MIRs 2nd 2,918–2,556, 
1,120–758

1 0.307 11.90 0.205 15.00 1.15 −3.10 0.267 0.491

R2, coefficient of determination; RMSEV, root mean square error of validation; RMSEP, root mean square error of prediction; RPD, residual predictive deviation; LV, latent variable; 
Corr., correlation coefficient; 1st, first derivative; 2nd, second derivative; MSC, multiplicative scattering correction; SLS, straight line subtraction.
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relation to the chemical variation within the sample sets 
(Supplementary Table  1). By plotting all 45 data points, scores 
from the first two PC explained 100% (PC1 = 99.97%, PC2 = 0.0026%) 
of the total variation within the dataset. One dispersed group 
(cv. Herskawitz) was observed, which revealed that the first PC 
contributed most to the sample distribution, where samples were 
mainly stretched along the PC1 region (Figure  2A). However, 
the PCA plot revealed no clear groupings according to chemical 
variation within the data set, with cultivar Acco co-clustering 
with cultivar Wonderful. The score plots from the FT-MIR spectra 
for oil samples showed that the first two PC explained a total 
of 91.38% (PC1 = 91%, PC2 = 0.38%) of the variation 
(Supplementary Table  2). Examination of the PCA scores plot 
generated from three cultivars showed well-defined sample clusters 
for both Acco and Wonderful cultivars with both co-clustered 
with cv. Herskawitz (Figure  2B). This observation showed that 
despite its simplified approach, IR spectroscopy could be  used 
to differentiate between different cultivars based on spectral data.

Supervised Clustering/Discriminant Analysis 
(OPLS-DA)
Orthogonal projections to latent structures discriminant analysis 
(OPLS-DA) is a supervised classification technique that isolates 

a predictive component and integrates an orthogonal correction 
filter, to differentiate the variation within the dataset (Bylesjö 
et  al., 2006). OPLS-DA is often used as an alternative method, 
where PCA cannot show clear clustering. OPLS-DA works 
through the projection of data and is guided by known class 
information, thus offering increased separation projection in 
comparison to PCA (Trygg et  al., 2007). This is because 
OPLS-DA score plots are rotated so that between-class variation 
is projected on the predictive component, while within-class 
variation, is projected on the first y-orthogonal component 
(Wiklund et  al., 2008). Therefore, several authors classify that 
OPLS-DA models are easier to interpret than PLS-DA models, 
although both methods have the same predictive power (Trygg 
and Wold, 2002; Trygg et al., 2007; Musingarabwi et al., 2016).

To see the effects of cultivar differences on the quality 
characteristics of pomegranate oil, OPLS-DA was performed 
on both FT-NIR and FT-MIR spectra (Figure 3). For FT-NIRs, 
the application of OPLS-DA showed two well-clustered groups 
(cv. Wonderful and Acco), while pomegranate cultivar 
Herskawitz remained dispersed and co-clustered with cultivar 
Wonderful (Figure 3A). Whereas, for FT-MIRs, the application 
of OPLS-DA successfully discriminated and separated all 
three cultivars into well-defined cluster groups (Figure  3B). 

A B C

FIGURE 3 | OPLS-DA scores plots for NIR baseline-corrected spectra (A), MIR baseline-corrected spectra (B), and reference data plot (C). The colour in (A) and 
(B) represents different cultivars (Acco, Wonderful, Herskawitz) of extracted pomegranate oil (sample number = 42).

A B

FIGURE 2 | PCA score plots for NIR spectral data (A) and MIR spectral data (B). The colour represents different cultivars of extracted pomegranate oil, green 
(Acco), blue (Herskawitz), and red (Wonderful) (sample number = 42).
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A B

C D

FIGURE 4 | Scatter plots of FT-NIR/FT-MIR predicted (A), refractive index (B), total carotenoid content (C), and total phenolic content (D), plotted against 
destructively acquired reference data (sample number = 42).

A similar approach to qualitatively evaluate the quality of 
grape berries was performed by Musingarabwi et  al. (2016). 
These authors reported that the application of PCA and 
OPLS-DA successfully discriminated against and separated 
different developmental stages of grape berries into well-
defined cluster groups. The ability to successfully discriminate 
between different cultivars by both PCA and OPLS-DA using 
IR spectra has the potential for the application of authentication 
and adulteration assessment of pomegranate oil.

Interestingly, when plotting the reference data for each 
cultivar that is based on the reference measurements, the 
cultivar Herskawitz was highly associated with peroxide value 
and total carotenoid content (Figure  3C). The Wonderful 
cultivar has been grouped with total phenolic content and 
refractive index. While cv. Acco has shown an association 
with the yellowness index. These results suggest that the 
Wonderful cultivar has the highest concentration of 
unsaturation fatty acids since fatty acids are directly 
proportional to the refractive index of the oil. Similarly, 
pomegranate (cv. Wonderful) has the highest phenolic content, 
suggesting that fruit consumption for this particular cultivar, 
increases the intake of phenolic compounds which have been 
linked to antioxidant compounds. For color attributes, 
pomegranate oil obtained from Acco cultivar was the most 
suitable to assess the characteristic yellow coloration. While 
the cultivar Herskawitz has a high peroxide value suggesting 
that oil obtained from Herskawitz cultivar is more susceptible 

to oxidation. The differentiation between cultivars may be due 
to cultivar differences or fruit maturity status.

Quantitative Analysis of Pomegranate Oil 
Using PLS Regression
The best FT-NIRs and FT-MIRs models were developed using 
17 points, first derivative, second derivative, and straight-line 
subtraction, respectively. The model for each parameter was 
selected based on the evaluation of statistical parameters that 
gave higher R2, high RPD values, lowest RMSEV and RMSEP, 
and lowest number of latent variables. The overall performance 
of the developed models for all quality parameters is represented 
in Table  2. Scatter plots of FT-NIR and FT-MIR spectroscopy 
for predicted data plotted against measured reference data are 
presented in Figure  4. Models developed in the NIR and MIR 
spectral regions had a major influence on the regression statistics. 
All three cultivars were combined to create models with high 
robustness and variability.

The refractive index is an intrinsic property of oil measured 
based on light penetration through an oil sample (Aydeniz 
et  al., 2014; Khoddami et  al., 2014). Oil refractive index has 
been reported to be  directly proportional to the degree of 
unsaturation of fatty acids and inversely related to its viscosity 
and can, therefore, be  used to quantify the double bonds of 
fatty acids (Aydeniz et  al., 2014; Khoddami et  al., 2014). The 
statistical indicators for model fitness showed that both NIR 
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and MIR spectra yielded relatively accurate PLS models for 
refractive index. PLS model development in the FT-MIRs 
provided slightly better prediction statistics (R2 = 0.912, 
RMSEP = 0.0002, and RPD = 3.43) compared to the FT-NIRs 
(R2 = 0.863, RMSEP = 0.0003, and RPD = 3.44; Table  2). The 
wavenumber range used during the development of the PLSr 
model for the refractive index was between 3,996 and 1,118 cm−1, 
which is within the range reported by Yang and Irudayaraj 
(2001) for olive oil. The RPD value suggests the model developed 
can provide a satisfactory prediction for refractive index, while 
the low bias (<0.0002) of the developed model suggests that 
the model was stable and non-sensitive to factors such as cultivar.

For quality control in edible fats and oils, oxidation is one 
of the main parameters used for oil products. Oxidation of 
fats and oils produces either primary (peroxides) or secondary 
oxidation products. The PLSr models developed for peroxide 
value has shown that the FT-MIRs provided better prediction 
statistics (R2 = 0.919, RMSEP = 1.05 meq, and RPD = 3.54) 
compared to the FT-NIRs (R2 = 0.833, RMSEP = 1.78 meq, and 
RPD = 2.80; Table 2). Similar values were observed for RMSEV 
and RMSEP, suggesting that the developed models were not 
overfitted. Furthermore, the developed models had low bias 
values (0.036–0.86) indicating robust fitting and stability. This 
indicates that the models were not sensitive to external factors 
such as different cultivars. The RPD value (3.54) for the 
developed model suggests that satisfactory predictions can 
be  made with FT-MIRs.

FT-MIR spectroscopy has been used to evaluate the peroxide 
value of coconut oil, where the authors reported a high 
coefficient of determination (R2 = 0.982) and low RMSEP 
values (0.4978 meq; Marina et  al., 2013). The wavenumber 
range reported in this study for peroxide value is similar 
to those reported for the development of models for various 
oil products (Liang et  al., 2013; Marina et  al., 2015; Zahir 
et  al., 2017). For total carotenoid content, the NIR region 
of 7,498–940 and 6,102–5,774 cm−1 provided better prediction 
statistics (R2 = 0.843, RMSEP = 0.019 g β-carotene/kg) compared 
to FT-MIRs (R2 = 0.632, RMSEP = 0.007 g β-carotene/kg), with 
RPD value of 2.28 suggesting that the model is fit for 
quantitative predictions. Similar prediction results for total 
carotenoid content were reported by Schulz et  al. (1998) in 
essential oils, within the spectral region of 10,100 and 
5,150 cm−1. For total phenolic content, FT-MIRs in the region 
of 3,996 and 758 cm−1, have been shown to provide rough 
predictions (RPD = 1.57), while those developed in the NIR 
region were shown to be  unreliable (RPD = 1.26). Contrary 
to our results, Trapani et  al. (2016) reported that the NIR 
spectral region of 12,500 to 4,000 cm−1 provided relatively 
good prediction statistics (R2 = 0.71, RMSEP = 0.08 mg/kg dm) 
for total phenolic content in olive oil. Model development 
for the yellowness index gave relatively poor prediction 
statistics for both FT-NIRs and FT-MIRs (Table  2). Low 
RPD values and high bias characterized these models, 
suggesting that the developed models were unreliable, and 
overestimation may have occurred for these quality attributes. 
The developed calibration models were only performed using 
internal cross-validation and thus only applicable to the three 

selected cultivars. It is well known that the real challenge 
with calibration models is that their predictive performance 
almost always reduces when tested on unknown sources such 
as fruit maturity, seasonality, and growing regions. Thus 
future research should include more variability (growing 
regions and seasonality) to improve the model’s robustness.

For this study, FT-MIRs were shown to be  better suited for 
both qualitative and quantitative applications. The regression models 
developed within the MIR spectral region performed better than 
those developed within NIR spectral region. This can be  because 
the mid-infrared spectrum contains wavenumbers for fundamental 
rotational molecular vibration, which is highly sensitive to specific 
chemical compositions. In contrast, the near-infrared spectrum 
is associated mainly with overtone and combination bands of 
fundamental transition, making it less reproducible and specific. 
Another advantage of ATR FT-MIR spectroscopy is temperature 
control via the ATR crystal, which reduces potential variation 
by maintaining constant sample temperature (Smyth and Cozzolino, 
2011). However, FT-NIRS is more applicable to practical usage 
for online or inline implementation or the development of portable 
devices due to their relatively inexpensive instrumentation costs, 
more robust components, and it is easier to manufacture rugged 
instruments, involving no moving parts.

CONCLUSION

Classification of pomegranate oil quality according to their 
respective cultivars was possible with FT-IR spectroscopy. 
FT-MIRs spectra resulted in 100% discrimination between 
oil samples extracted from different cultivars using 
OPLS-DA. For quantitative prediction of various quality 
attributes, FT-MIRs predicted were able to predict three 
parameters (refractive index, peroxide value, total phenolic 
content) compared to FT-NIRS (refractive index, total 
carotenoid content). This study also revealed that pomegranate 
oil (cv. Wonderful) has been associated with a higher refractive 
index (indirect correlation with unsaturation fatty acids) and 
phenolic content compared to “Acco” and “Herskawitz.” This 
studThe measurement of additional quality characteristics 
such as individual fatty acids will foreseeably improve the 
discrimination and prediction accuracy. Future research is 
required to improve the robustness of calibration models 
for both NIR and MIR spectroscopy by either increasing 
the sample size, including different growing locations and 
seasonality or by applying different chemometric techniques. 
The current knowledge obtained from this study has shown 
that chemical indices of pomegranate kernel oil differ even 
amongst cultivars and are detectable with both FT-NIR and 
FT-MIR spectroscopy. These chemical indices can not be used 
for quality evaluation but can be applied to effectively classify 
or discriminate between oil samples that have even slightly 
different chemical characteristics, making it a highly effective 
tool within the processing industry for authenticity and 
adulteration testing. The approach provides a powerful way 
to rapidly extract qualitative and quantitative information 
emanating from multiple spectral variables.
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