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Exogenous application of antioxidants can be helpful for plants to resist salinity, which

can be a potentially simple, economical, and culturally feasible approach, compared with

introgression and genetic engineering. Foliar spraying of alpha-tocopherol (α-tocopherol)

is an approach to improve plant growth under salinity stress. Alpha-tocopherol acts as

an antioxidant preventing salinity-induced cellular oxidation. This study was designed

to investigate the negative effects of salinity (0 and 120mM NaCl) on linseed (Linum

usitatissimum L.) and their alleviation by foliar spraying of α-tocopherol (0, 100, and

200mg L−1). Seeds of varieties “Chandni and Roshni” were grown in sand-filled

plastic pots, laid in a completely randomized design in a factorial arrangement,

and each treatment was replicated three times. Salinity significantly affected linseed

morphology and yield by reducing shoot and root dry weights, photosynthetic pigment

(Chl. a, Chl. b, total Chl., and carotenoids) contents, mineral ion (Ca2+, K+) uptake,

and 100-seed weight. Concomitantly, salinity increased Na+, proline, soluble protein,

peroxidase, catalase, and superoxide dismutase activities in both varieties. Conversely,

the growth and yield of linseed varieties were significantly restored by foliar spraying of

α-tocopherol under saline conditions, improving shoot and root dry matter accumulation,

photosynthetic pigment, mineral ion, proline, soluble protein contents, peroxidase,

catalase, superoxide dismutase activities, and 100-seed weight. Moreover, foliar spray

of α-tocopherol alleviated the effects of salinity stress by reducing the Na+ concentration

and enhancing K+ and Ca2+ uptake. The Chandni variety performed better than the

Roshni, for all growth and physiological parameters studied. Foliar spray of α-tocopherol

(200mg L−1) alleviated salinity effects by improving the antioxidant potential of linseed

varieties, which ultimately restored growth and yield. Therefore, the use of α-tocopherol

may enhance the productivity of linseed and other crops under saline soils.
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INTRODUCTION

Linseed (Linum usitatissimum) is an annual herb of the Linaceae
family, widely grown in the Mediterranean region due to its
edible oil, durable fiber, food, and medicinal properties (Qayyum
et al., 2019; Song et al., 2020). An increase in flex demand
is due to its high protein, lignan, fiber, and linolenic acid-
rich oil contents (Povkhova et al., 2021). Consumption of flax
seeds or flaxseed oil reportedly improved cardiovascular health
and proven beneficial for cancer, inflammatory diseases, and
neurological and hormonal disorders (Ghobadi-Namin et al.,
2020). Recent reports indicated that about 20% of total cultivated
and 33% of irrigated lands are afflicted by saline conditions at
present and more than 50% of the arable land would be affected
by salts by the year 2050 (Dubey et al., 2020). Salinity stress
negatively affects growth by the reduction in height, deterioration
of the product quality and crop yields (Rahneshan et al., 2018),
and physiological processes, such as a decrease in water uptake,
chlorophyll content, and nutrient contents (Khataar et al., 2018;
Hernandez, 2019). Currently, 1,125 million ha of lands are salt-
affected, of which ∼76 million ha are affected by salinization
and sodification around the world. Due to salinization, soil
degradation is a major limitation for agricultural productivity
worldwide (Hossain, 2019). In Pakistan, the area affected by
salinity is approximately 6.3 Mha of a total of 22 Mha of cropland
(GOP, 2020); furthermore, ensuring global food security is
rapidly becoming a major challenge because salinization already
affects one-third of the total arable land worldwide (Tahir et al.,
2018). Salinity stress has reduced the productivity of 6 Mha of
agricultural land by 0.02 to 0.04 Mha per year (Lalarukh and
Shahbaz, 2018).

Salinity reduces plant yield by interfering with morphological
and biochemical functions (Arif et al., 2020) through the
impairment of cellular metabolic processes, thereby reducing

photosynthetic pigment contents, biomass accumulation, plant
height, and ultimately, yield (Naqve et al., 2018; Riaz et al.,

2019; Noreen et al., 2021). Significant structural and functional
changes in the photosynthetic processes under salt stress are

connected with changes in the structure of the thylakoid
membrane, photosystem II (PSII) complex, photosynthetic
electron transport chain, and a decrease in the photosynthetic
activity. Moreover, the influence of salt stress has been shown
on the interaction between QA and plastoquinone (PQ), as well
as on PSI antenna size (Abdelgawad et al., 2018; Stefanov et al.,
2021). Further, soil salinity disrupts plant-water relations by
reducing soil and leaf water potential, thereby causing osmotic
stress (Navada et al., 2020). In addition, ion toxicity is caused
by the aggregation of Na+ions and the reduced uptake and
accumulation of Ca2+ and K+ (Isayenkov and Maathuis, 2019),
which in turn affects plant physiology andmorphology (Lalarukh
and Shahbaz, 2018). Increased cytosolic Ca2+ activated the
SOS2-SOS3 protein kinase complex, which phosphorylates and
stimulates the activity of SOS1 (PM Na+/H+ antiporter) and
OsCPK12 and controls the detoxification of ROS by upregulating
OsAPX2 and OsAPX8. Several calmodulins (CaM) and CaM-like
(CML) proteins were found to be related to the osmotic and salt
tolerance in plants (Chen et al., 2021).

Plants have evolved an antioxidant system that consists
of enzymatic and non-enzymatic processes to counter the
accumulation of salinity-induced reactive oxygen species (ROS)
(Zainab et al., 2021). In addition, foliar spraying of antioxidant
compounds can help to reduce the negative impact of high
salt contents in plants (Naqve et al., 2021a). In addition to
plant salinity tolerance and exclusion of toxic ions, plants can
cope with salt-induced injury through the exogenous application
of a variety of antioxidants, osmolytes, and plant hormones.
Such treatments may be applied as foliar spraying or pre-
sowing seed treatment; alternatively, they may be applied to the
growth medium (Hasanuzzaman et al., 2020). Tocopherol (α,
β, γ, or δ) is a natural, highly liposoluble antioxidant produced
by green photosynthetic organisms (Chen et al., 2016; Naseer
et al., 2020), which effectively protects biological membranes
from salinity-induced oxidation (Naqve et al., 2021b). α-
Tocopherol restores plant growth by detoxifying singlet oxygen
species and peroxides, thereby shielding photosystems, and
inhibiting lipid peroxidation under saline conditions (Zandi and
Schnug, 2022). Maintaining membrane and organelle integrity
is closely correlated with ROS scavenging capacity under
salt stress (Hajihashemi et al., 2020). The resulting reduction
of ROS levels protects chloroplasts from heat dissipation;
specifically, α-tocopherol quinone inhibits photoexcitation of the
photosynthetic machinery (Hu et al., 2020; Shanshan et al., 2020).
In addition, α-tocopherol increases chlorophyll and carotenoid
contents (Lalarukh et al., 2022) and regulates protein content,
sugar level, and yield. It also improves antioxidant enzyme
activities as well as the mineral ion (Ca2+ and K+) and proline
contents (Sadiq et al., 2019). Overall, as an antioxidant, α-
tocopherol prevents the formation of ROS and the proliferation
of free radical reactions (Naqve et al., 2021c). Salinity causes
severe economic losses to farmers in developing countries. Thus,
there is an imperative need for agricultural experts to introduce
and popularize cost-effective strategies for salinity damage
remediation. The exogenous application of naturally synthesized
α-tocopherol compound is one such approach. Therefore, this
study aimed (i) to explore the impact of spraying two linseed
varieties with α tocopherol to alleviate salinity’s adverse effect on
the growth and yield and (ii) to investigate the effect of the foliar
spray of α-tocopherol on antioxidant-related biochemical traits
of linseed plants grown under saline conditions.

MATERIALS AND METHODS

This research was performed at UAF Postgraduate Agricultural
Research Station (Latitude: 31.383721 and Longitude: 72.989998)
to study the influence of α-tocopherol (foliar spray) on growth
and physio-biochemical traits of linseed plants under saline
regimes. For this, plastic pots of diameter 24 cm and a depth
of 30 cm having river sand (10 kg) were used. The varieties
“Chandni and Roshni” seeds were taken from Ayub Agriculture
Research Institute, Faisalabad, and 10 seeds were sown per pot,
which afterward were thinned to six plants. Sand-filled plastic
pots were laid in a completely randomized design (CRD) in a
factorial arrangement with three replications. At the 3-week-old
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plants stage, Hoagland’s nutrient solution (full strength) and two
salt levels (0 and 120mM NaCl) were applied to each pot. The
salt concentration of 120mM was maintained in aliquot parts of
60mM to prevent salt shock. Foliar application of α-tocopherol
(0, 100, and 200mg L−1) concentration was sprayed on 36
days old plants. Tween-20 (0.1%) was applied as a surfactant to
enhance the absorbance of the solution. The linseed plants in each
pot provided 50ml of each level of α-tocopherol concentration
(0, 100, and 200mg L−1). Plants were sprayed with α-tocopherol
soon after sunset to prevent solution evaporation. After 21 days
of foliar spray, three plants were carefully uprooted from each
pot for data collection of shoots and roots. Plants were kept
in an oven at 65◦C and data for dry biomass was recorded.
The physiological andmineral nutrients were recorded according
to standard protocols. At maturity, plants were collected and
sun-dried for measuring the weight of 100 seeds.

Photosynthetic Pigments
The methods of Arnon (1949) and Davies (1976) were followed
the determination of chlorophyll and carotenoid contents. A 0.1-
g crushed fresh leaves has been placed in sterilized plastic bottles
containing 10ml of 80% acetone solution. These bottles were
kept in dark overnight at room temperature and read by using
a spectrophotometer at 663, 645, and 480 nm.

Nutrients Analysis
The acid digestion method proposed by Wolf (1982) was used
to determine nutrient contents. In the digestion flask, 0.1 g of
dried plant material was digested overnight at room temperature
in 2mL H2SO4 and 1mL of H2O2 and was heated at 250◦C until
fumes appeared and thematerial converted colorless. Then, it was
filtered and made its volume up to 50mL by distilled water. The
mineral ions were measured using a flame photometer.

Biochemical Traits
Superoxide Dismutase
For the measurement of SOD activities, Giannopolitis and Ries’s
(1977) procedure was adopted. Themixture was set in cuvettes by

adding the specified amounts of phosphate buffer, H2O, Triton-
X, L-methionine, NBT, enzyme extract, and riboflavin, and then
the cuvettes were placed below a fluorescent lamp for 15min and
measured at 560 nm.

Catalase and Peroxidase
The leaf sample (0.5 g) was standardized in K2HPO4 buffer
(50mM). The mixture was prepared by mixing potassium
phosphate buffer (pH 7.0), guaiacol (20mM), H2O2 (40mM),
and 0.1ml enzyme extract to approximate POD action.
Absorbance at 470 nm was read for 20 s. The amount of CAT
action examined was prepared by combining (50mM) phosphate
buffer (pH 7.0), (5.9mM) H2O2, and (0.1ml) enzyme extract.
After every 20 s, the absorbance at 240 nm was read by using the
Chance and Maehly (1955) technique.

Proline
Bates et al. (1973) technique was used for estimating the proline
content. A 0.5-g shoot material was taken and standardized with
10ml sulfosalicylic acid; 2.0ml of extract, glacial acetic acid,
and ninhydrin acid were mixed with 4.0ml toluene and read at
520 nm by spectrophotometer.

Total Soluble Proteins
Fresh leaves material was ground in a chilled environment with
KH2PO4 buffer, and the extract (5mL) was standardized with
(1ml) Bradford Dye and (0.1N) HCl and read at 595 nm using
a spectrophotometer (Bradford, 1976).

Statistical Analysis
Analysis of variance (ANOVA) of data was calculated
for all studied parameters using Statistix 8.1 software.
Treatment comparison was made using Least Significance
Difference (LSD) at a probability level of 5% (Steel et al.,
1997).

TABLE 1 | Analysis of variance (mean squares) for growth and physiological traits of two different linseed (Linum usitassimum L.) varieties (Roshni and Chandni) treated

with α-tocopherol as foliar spray under saline and non-saline conditions.

Source df RDW SDW 100 Seed Wt. Chl. a Chl. b Total Chl. Car.

Var 1 0.8836*** 1.63840*** 72.9601*** 8.457*** 1.335 *** 4.303*** 0.04804**

Toc 2 0.22114*** 2.00088*** 7.8511*** 4.558*** 1.952*** 1.246*** 0.22325***

Sal 1 1.84054*** 5.35151*** 42.8807*** 1.062*** 6.898*** 3.462*** 0.84186***

Var × Toc 2 0.01923ns 0.09003ns 0.0235ns 1.873ns 4.270** 9.146* 0.00108ns

Var×Sal 1 0.31734*** 0.20854* 0.2320ns 4.882*** 2.667*** 1.476*** 0.00041ns

Toc×Sal 2 0.02241ns 0.09391ns 3.3070*** 3.615** 3.349* 6.806* 0.06052***

Var×Toc×Sal 2 0.01034ns 0.03414ns 0.0186ns 3.615** 3.349* 6.806* 0.00529ns

Error 2 0.00677 0.04755 0.0813 1.209 1.546 1.955 0.00286

Var (LSD 0.05%) 0.0569 0.150 0.1971 0.59 0.11 0.14 0.037

Sal (LSD 0.05%) 0.0569 0.150 0.1971 0.59 0.11 0.14 0.037

α-Toc (LSD 0.05%) 0.0697 0.1846 0.2414 1.07 0.55 1.57 0.045

*, **, and *** = significant at 0.05, 0.01, and 0.001 levels respectively, ns, non-significant; Var, Varieties; Sal, Salinity; α-Toc, Alpha tocopherol; RDW, Root dry weight; SDW, Shoot dry

weight; 100-Seed wt., Seed weight; Chl. a, Chlorophyll a; Chl. b, Chlorophyll b; Total Chl., Total Chlorophyll; Car., Carotenoids.
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FIGURE 1 | Root dry weight (A), Shoot dry weight (B), and 100-seed weight (C) of linseed varieties (Roshni and Chandni) sprayed with different levels of α-tocopherol

under saline conditions. Values represent means ± S.D. Significant differences in row spacing were measured by the least significant difference (LSD) at p > 0.05 and

indicated by different letters.
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FIGURE 2 | Chl. a (A), Chl. b (B), Total Chl. (C), and Car. (D) of linseed varieties (Roshni and Chandni) sprayed with different levels of α-tocopherol under saline

conditions. Values represent means ± S.D. Significant differences in row spacing were measured by the least significant difference (LSD) at p > 0.05 and indicated by

different letters.
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TABLE 2 | Analysis of variance (mean squares) for ionic status, osmolytes, and antioxidant traits of two different linseed (Linum usitassimum L.) varieties (Roshni and

Chandni) treated with α-tocopherol as foliar spray under saline and non-saline conditions.

Source df Ca2+ K+ Na+ TSP Proline CAT POD SOD

Var 1 5,650.03*** 4,117.4*** 5,877.78*** 23.33*** 46,735.23*** 28.0723*** 53.1198*** 318.266***

Toc 2 1,067.53*** 1,044.1*** 945.03*** 38.19*** 14,336.62*** 68.8764*** 44.4943*** 14.578***

Sal 1 7,891.36*** 10,920.3*** 7,627.11*** 35.09*** 11,653.20*** 29.2501*** 13.2375*** 112.431***

Var × Toc 2 11.36ns 3.1ns 35.86ns 0.650*** 316.55*** 0.5658ns 0.2560* 0.916ns

Var×Sal 1 1,034.69*** 294.7*** 1,133.44*** 0.045*** 0.5136** 0.9312* 2.7060*** 7.200**

Toc×Sal 2 10.19ns 42.3*** 24.19ns 0.091*** 534.76*** 0.4155ns 12.1447*** 0.345ns

Var×Toc×Sal 2 5.03ns 11.4** 13.03ns 0.0025*** 0.625*** 0.9361* 0.4341** 0.184ns

Error 2 19.98 3.1 24.66 0.007 118,652 0.1861 0.0638 0.605

Var (LSD 0.05%) 3.09 1.2178 3.43 3.05 23.70 0.2983 0.1746 0.5375

Sal (LSD 0.05%) 3.09 1.2178 3.43 3.05 23.70 0.2983 0.1746 0.5375

α-Toc (LSD 0.05%) 3.7847 1.4915 4.2041 3.744 29.02 0.3653 0.2138 0.6583

*, **, and *** = significant at 0.05, 0.01, and 0.001 levels, respectively, ns, non-significant; Var, Varieties; Sal, Salinity; α-Toc, Alpha tocopherol; Ca2+, Calcium ion; K+, Potassium ion;

Na+, Sodium ion; TSP, Total soluble proteins; CAT, Catalase; POD, Peroxidase; SOD, Superoxide dismutase.

RESULTS

Growth Traits
Salinity had a significant (P ≤ 0.05) impact on the shoot and
root dry weight and 100-seed weight in both linseed tested
varieties. Mean square values revealed that at 120mM NaCl
concentration, variety Chandni performed better than that of
variety Roshni in terms of the percent reduction in root and shoot
dry weight and 100-seed weight. Furthermore, the interaction
between variety and salinity was significant (P ≤ 0.05), while
the interactions of α-tocopherol and salinity and α-tocopherol
and variety were non-significant. Salt stress significantly reduced
the growth attributes in both linseed varieties. Under salt stress,
foliar spraying of α-tocopherol (100 and 200mg L−1) remarkably
enhanced shoot and root dry weights and 100-seed weight in
both linseed varieties. Variety Chandni showed more growth in
terms of dry weights of the shoot, root, and seed as compared to
that in variety Roshni. Salinity reduced the growth significantly
while a foliar spray of α-tocopherol (200mg L−1) enhanced
the seed, shoot, and root dry weight under saline conditions
(Table 1 and Figures 1A–C).

Photosynthetic Pigments
Salinity reduced the leaf chlorophyll a, b, and total chlorophyll
and carotenoid concentrations in both linseed varieties. Mean
square values revealed that interaction between salinity and
variety was significant at P ≤ 0.001 for chlorophyll a and b,
and total chlorophyll while salinity× tocopherol interaction was
significant at P ≤ 0.01, P ≤ 0.05, P ≤ 0.001 for chlorophyll a,
chlorophyll b, and total chlorophyll and carotenoids, respectively.
Under saline conditions, variety Chandni had more pigment
content than that of variety Roshni. The 200mg L−1 α-
tocopherol treatment was more efficient in enhancing the
attributes of both varieties under stress conditions. Foliar
application of α-tocopherol significantly increased chlorophyll
and carotenoid contents in salt-stressed plants. Of all α-
tocopherol concentrations tested, 200mg L−1 was more effective

for improving the attributes of salinity-treated plants of both
varieties (Table 1 and Figures 2A–D).

Ionic Content
Mean square values for ionic content indicated that the
interaction between variety and salinity was significant (P≤
0.001), while variety×tocopherol interaction was non-significant.
The Ca2+ and K+ contents decreased significantly in both linseed
varieties, whereas the concentration of Na+ ions increased
under the saline regime. In addition, Na+ accumulation
varied remarkably in both linseed varieties. Foliar spraying
with α-tocopherol altered the shoot Ca2+, K+, and Na+

ion contents in both linseed varieties. The Chandni variety
showed higher contents of these ions than the Roshni
variety. A spray of α-tocopherol remarkably altered the
shoot Ca2+ and K+ contents in both linseed varieties under
salt stress. In addition, foliar spraying with α-tocopherol
significantly reduced Na+ contents in both linseed varieties
(Table 2 and Figures 3A–C).

Biochemical Traits
Enzymatic Antioxidant
The mean square values exhibited a significant difference in
enzymatic antioxidants (P ≤ 0.001) with variety × salinity
interaction; however, a non-significant difference was observed
with variety × tocopherol and tocopherol × salinity interactions
for CAT and SOD activities. The enzymatic antioxidant activity
increased significantly in both linseed varieties under salinity
stress. Variety Chandni showed higher antioxidant enzymatic
activities (CAT, POD, and SOD) than the variety Roshni under
saline conditions. Furthermore, variety Chandni showed higher
SOD, POD, and CAT activities than variety Roshni when α-
tocopherol was used as a foliar spray under salinity conditions.
Foliar application of 200mg L−1 α-tocopherol remarkably
enhanced enzymatic antioxidant activities compared to 100mg
L−1 in high-salinity regimes (Table 2 and Figures 4A–C).
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FIGURE 3 | Na+ (A), K+ (B), and Ca2+ (C) of linseed varieties (Roshni and Chandni) sprayed with different levels of α-tocopherol under saline conditions. Values

represent means ± S.D. Significant differences in row spacing were measured by the least significant difference (LSD) at p > 0.05 and indicated by different letters.
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FIGURE 4 | CAT (A), POD (B), and SOD (C) of linseed varieties (Roshni and Chandni) sprayed with different levels of α-tocopherol under saline conditions. Values

represent means ± S.D. Significant differences in row spacing were measured by the least significant difference (LSD) at p > 0.05 and indicated by different letters.

Frontiers in Plant Science | www.frontiersin.org 8 June 2022 | Volume 13 | Article 867172

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Abdullah et al. Responses of Linseed in Alpha Tocopherol Under Salinity Stress

FIGURE 5 | Proline (A) and TSP (B) of linseed varieties (Roshni and Chandni) sprayed with different levels of α-tocopherol under saline conditions. Values represent

means ± S.D. Significant differences in row spacing were measured by the least significant difference (LSD) at p > 0.05 and indicated by different letters.

Organic Osmolytes
Mean square values exhibited that variety × salinity, varieties
× tocopherol, and tocopherol × salinity interactions showed
significant differences (P≤ 0.001) for proline and soluble protein
content. In terms of osmolyte contents, linseed varieties differed
significantly from the variety Chandni and exhibited higher
osmolyte content than the variety Roshni. Alpha-tocopherol
spray at 200mg L−1 enhanced proline and soluble protein
contents to a greater extent compared to that of 100mg L−1 in
both linseed varieties. Similarly, under salinity conditions, foliar
spraying of α-tocopherol (200mg L−1) considerably enhanced
proline and soluble protein contents in comparison to 100mg
L−1 of α-tocopherol in both varieties (Table 2 and Figures 5A,B).

DISCUSSION

Salinity stress can damage the physiological mechanisms of

plants (Kirsch et al., 2019). Salinity stress has become a major

threat to agriculture and it has been estimated that the yield of

economically significant crops can reduce by 50% if the current

rate of salinization remains to continue (Mbarki et al., 2020).
The visual symptoms of salinity stress include reduced growth.

In this study, the biomass (root and shoot dry weight) decreased
significantly with an increase in salinity in tested varieties of
linseed. Salinity effects could be alleviated by employing shot-gun
approaches, that is, exogenous application of vitamins, nutrients,
and antioxidants. One of these antioxidants is α-tocopherol,
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which can be exogenously applied as it is produced by plants
endogenously (Naqve et al., 2021b). In this study, reduction
in linseed has been alleviated by foliar spray of α-tocopherol.
This showed that α-tocopherol supplementation increases plant
growth by stimulating various signaling factors involved in plant
growth regulation. In the current investigation, a reduction in
100-seed weight has been observed in tested linseed varieties
under salinity stress. Reduction in yield might be attributed to
stunted growth, reduced rate of photosynthesis, and ionic stress
under saline conditions.

The quantity and quality of photosynthetic pigments play a
critical role in plants by carbon assimilation, thus making them
extremely important to all components of the photosynthetic
system. However, salinity stress disorganizes the plastid structure
and ultimately disturbs the biosynthesis of chlorophyll and other
photosynthetic pigments, including leaf chlorophyll a and b,
total chlorophyll, and carotenoid concentration. In this study,
salt-induced stress significantly reduced all these pigments in
both the tested varieties of linseed. Foliar spray of α-tocopherol
significantly enhanced chlorophyll a and b, total chlorophyll, and
carotenoid contents, and 200mg L−1 spray was more effective
in enhancing the concentration of the pigment. Altered pigment
concentrations cause a reduction in photosynthesis rate, as the
impact of salinity stress on photosynthesis may include the
disruption of the reaction center of photosystem II (PSII) and
the electron transport chain. α-tocopherol is synthesized in
plastids and acts as an antioxidant to protect photosynthetic
pigments and alleviate salinity-induced oxidative bursts (Naqve
et al., 2021c). Thus, while protecting chloroplast structure and
thylakoid membranes from photo-inhibition, α-tocopherol plays
a crucial role in plant tolerance to high salinity conditions.
Indeed, exogenously applied α-tocopherol treatment optimized
carotenoid and chlorophyll content under salinity stress.

Salt stress imbalances the uptake of nutrients which ultimately
disintegrate the membrane and ultrastructure of the cell.
Consequently, salinity leads to osmotic and ionic stress (Singh
et al., 2021). Further, a nutritional imbalance is a major problem
induced by salinity stress. In this study, Na+ ion concentration
was significantly increased in the tissues of both linseed varieties
under salinity stress. Such elevated Na+ levels reportedly
interrupt photosynthesis, metabolism, and antioxidant activities,
resulting in low plant productivity. The amount of K+ and
Ca2+ ions was significantly reduced in tested varieties of linseed
under salinity stress. This nutritional imbalance under salinity
conditions results in osmotic stress and ROS accumulation
(Cambridge et al., 2017). The accumulation of Na+ caused by
high salinity is preceded by a decrease in K+ concentration,
indicating that Na+ and K+ ions are antagonistic. Salinity affects
plant processes by imposing osmotic stress and destroying ionic
and redox signaling (Singh et al., 2021).

K+ absorption is impaired by high salt (NaCl) levels in
the soil and groundwater. In turn, a reduction in K+ uptake
adversely affects water relations, enzymatic activities, and protein
biosynthesis (Chokshi et al., 2017). In turn, calcium acts in
signal transduction processes and provides membrane structural
stability; however, toxic salt concentrations reduce Ca2+ uptake.
Our data showed that salinity significantly reduced the content

of Ca2+ and K+ ions and enhanced Na+ in both root and shoot
tissues of both varieties in this study. However, a significant
increase in Ca2+ and K+ ion content in shoots and roots of
linseed plants upon foliar spraying with α-tocopherol enhanced
K+ and Ca2+ uptake to maintain ionic balance and ionic
homeostasis, thus adjusting physiological performance to the
saline environment. Calcium plays a vital role in plants by
providing structural stability and as a signaling molecule, but
high concentrations of toxic salts reduced the uptake of Ca2+.
Alpha-tocopherol supplementation helps lower NaCl ion content
and enhances the uptake of K+ under abiotic stress and non-
stressed conditions (Ahmed et al., 2021).

Higher concentrations of reactive oxygen species (ROS)
are produced under salinity stress, causing tissue damage by
oxidization of macromolecules and, consequently, reducing crop
productivity. The production of antioxidant agents for ROS
quenching is a common plant strategy to prevent or minimize
salinity stress-induced injury (Gulcin, 2020). Such reduction is
reportedly associated with the closing of stomata and results in
severely reduced diffusion of CO2 into the leaf mesophyll in
plants under saline conditions.

In addition, enzymatic antioxidants play a vital role in
preventing salinity-induced damage due to ROS accumulation.
Particularly, in this study, foliar spraying of α-tocopherol
enhanced SOD, CAT, and POD enzyme activities considerably
under salinity stress. These enzymes are well-known to be
upregulated in coordination with α-tocopherol and help plants
resist oxidative bursts induced by salinity (Hasanuzzaman
et al., 2020). Thus, SOD activity quenches singlet oxygen
species, while CAT and POD activities contribute to the
efficient quenching of H2O2 (Ali et al., 2018). Thus, in
addition to its ROS-quenching antioxidant effect, α-tocopherol
supplementation helps to counter salinity-induced oxidative
bursts by upregulating enzymatic antioxidant activities, such as
CAT, POD, and SOD.

Soluble proteins are compatible solutes that increase under
salinity stress. In this study, salinity stress significantly increased
the total soluble protein content of linseed, and foliar spraying of
α-tocopherol resulted in a significant increase in the total soluble
protein content. Protein biosynthesis is aided by α-tocopherol.
Similarly, proline is well known to accumulate in salinity-stressed
plants to protect plant tissues against osmotic damage (Qayyum
et al., 2020). To cope with osmotic stress, salt-stressed plants tend
to accumulate compatible solutes, such as proline, that decrease
the osmotic potential enhancing water absorption (Abdelgawad
et al., 2018). Consistently, we observed an enhanced leaf proline
content under salinity stress in tested varieties of linseed. As an
antioxidant, proline protects plants from the harmful effects of
salts by shielding the photosynthetic machinery and acting as an
osmolyte. Consistently, the use of α-tocopherol as a foliar spray
increased proline content, suggesting that α-tocopherol plays
a defensive role against salinity-induced injury by promoting
osmotic adjustment.

Increased levels of total soluble proteins are thought to boost
SOD activity in plants and decrease the negative effects of
ROS (Naz et al., 2019). Here, salinity significantly enhanced
total soluble protein content in linseed plants, and a highly
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significant increase of total soluble protein was observed upon
foliar spraying of α-tocopherol under salinity stress. Indeed,
exogenous spraying of α-tocopherol and protein synthesis were
positively correlated. Results of this study indicated that salinity
stress increased leaf proline in the tested linseed varieties because
proline accumulation and salinity stress-responsive proteins were
positively correlated.

Plants are highly susceptible to abiotic and biotic stress
conditions, which cause significant yield losses (Naz et al., 2018).
In the experiments reported herein, a reduced number of seeds
were produced under high salinity conditions. However, both
in the control and salinity treatments, foliar application of α-
tocopherol increased plant yield. A reduction in the uptake of
essential nutrients was directly associated with low yield under
salinity stress. Moreover, α-tocopherol spraying significantly
enhanced plant yield under control and salinity conditions.
Altogether, our data strongly indicated that the application of
α-tocopherol enhanced the uptake of essential nutrients, greater
chloroplast stability, and a reduction of oxidative stress, all of
which were closely related to the observed increase in yield under
salinity stress conditions.

CONCLUSION

Foliar spray of α-tocopherol proved effective in the alleviation
of salinity-induced damages in linseed by increasing growth,
photosynthetic pigments, ionic contents, and biochemical traits
possibly by protecting chloroplast due to its antioxidant
potential. Among the tested linseed varieties, Chandni showed

enhanced tolerance against salinity and 200mg L−1 α-tocopherol
was more effective. Thus, this study points to the use of
linseed variety Chandni to be grown in saline soils with
foliar spray of α-tocopherol (200mg L−1) to enhance linseed
production under field conditions. Foliar spray of α-tocopherol
is also recommended to apply on other crops to alleviate
salinity-induced damages.
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