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Canopy chlorophyll content (CCC) indicates the photosynthetic functioning of a crop,
which is essential for the growth and development and yield increasing. Accurate
estimation of CCC from remote-sensing data benefits from including information on leaf
chlorophyll and canopy structures. However, conventional nadir reflectance is usually
subject to the lack of an adequate expression on the geometric structures and shaded
parts of vegetation canopy, and the derived vegetation indices (VIs) are prone to be
saturated at high CCC level. Using 3-year field experiments with different wheat cultivars,
leaf colors, structural types, and growth stages, and integrated with PROSPECT+SAILh
model simulation, we studied the potential of multi-angle reflectance data for the
improved estimation of CCC. The characteristics of angular anisotropy in spectral
reflectance were investigated. Analyses based on both simulated and experimental
multi-angle hyperspectral data were carried out to compare performances of 20 existing
VIs at different viewing angles, and to propose an algorithm to develop novel biangular-
combined vegetation indices (BCVIs) for tracking CCC dynamics in wheat. The results
indicated that spectral reflectance values, as well as the coefficient of determination
(R2) between mono-angular VIs and CCC, at back-scattering directions, were mostly
higher than those at forward-scattering directions. Mono-angular VIs at +30◦ angle,
were closest to the hot-spot position in our case, achieved the highest R2 among 13
viewing angles including the nadir observation. The general formulation for the newly
developed BCVIs was BCVIVI = f × VI(θ1) − (1 − f) × VI(θ2), in which the VI was
used to characterize chlorophyll status, while the subtraction of VI at θ1 and θ2 viewing
angles in a proportion was used to highlight the canopy structural information. From our
result, the values of the θ1 and θ2 around hot-spot and dark-spot positions, and the f
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of 0.6 or 0.7 were found as the optimized values. Through comparisons revealed that
large improvements on CCC modeling could be obtained by the BCVIs, especially for
the experimental data, indicated by the increase in R2 by 25.1–51.4%, as compared to
the corresponding mono-angular VIs at +30◦ angle. The BCVIMCARI[705,750] was proved
to greatly undermine the saturation effect of mono-angular MCARI[705,750], expressing
the best linearity and the most sensitive to CCC, with R2 of 0.98 and 0.72 for simulated
and experimental data, respectively. Our study will eventually have extensive prospects
in monitoring crop phenotype dynamics in for example large breeding trials.

Keywords: winter wheat, multi-angle hyperspectral remote sensing, canopy chlorophyll content, biangular
combination, crop phenotype

INTRODUCTION

Canopy chlorophyll content (CCC) is defined as the total amount
of chlorophyll present in the canopy per unit ground area.
The CCC, as the product of leaf chlorophyll content (LCC)
and leaf area index (LAI), is capable of indicating the overall
characteristics of plant assemblages, to avoid the deficiency
of LCC, which mainly involves the information of individual
plant conditions. It is an important phenotypic trait for crop
breeding since it can represent the plant’s capacity to intercept
and use sunlight through photosynthesis. Also, it is a key factor
influencing crop biological function with consequences on many
aspects, including crop phenotypes and plant stress, as well as
crop quality and yield (Merzlyak et al., 1999; Huang et al., 2011;
Gutierrez et al., 2015). In addition, CCC is proven to be very
sensitive to N availability in the soil (Hinzman et al., 1986), thus
precise monitoring of CCC plays an important role in optimizing
N fertilizer strategy, and consequently, obtaining a higher yield,
and at the same time, avoiding the waste of resources and the
pollution of farmland ecosystem in the context of precision
agriculture. In the past decades, the significance of CCC for crop
growth and development status and agricultural management
has motivated the interest and substantial efforts of researchers
on high-throughput determination of crop CCC using remote-
sensing data (Broge and Leblanc, 2001; Broge and Mortensen,
2002; Li et al., 2016), and has provided the rationale for improving
our capability to remotely measure it at the field or larger scales.

Conventionally, CCC estimation was mostly based on spectral
reflectance acquired from a near nadir direction. Several optical
indices have arisen in the literatures and have been proven to
be well-correlated with vegetation chlorophyll content (Daughtry
et al., 2000; Sims and Gamon, 2002; Gitelson et al., 2006;
Wu et al., 2008). As the significant relationship between leaf
nitrogen and chlorophyll (Li et al., 2013), a series of nitrogen
indices [e.g., Nitrogen Reflectance Index (NRI), Normalized
Difference of the Double-peak Areas (NDDA), Ratio Vegetation
Index (RVI), Normalized Difference Vegetation Index green-
blue (NDVIg−b)] were proposed for tracking nitrogen changes
according to spectral features of chlorophyll (Bausch and Duke,
1996; Hansen and Schjoerring, 2003; Xue et al., 2004; Feng
et al., 2014), and in turn, they have also been investigated to
assess crop chlorophyll status (Li et al., 2016). However, most
of these vegetation indices (VIs) were prone to suffering from

saturation (Sims and Gamon, 2002; Haboudane et al., 2004),
thus, reducing their sensitivity to high chlorophyll content.
Researchers have been hard at work finding ways to cope with this
issue, although quite difficult, if not impossible, to achieve. One
of the approaches is to use the red-edge bands to take the place of
red bands partly due to the unique characteristics and potential
of the red edge region for chlorophyll estimation (Blackburn,
1998). For example, Gitelson and Merzlyak (1994) focused
on improving the commonly and widely used Normalized
Difference Vegetation Index (NDVI) and Simple Ratio (SR)
and proposed the NDVI[705,750] and SR[705,750]. Wu et al.
(2008) developed the Modified Chlorophyll Absorption Ratio
Index (MCARI[705,750]) and MCARI/Optimized Soil-adjusted
Vegetation Index (MCARI/OSAVI[705,750]) based on previously
published MCARI and MCARI/OSAVI (Daughtry et al., 2000),
by taking into account the effect of quick saturation at the red
band. Ground truth validation showed an appropriate result
for high chlorophyll content estimation in winter wheat and
maize. However, these VIs were calculated from the nadir
spectral reflectance, which is mainly contributed by the upper
leaves of the canopy (Li et al., 2013), making it very difficult
to depict the chlorophyll information over the whole canopy,
especially for the complicated canopies that vary in vegetation
types, canopy structures, background contributions, etc. (Leblanc
et al., 1997). Moreover, the lack of expression of information
on the geometric structures and the shaded parts of vegetation
canopy would limit the use of nadir-based VIs for accurate
determination of chlorophyll status when upscaling to canopy
level, and then, hardly an adequate description of characteristics
of plant communities.

A possible alternative and complementary method to
minimize these limitations presented above is the exploitation
of multi-angle remote-sensing technology. Multi-angle
observations contain much more information than the simple
nadir observation since they capture the information of an
area of interest from several different angles. It is demonstrated
that multi-angle canopy reflectance has the ability of assessing
three-dimensional canopy structure that is poorly detected by the
nadir alone (Chen et al., 2003; Brown de Colstoun and Walthall,
2006), so they are expected to provide the possibility to evaluate
CCC more accurately for crops. There have been studies showing
that off-nadir spectral sensing generated more effective VIs for
monitoring leaf biological parameters when compared to the
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nadir direction (Stagakis et al., 2010; Zhang et al., 2021). Several
recent studies that used multi-angle spectral data also focused
on developing new multi-angular VIs aiming to obtain truly
better vegetation variables inversions (e.g., LAI, leaf nitrogen
content, and water use efficiency) than the conventional VIs
(Hasegawa et al., 2010; Wu et al., 2010; He et al., 2016; Zhang
et al., 2021). Indeed, these VIs have enriched the methodology
for vegetation parameters estimation with remote-sensing
technology. Nevertheless, few researchers have reported the
construction of multi-angular VIs for crop CCC retrieval.

In recent years, some multi-angle observing data are already
available from sensors mounted on different remote sensing
platforms. Compared to airborne and spaceborne platforms,
such as Multi-angle Imaging Spectroradiometer (MISR), the
Compact High-Resolution Imaging Spectrometer (CHRIS), the
ground-based goniometers, are used more extensively, since
they can measure vegetation canopy at higher spatial resolution,
as well as extremely various directions, by adjusting angular
sampling and viewing height in a very flexible way. In addition,
the PROSPECT+SAILh (PROSAIL) model describes how light
propagation within vegetation canopy and has been successfully
used before to develop and test various VIs for estimating leaf
parameters for multiple types of vegetation including wheat
(Haboudane et al., 2004; Wu et al., 2008; Zhou et al., 2019).
It allows for the simulation of reflectance at arbitrary viewing
and illumination geometries and a set of leaf and canopy
parameters, providing another convenient avenue to create
multi-angle spectral data and characterize different traits for a
wheat phenotype.

The main purpose of this study is to propose the BCVI
that includes abundant chlorophyll and structural information
of plant communities, yet, resistant to saturation limits, using
multi-angle spectral data, then, benefits the high-throughput and
nondestructive determination of crop CCC compared to the

conventional mono-angular VIs. The analyses are based on a
simulated canopy multi-angle hyperspectral reflectance dataset
produced by PROSAIL model in combination with real ground
measured data collected from 3-year field campaigns. The study
is composed of three phases: (1) to analyze the characteristics
of angular anisotropy in spectral reflectance; (2) to examine the
performances of previously published mono-angular VIs in CCC
estimation and identify the VIs that is sensitive to CCC of winter
wheat; (3) to develop the new BCVIs by coupling spectral and
angular information and compare their performances with the
corresponding mono-angular VIs, to evaluate the improvement
of CCC estimation when the multi-angle observation was used.

MATERIALS AND METHODS

Experimental Design
The experiments were conducted over 3 years (2004, 2005,
and 2007) at Xiaotangshan National Precision Agriculture
Experimental Site (116◦120′E, 40◦13.20′N), in Changping
district, Beijing, China (Figure 1). This experimental site has
been operational since 2001 and used for precision agriculture
research. The crop selected in this study was winter wheat, which
was cultivated in silty clay soil with sufficient water supply and
uniform nutrient management. The nutrients of soil in the topsoil
layer (0–.20 m depth) were as follows: 1.42–2.2% of organic
matter, 117.6–129.1 mg/kg of available potassium, and 20.1–
55.4 mg/kg of available phosphorus. Information on different
measurement times, wheat cultivars, leaf colors, leaf structural
types, and sampling dates were summarized in Table 1. All
cultivars were sown with a row space of 25 cm, each cultivar
was planted in a plot and repeated three times. A total of 60
datasets, including canopy multi-angle spectral reflectance and
corresponding CCC, were collected during the 3 years.

FIGURE 1 | The overview map of study area (cited from Kong et al., 2021).
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TABLE 1 | Different measurement times, wheat cultivars, leaf colors, leaf structural
types, and sampling dates for the experiments.

Year Wheat
cultivar

Leaf color Leaf structural
type

Sampling date

2004 Laizhou
3279

Dark green Erective Stem elongation (Z34),
booting (Z47), heading
(Z59)

Linkang 2 Dark green Loose

Jing 411 Light green Erective

9507 Light green Loose

2005 Nongda
3291

Dark green Erective Stem elongation (Z34),
booting (Z47), heading
(Z59)

Jingdong 8 Dark green Middle

Linkang 2 Dark green Loose

Lumai 21 Light green Erective

Jingwang
10

Light green Middle

9507 Light green Loose

2007 Laizhou
3279

Dark green Erective Stem elongation (Z31),
stem elongation (Z34),
booting (Z47), heading
(Z59), milk-filling (Z73)

I-93 Dark green Erective

Linkang 2 Dark green Loose

Jing 411 Light green Erective

Jing 9428 Light green Loose

9507 Light green Loose

In situ Measurements
Measurement of Canopy Multi-Angle Spectral
Reflectance
Canopy multi-angle spectral reflectance was measured in each
plot using an ASD FieldSpec 3 spectrometer (Analytical Spectral
Devices, Boulder, CO, United States), with a 25◦ field-of-view
fiber optics, under clear sky conditions between 11:00 and 13:00
(Beijing local time) when minimum variations in solar view
angle occur. The instrument records spectral radiance with a
sampling interval of 1.4 nm and a resolution of 3 nm between
350 and 1,050 nm, and a sampling interval of 2.0 nm and a
resolution of 10 nm between 1,000 and 2,500 nm. It was held on
a rotating bracket to enable spectral measurements of the same
target from different angles in a short time. Canopy multi-angle
spectral measurements were conducted in the solar principal
plane (constructed by the direction of incident direct sunlight,
and the direction of the normal to surface target) at different
viewing zenith angles (θ). A total of 13 viewing angles varied from
−60◦ to +60◦ with 10◦ incremental step (i.e., θ = 0◦,±10◦,±20◦,
±30◦,±40◦,±50◦, and±60◦), where a positive angle refers to the
back-scattering direction (the side facing away from the sun), a
negative angle refers to the forward-scattering direction (the side
facing into the sun). The nadir (i.e., θ = 0◦) spectral measurements
were made at a height of approximately 1.3 m above the canopy
top. A white Spectralon (Labsphere, Inc., NH, United States)
reference panel was used under the same illumination conditions
to convert the spectral radiance to reflectance before and after

canopy spectral measurements. Twenty scans were performed
and averaged to obtain canopy spectral reflectance per viewing
angle. More detailed information about the multi-angle spectral
measurements can be found in previous studies (Wu et al., 2010;
Huang et al., 2011).

Determination of Canopy Chlorophyll Content
Four 1-m consecutive rows of wheat in the plot, within the
footprint of canopy multi-angle reflectance acquisitions, were
harvested by cutting off the aboveground portions, then, put in
cooled black plastic bags and transported to the laboratory to
measure the biological parameters. Leaves that fully expanded
and showed homogenous color, as well as no visible sign of
damage, were sampled from top to bottom of the canopy. Two
leaf disks (about 0.25 cm2) were cut-off from each leaf sample.
One part of the disks were used for the chlorophyll extraction,
which was carried out by immersing and grinding the disk in
10 mL aqueous acetone/distilled water buffer solution (80:20,
volume proportion). After storing the solution in darkness for
more than 24 h, the absorbance was measured with a UV-VIS
spectrophotometer (Perkin-Elmer, Lambda 5, Waltham, MA,
United States) at 645 and 663 nm wavelengths. Leaf chlorophyll
a and chlorophyll b content (mg/L) were determined using
Equations 1, 2 (Lichtenthaler, 1987). Another part of leaf disks
was weighted after drying in an oven at 80◦C for 48 h to
determine leaf dry weight (DW, g), and then, used to compute leaf
mass per area (LMA, g/cm2), defined as the ratio between leaf dry
weight and leaf area (Poorter et al., 2009). The LAI measurement
was conducted by the laboratory analysis, 10% of all the sampled
leaves were taken as a subsample for leaf area measurement using
a Li-Cor 3100 area meter (Lincoln, NB, United States), and the
weight of leaves was recorded to scale up to the LAI of the 1 m2

area. The CCC (µg/cm2) was calculated as the product of LCC
(µg/cm2) and LAI, as shown in Equation 6.

LCCa
(
mg/L

)
= 12.25 A663 − 2.79 A645 (1)

LCCb
(
mg/L

)
= 21.50 A645 − 5.10 A663 (2)

LCCa
(
mg/g

)
= [LCCa

(
mg/L

)
× VT

(
ml
)
]/

[DW
(
g
)
× 1,000] (3)

LCCb
(
mg/g

)
= [LCCb (mg/L)× VT(ml)]/

[DW (g)× 1,000] (4)

LCC (µg/cm2) = [LCCa
(
mg/g

)
+ LCCb

(
mg/g

)
]

× LMA
(
g/cm2)

× 1,000 (5)

CCC (µg/cm2) = LCC (µg/cm2)× LAI (6)

where A645 and A663 are the absorbances of extract solution
at wavelength 645 and 663 nm, respectively; LCCa is leaf
chlorophyll a content, LCCb is leaf chlorophyll b content, VT(ml)
is the volume of extract solution.

PROSPECT+SAILh Model Simulation
In order to evaluate whether multi-angle observations can lead
to the improved estimation of CCC, PROSAIL radiative transfer
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model, a coupled model of the leaf optical model PROSPECT
and the canopy bidirectional reflectance model SAILh, was used
for simulation of canopy multi-angle reflectance and sensitivity
analysis of VIs. At the leaf level, PROSPECT model simulates
leaf reflectance and transmittance between 400 and 2,500 nm
at 1 nm increment, as a function of a series of biochemical
parameters, including leaf mesophyll structure parameter (N),
LCC, leaf carotenoid content (Car), leaf brown pigment content
(Cbrown), leaf equivalent water thickness (Cw), and leaf dry matter
content (Cm). The SAILh model has the capacity to simulate
canopy multi-angle spectral reflectance, which is described as a
function of LAI, average leaf angle (ALA), hot-spot parameter
(hspot), soil moisture parameter (psoil), a fraction of diffuse
incident radiation (skyl), and the parameters controlled the
view-sensor-illumination geometry, i.e., solar zenith angle, view
zenith angle, and the relative azimuth angle between the sun
and sensor. The combined PROSPECT+SAILh model has been
extensively used in a large number of studies and applications
(Jacquemoud et al., 2009).

To perform the PROSAIL simulation, we set the LCC ranged
from 25 µg/cm2 to 100 µg/cm2 in steps of 5 µg/cm2, whilst the
LAI ranged from 1 to 8 in steps of 0.5, based on the field measured
data regarding the wheat investigated in this study. The CCC
was the product of the model input parameters LCC and LAI.
The solar zenith angle was set to 30◦, the values of view zenith
angles were varied from 0◦ to 60◦ by changing the observation
angle in 10◦ increments, as well as the relative azimuth angles
between the sun and the sensor was set to 0◦ (corresponding
to the back-scattering directions) and 180◦ (corresponding to
the forward-scattering directions), which were all consistent with
the field measurements. Input parameter Cbrown was assigned
a value of 0 since there were no brown leaves observed in the
wheat canopy after visual inspection. Other input variables were
either determined at the averaged values in accordance with
the experimental plots or taken from the published literatures
(Haboudane et al., 2004; Yu et al., 2014). A dataset of 3,120
canopy multi-angle reflectance simulations was generated by
running PROSAIL model using a random combination of the
input parameters (Table 2).

Mono-Angular and Biangular-Combined
Vegetation Indices
Canopy spectral reflectance measured from different viewing
angles was processed and analyzed as an individual dataset in this
study. A total of 20 published VIs that were previously proposed
for leaf chlorophyll and nitrogen estimates were selected. They
were grouped into chlorophyll indices and nitrogen indices
(Table 3). On one hand, these VIs were calculated from spectral
reflectance obtained at a given viewing angle among 13 viewing
angles, referred to as mono-angular VIs, then were tested for the
potential of CCC estimation. On the other hand, we established a
series of BCVIs based on the VIs shown in Table 3. The formula
is given in Equation 7. The values of each VI at all the possible
two-angle observations, selected from 13 viewing zenith angles
between −60◦ and +60◦, were combined in form of subtraction,
with a parameter “f ” changing from 0 to 1 at a step of 0.1 was

TABLE 2 | Input parameters of PROSAIL model.

Parameters Units Values Steps

PROSPECT model

Leaf mesophyll structure
parameter (N)

– 1.55 –

Leaf chlorophyll content
(LCC)

µg/cm2 25–100 5

Leaf carotenoid content
(Car)

µg/cm2 10 –

Leaf brown pigment
content (Cbrown)

µg/cm2 0 –

Leaf equivalent water
thickness (Cw)

cm 0.013 –

Leaf dry matter content
(Cm)

g/cm2 0.0045 –

SAILh model

Leaf area index (LAI) m2/m2 1–8 0.5

Average leaf angle (ALA) Degree Spherical –

Hot-spot parameter (hspot) – 0.15 –

Soil moisture parameter
(psoil)

– 1 –

Fraction of diffuse incident
radiation (skyl)

– 0.23 –

Solar zenith angle Degree 30 –

View zenith angle Degree 0–60 10

Relative azimuth angle
between the sun and
sensor

Degree 0–180 180

used as an adjusting factor, resulting in 858 combinations of
viewing angles and adjusting factor values. The BCVI built by
a given VI was referred to as BCVIVI. In the selection of the
VI used in the BCVI, the VI should be highly sensitive to the
dynamics of chlorophyll. So, the VIs that achieved better results
in quantifying chlorophyll content at mono-angular observations
(shown in Figure 4 below) were chosen. Additionally, the value
of f represented the proportion of VI at one angle (referred to
as VI(θ1)), and the value of (1-f ) represented the proportion of
VI at the second angle (referred to as VI(θ2)). The difference of
VI between the two angles was used to strengthen the canopy
structural trait of the crop. As a consequence, this construction
algorithm is expected to allow the CCC estimation with high
accuracy when using the developed BCVI. All the calculations
were implemented using MATLAB 8.3 (The MathWorks, Inc.,
Natick, MA, United States).

BCVIVI = f × VI(θ1) − (1− f )× VI(θ2), f = 0.1, 0.2, · · · , 1
(7)

Data Analysis
To investigate the angular anisotropy in spectral reflectance, the
green, red, red edge, and near-infrared (NIR) bands (represent
by 550, 680, 705, and 750 nm, respectively) were chosen
because of their widespread use in deriving chlorophyll-related
indices (Daughtry et al., 2000; Wu et al., 2008). We computed
the normalized reflectance at all viewing zenith angles by
normalizing the nadir reflectance as a reference for the above
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TABLE 3 | Published vegetation indices used in the analyses.

Vegetation index Formula References

Chlorophyll indices

PSNDa (pigment specific simple ratio for chlorophyll a)
R800 − R680

R800 + R680
Blackburn, 1998

PSNDb (pigment specific simple ratio for chlorophyll b)
R800 − R635

R800 + R635
Blackburn, 1998

NDVI[705,750] (normalized difference vegetation index using 705 and
750 nm bands)

R750 − R705

R750 + R705
Gitelson and Merzlyak, 1994

SR[705,750] (simple ratio using 705 and 750 nm bands)
R750

R705
Gitelson and Merzlyak, 1994

CIgreen (chlorophyll index using green band)
R790

R550
− 1 Gitelson et al., 2006; Clevers

and Kooistra, 2012

CIrededge (chlorophyll index using red edge band)
R790

R710
− 1 Gitelson et al., 2006; Clevers

and Kooistra, 2012

MCARI (modified chlorophyll absorption ratio index) [(R700 − R670)− 0.2 (R700 − R550)]
(

R700

R670

)
Daughtry et al., 2000

MCARI[705,750] (modified chlorophyll absorption ratio index using 705
and 750 nm bands)

[(R750 − R705)− 0.2 (R750 − R550)]
(

R750

R705

)
Wu et al., 2008

MCARI/OSAVI (MCARI/optimized soil-adjusted vegetation index)
[(R700 − R670)− 0.2 (R700 − R550)]

(
R700
R670

)
(1+ 0.16) (R800 − R670)

/
(R800 + R670 + 0.16)

Rondeaux et al., 1996;
Daughtry et al., 2000

MCARI/OSAVI[705,750] (MCARI/OSAVI using 705 and 750 nm bands)
[(R750 − R705)− 0.2 (R750 − R550)]

(
R750
R705

)
(1+ 0.16) (R750 − R705)

/
(R750 + R705 + 0.16)

Wu et al., 2008

TCARI (transformed chlorophyll absorption ratio index) 3
[
(R700 − R670)− 0.2 (R700 − R550)

(
R700

R670

)]
Haboudane et al., 2002

TCARI/OSAVI (TCARI/optimized soil-adjusted vegetation index)
3
[
(R700 − R670)− 0.2 (R700 − R550)

(
R700
R670

)]
(1+ 0.16) (R800 − R670)

/
(R800 + R670 + 0.16)

Haboudane et al., 2002

TCARI/OSAVI[705,750] (TCARI/OSAVI using 705 and 750 nm bands)
3
[
(R750 − R705)− 0.2 (R750 − R550)

(
R750
R705

)]
(1+ 0.16) (R750 − R705)

/
(R750 + R705 + 0.16)

Wu et al., 2008

TVI (triangular vegetation index) 0.5 [120 (R750 − R550)− 200 (R670 − R550)] Broge and Leblanc, 2001

MTVI1 (modified TVI) 1.2 [1.2 (R800 − R550)− 2.5 (R670 − R550)] Haboudane et al., 2004

REP (red edge position) 700+ 40×
(R670 + R780)

/
2− R700

R740 − R700
Clevers and Kooistra, 2012

Nitrogen indices

NDVIg−b (normalized difference vegetation index using green and blue
bands)

R573 − R440

R573 + R440
Hansen and Schjoerring,
2003

NRI (nitrogen reflectance index)
R570 − R670

R570 + R670
Bausch and Duke, 1996

NDDA (normalized difference of the double-peak areas)
R755 + R680 − 2× R705

R755 − R680
Feng et al., 2014

RVI (ratio vegetation index for nitrogen)
R810

R560
Xue et al., 2004
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FIGURE 2 | A workflow diagram of canopy chlorophyll content estimation used in this study.

representative bands. Its formula was as follows:

Normalized reflectance =R(θ)

/
R(Nadir) (8)

where R(θ) and R(Nadir) indicate the spectral reflectance obtained
from a given viewing zenith angle among the 13 viewing angles
between−60◦ and +60◦ and the nadir observation, respectively.

The abilities of mono-angular VIs and BCVIs in assessing
CCC were evaluated using two datasets, one was a simulated
dataset produced by the PROSAIL model, another was measured
from the field campaigns. Linear regression was used to model
the relationship between CCC and the two types of indices, while
the leave-one-out cross-validation approach was used to validate
the models. The coefficient of determination (R2), p-value, and
root mean square error (RMSE) were employed as indicators
to evaluate the accuracy of estimation models. In addition, the
ratio of performance to deviation (RPD), defined as the ratio
between the standard deviations of the CCC to predict over
RMSE (Richter et al., 2012), was also computed. The prediction
ability of the model was interpreted according to the three classes
of RPD: RPD > 2 is considered as excellent model performance,
1.4 < RPD < 2 is considered as good model performance, and
RPD < 1.4 is considered as unacceptable model performance

(Shepherd and Walsh, 2002; Razakamanarivo et al., 2011). The
R2, RMSE, and RPD were calculated as Equations 9–11. For each
dataset, VIs that showed the highest R2 and RPD, and the lowest
RMSE with CCC was considered the optimal candidates for
predicting CCC. Improvement of CCC estimation was assessed
by comparing the estimations of CCC based on mono-angular
data and based on multi-angular data. Figure 2 shows the
methodology of CCC estimation used in this study.

R2
=

∑n
i=1((y

i
mea − ȳmea)(yiest − ȳest))2∑n

i=1(yimea − ȳmea)2 ∑n
i=1(y

i
est − ȳest)2

(9)

RMSE =

√√√√ n∑
i=1

(yiest − yimea)
2

/
n (10)

RPD =
SD(mea)

RMSE
(11)

where ymea is the measured CCC, ymea is the average value of
measured CCC, yest is the estimated CCC, yest is the average value
of estimated CCC, n is the number of samples, and SD (mea) is
the standard deviation of measured CCC.
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RESULTS

Results Based on Model Simulation Data
Angular Anisotropy in Spectral Reflectance
The curves of normalized reflectance at different viewing angles
for green, red, red edge, and NIR bands are shown in Figure 3.
It was observed that angular anisotropies in spectral reflectance
were pronounced. The reflectance obtained at back-scattering
directions was higher than that at the nadir and forward-
scattering directions over green to NIR bands, expressing larger
normalized reflectance values (R(θ)/R(Nadir) > 1). A dominant hot
spot with the maximum reflectance appeared at +30◦ viewing
angle at each band, which exactly matched the solar zenith
angle in the principal plane. Compared to the back-scattering
observations, changes of reflectance obtained from forward-
scattering directions tended to be relatively stable. The dark-
spot with the minimum reflectance occurred between −20◦ and
−30◦ viewing angles. Judged by the fluctuations of normalized
reflectance values, strong angular anisotropy was observed at

chlorophyll absorbance band represented by the 680 nm, whereas
weak angular anisotropy appeared in the 550 nm, the 705 nm, and
particularly in the 750 nm.

Relationship of Mono-Angular Vegetation Indices
With Canopy Chlorophyll Content
The linear regression models between the mono-angular
VIs and CCC were established, the values of coefficient of
determination (R2) at different viewing observations are shown
in Table 4. We found substantial variation in the ability of
mono-angular VIs to accurately track the CCC of wheat.
In general, the VIs that use bands in red edge and NIR
performed better than those with similar formulas, but use
bands in red and NIR across all observing angles, such
as MCARI[705,750] vs. MCARI, MCARI/OSAVI[705,750] vs.
MCARI/OSAVI, TCARI/OSAVI[705,750] vs. TCARI/OSAVI,
NDVI[705,750] vs. PSNDa, which further confirmed the
promising contribution of red edge bands in improving CCC
estimate. Some VIs, however, showed a somewhat weaker

FIGURE 3 | The curves of normalized reflectance at different viewing angles for green (550 nm), red (680 nm), red edge (705 nm), and NIR (750 nm) bands. The
viewing angles varied from –60◦ to +60◦ with 10◦ incremental steps, where a positive angle refers to the back-scattering direction, a negative angle refers to the
forward-scattering direction. The dash lines indicate normalized reflectance = 1, where the reflectance was measured from the nadir direction.
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TABLE 4 | The R2 values of estimation models between canopy chlorophyll content and VIs at different viewing angles.

Vegetation index −60 −50 −40 −30 −20 −10 Nadir +10 +20 +30 +40 +50 +60

PSNDa 0.34** 0.34** 0.35** 0.36** 0.37** 0.37** 0.37** 0.38** 0.38** 0.46** 0.37** 0.35** 0.35**

PSNDb 0.51** 0.49** 0.48** 0.48** 0.48** 0.49** 0.49** 0.50** 0.51** 0.60** 0.52** 0.51** 0.52**

NDVI[705,750] 0.62** 0.65** 0.67** 0.68** 0.69** 0.69** 0.69** 0.70** 0.70** 0.77** 0.67** 0.64** 0.60**

SR[705,750] 0.71** 0.78** 0.82** 0.84** 0.85** 0.86** 0.85** 0.84** 0.83** 0.91** 0.78** 0.74** 0.68**

CIgreen 0.74** 0.80** 0.84** 0.86** 0.88** 0.88** 0.88** 0.87** 0.86** 0.90** 0.81** 0.77** 0.71**

CIre 0.75** 0.81** 0.84** 0.86** 0.87** 0.88** 0.87** 0.86** 0.85** 0.90** 0.80** 0.77** 0.72**

MCARI 0.16** 0.15** 0.14** 0.14** 0.14** 0.14** 0.14** 0.14** 0.13** 0.11** 0.15** 0.17** 0.20**

MCARI[705,750] 0.82** 0.87** 0.89** 0.90** 0.91** 0.91** 0.91** 0.91** 0.91** 0.93** 0.88** 0.85** 0.81**

MCARI/OSAVI 0.20** 0.19** 0.19** 0.19** 0.19** 0.19** 0.19** 0.19** 0.18** 0.16** 0.19** 0.21** 0.23**

MCARI/OSAVI[705,750] 0.82** 0.86** 0.88** 0.89** 0.90** 0.90** 0.90** 0.90** 0.89** 0.92** 0.87** 0.85** 0.81**

TCARI 0.24** 0.23** 0.23** 0.23** 0.22** 0.22** 0.21** 0.21** 0.19** 0.16** 0.20** 0.22** 0.24**

TCARI/OSAVI 0.36** 0.38** 0.40** 0.41** 0.42** 0.41** 0.41** 0.39** 0.37** 0.37** 0.35** 0.35** 0.34**

TCARI/OSAVI[705,750] 0.74** 0.81** 0.85** 0.87** 0.88** 0.88** 0.88** 0.87** 0.85** 0.90** 0.80** 0.76** 0.70**

TVI 0.07** 0.10** 0.12** 0.13** 0.14** 0.14** 0.15** 0.15** 0.16** 0.17** 0.14** 0.11** 0.08**

MTVI1 0.32** 0.35** 0.38** 0.39** 0.39** 0.40** 0.39** 0.39** 0.38** 0.36** 0.36** 0.34** 0.30**

REP 0.77** 0.80** 0.83** 0.84** 0.85** 0.85** 0.84** 0.83** 0.81** 0.76** 0.77** 0.76** 0.73**

NDVIg−b 0.36** 0.38** 0.41** 0.43** 0.44** 0.45** 0.45** 0.44** 0.44** 0.47** 0.42** 0.40** 0.38**

NRI NS NS NS NS NS NS NS NS NS NS NS 0.02* 0.06**

NDDA 0.49** 0.52** 0.53** 0.54** 0.54** 0.54** 0.54** 0.53** 0.51** 0.49** 0.49** 0.48** 0.47**

RVI 0.74** 0.80** 0.84** 0.87** 0.88** 0.88** 0.88** 0.87** 0.86** 0.91** 0.81** 0.77** 0.71**

Colors correspond to the level of performance, the dark green for large R2 and the light green for small R2.
The symbols “**” and “*” indicate canopy chlorophyll content (CCC), and mono-angular VI were significantly correlated with p < 0.01 and p < 0.05, respectively. The NS
indicates no significant correlation was found.

FIGURE 4 | The changing curves of R2 values for VIs that performed well in canopy chlorophyll content (CCC) estimation at different viewing angles using model
simulated data.

relationship with the CCC in particular for the TVI and NRI, with
R2 ranging from 0 to 0.17.

Figure 4 shows the performances of VIs that could
explain more than 50% variations in CCC (p < 0.01) at

different viewing angles, i.e., NDVI[705,750], SR[705,750],
CIgreen, CIre, MCARI[705,750], MCARI/OSAVI[705,750],
TCARI/OSAVI[705,750], and REP and RVI, which enabled
efficient extraction of the most sensitive mono-angular VIs
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for CCC determination. We can observe that the coefficient
of determination of all VIs exhibited similar trends along
with the variety of viewing angles, except for the REP. The
higher correlation between the mono-angular VIs and CCC
occurred at −30◦ to +30◦ observations with the nadir direction
included (R2 ranged from 0.60 to 0.94), while the maximum R2

appeared at the measurement closest to the hot-spot, which is
30◦ back-scattering angle in our study. Among all VIs tested,
the MCARI[705,750] showed the greatest potential for CCC
modeling with R2 higher than 0.82 for all viewing angles. It gave
rise to the most significant correlations with CCC at +30◦ angle
with an R2 of 0.93 (p < 0.01).

The Potential of Biangular-Combined Vegetation
Indices for Canopy Chlorophyll Content Estimation
The R2 of the linear estimation model based on the newly
developed BCVIs was calculated with respect to the CCC. Table 5

TABLE 5 | The optimal two-angle combination (θ1 and θ2), the adjusting factor f
constructed in each best performing BCVI, and the corresponding maximum R2

for canopy chlorophyll content estimation using model-simulated data.

Biangular-combined
vegetation index

θ 1 θ 2 f R2

BCVINDVI[705,750] +30 −20 0.6 0.9

BCVISR[705,750] +30 −20 0.7 0.97

BCVICIgreen +30 −20 0.7 0.95

BCVICIre +30 −30 0.7 0.95

BCVIMCARI[705,750] +30 −20 0.6 0.98

BCVIMCARI/OSAVI[705,750] +30 −20 0.7 0.93

BCVITCARI/OSAVI[705,750] +40 −20 0.6 0.91

BCVIREP +30 −20 0.6 0.93

BCVIRVI +30 −30 0.7 0.96

summarized the optimal two-angle combination (i.e., θ1 and
θ2), the adjusting factor “f ” constructed in each best performing
BCVI and corresponding maximum R2 values of CCC modeling.
Results indicated that for almost all BCVIs, R2 reached the
peak when indices calculated from reflectance obtained from
+30◦ and −20◦ or +30◦ and −30◦ angle combinations, and
at the same time, f ranged from 0.6 to 0.7. As expected,
the BCVIMCARI[705,750] was found to be advantageous over all
the other BCVIs in CCC determination. The combination of
θ1 = +30◦, θ2 = −20◦, f = 0.6 was selected from hundreds of
angles and adjusting factor combinations, due to its outstanding
performance in capturing variations in CCC with R2 up to
0.98 (Figure 5). Furthermore, it should be noteworthy that
the value of f appeared to be very significant in affecting the
accuracy of CCC modeling at a given most sensitive two-angle
combination. As shown in Figure 5B, R2 of models derived
from the BCVIMCARI[705,750] tended to be a bell-shape with
increasing f values, with minimal R2 appearing around f = 0.5.
However, they achieved higher R2 when f varied from 0.6 to
1 compared to f changed from 0 to 0.4, implying that the
spectral reflectance obtained from back-scattering directions may
contribute more than that collected from forward-scattering
directions for enhancing CCC estimation in wheat.

An important piece of information revealed in Table 5
was that all BCVIs showed better correlations with CCC than
the corresponding VIs at any mono-angular observation, even
including the most sensitive 30◦ back-scattering angle, as well as
the nadir direction (Table 4). For instance, the BCVINDVI[705,750]
generated the biggest increase in R2 by 16.9% in comparison
of the mono-angular NDVI[705,750](+30). To further explore
how the biangular-combined and mono-angular VIs worked in
CCC estimation, the scatterplots of relationships between CCC
and the best performing BCVIMCARI[705,705] and mono-angular
MCARI[705,750] at the nadir, +30◦, −20◦ viewing angles were

FIGURE 5 | (A) The optimum three-dimensional slice map of the coefficients of determination (R2) for relationship between the canopy chlorophyll content and
biangular-combined vegetation indices (BCVI)MCARI[705,750] calculated by the modified chlorophyll absorption ratio index (MCARI)[705,750] at all the possible
two-angle observations selected from 13 viewing angles between –60◦ and +60◦, in which an adjusting factor f varied from 0 to 1 at a step of 0.1. (B) Changing
curve of R2 for relationship between canopy chlorophyll content and BCVIMCARI[705,750] at +30◦ and –20◦ angle combination along with variety of f values.
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FIGURE 6 | Scatterplots of relationships between canopy chlorophyll content and the MCARI[705,750](Nadir), MCARI[705,750](+30), MCARI[705,750](−20), and
BCVIMCARI[705,750] for model simulated dataset.

taken as an example, as shown in Figure 6. Results demonstrated
that on the one hand, the mono-angular MCARI[705,750] at the
three different viewing angles all behaved rather more widely
scattering against CCC compared to the BCVIMCARI[705,750]. On
the other hand, the mono-angular MCARI[705,750] reached a
saturation level asymptotically when CCC at high values, whereas
the BCVIMCARI[705,750] constructed based on +30◦ and −20◦
angular combination showed a better trend without a clear
saturation; it was strongly and linearly related to the CCC.

Results Based on Field Experimental
Data
Model Canopy Chlorophyll Content Using
Mono-Angular Vegetation Indices
Nine VI showed in Figure 4 that described the CCC better were
tested with the ground truth measurements. Figure 7 shows
the results of the relationship between VIs derived from mono-
angular spectral reflectance and ground measured CCC. Similar
to the results of simulated data, in CCC determination, the
+30◦ angle yielded greater significance than the other angles
for all mono-angular VIs, except the REP which only had little
sensitivity to the variations in CCC (R2

≤ 0.1), making it
barely suitable for CCC estimation. The model performances
based on the mono-angular MCARI[705,750] and the mono-
angular MCARI/OSAVI[705,750] were superior to the others,
with comparative and highest R2 of 0.51 and 0.50, respectively
at +30◦ viewing angle. Apart from the REP, the analogous pattern

of R2 changes for all VIs at different viewing angles was observed:
besides the +30◦ angle, the CCC also showed a better relationship
with VIs at both the nadir and +40◦ directions; interestingly, for
the forward-scattering observations, there were two weak peaks
with relative high R2, at −20◦ and −40◦ angles, predominating
in CCC estimation for most of VIs (SR[705,750], CIgreen, CIre,
MCARI[705,750], MCARI/OSAVI[705,750], and RVI).

Model Canopy Chlorophyll Content Using
Biangular-Combined Vegetation Indices
A series of BCVIs was established with field measured datasets
using the same method used in the section “The Potential of
Biangular-Combined Vegetation Indices for Canopy Chlorophyll
Content Estimation,” and were examined the linearity to CCC.
The BCVIMCARI[705,750] was chosen as an example to illustrate
the process of the selection of three parameters (θ1, θ2,
and f ) composing in the BCVI. From the slice maps shown
in Figure 8, R2 varied intensely with changing of different
combinations of MCARI[705,750] values at two viewing angles.
The BCVIMCARI[705,750] that was calculated by the subtraction of
MCARI[705,750] at +30◦ and −20◦ angular combination with
f = 0.6 as an adjusting factor stood out among all combinations,
with the soundest R2 for CCC estimation (R2 = 0.72), which
was consistent with the previous results of dataset simulated
by PROSAIL model. Meanwhile, the changing curve of R2

values exhibited a slightly different shape but a similar trend,
with the simulated BCVIMCARI[705,750] (Figure 5B), expressing
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FIGURE 7 | The R2 of relationship between better performing VIs (shown in Figure 4) and field measured canopy chlorophyll content at different viewing angles.

a more striking contrast between f of 0 to 0.3 and f of 0.6
to 1 (Figure 8D). This result put emphasis on the greater role
of spectral information extracted at back-scattering directions
than that at forward-scattering directions, in CCC determination
when using the field measured data, in comparison to the
simulated data. As for the other seven BCVIs, similar patterns
of slice maps and R2 changing curves occurred (not shown for
brevity). We found that the best BCVIs for investigating changes
in CCC was also generated at +30◦ and −20◦ or +30◦ and −30◦

angle combination, in which f was around 0.6 to 0.7, with R2 of
0.34 to 0.71 (Table 6).

Comparison of Performances of Biangular-Combined
Vegetation Indices and Mono-Angular Vegetation
Indices
To explore what degree the multi-angular viewing capability
of spectra can contribute to the improved CCC assessment
of wheat compared to the mono-angular observations, we
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FIGURE 8 | The three-dimensional slice maps of the R2 for relationship between field measured canopy chlorophyll content and BCVIMCARI[705,750] calculated by the
subtraction of MCARI[705,750] at all the possible two-angle observations selected from 13 viewing angles between –60◦ and +60◦, in which an adjusting factor f
varied from 0 to 1 at a step of 0.1: (A) slice map for the first viewing angle (θ1) selection, (B) slice map for the second viewing angle (θ2) selection, (C) slice map for
optimum two-angle and f value combination; (D) changing curve of R2 for relationship between field measured canopy chlorophyll content and BCVIMCARI[705,750] at
+30◦ and –20◦ angle combination along with variety of f values.

TABLE 6 | The optimal two-angle combination (θ1 and θ2), the adjusting factor f
constructed in each best performing biangular-combined vegetation indices
(BCVI), and the corresponding maximum R2 for CCC estimation using field
measured data.

Biangular-combined vegetation index θ 1 θ 2 f R2

BCVINDVI[705,750] +30 −30 0.6 0.41

BCVISR[705,750] +30 −30 0.7 0.42

BCVICIgreen +30 −20 0.7 0.38

BCVICIre +30 −30 0.7 0.34

BCVIMCARI[705,750] +30 −20 0.6 0.72

BCVIMCARI/OSAVI[705,750] +30 −20 0.6 0.71

BCVITCARI/OSAVI[705,750] +30 −20 0.6 0.45

BCVIRVI +30 −20 0.7 0.38

analyzed the performances of the newly developed BCVIs and
the corresponding mono-angular VIs at the most sensitive
+30◦ angle (Figure 9). The result revealed that the BCVIs
showed a clear increase in R2 by 25.1–51.4%, as compared

to the mono-angular VIs, and were proven to be more
effective and suitable in modeling CCC. The most significant
improvement was observed in the comparison between indices
of BCVINDVI[705,750] and NDVI[705,750](+30). As previously
explained, the BCVIMCARI[705,750] and MCARI[705,750](+30)

showed the strongest correlation with CCC among all BCVIs
and mono-angular VIs, respectively, but the BCVIMCARI[705,750]
further improved the CCC estimation accuracy by 41.2%.

We further plotted the scatterplots of BCVIs and mono-
angular VIs at the nadir, +30◦ and −20◦ or −30◦ viewing angles
based on the MCARI[705,750] and NDVI[705,750] against CCC
(Figure 10). For the two VIs, the BCVIs were characterized
by less scattered relationships with CCC compared to their
mono-angular counterparts derived from the nadir, +30◦ and
−20◦/−30◦ directions, in particular, for the BCVIMCARI[705,750].
In consistent with the simulated result, as illustrated in Figure 6,
BCVIMCARI[705,750] behaved linearly with CCC, with the scatter
points evenly distributed around the fitting line, clearly depicting
the dynamic changes of CCC (Figures 10A–D). As can be seen
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FIGURE 9 | Comparisons of R2 values of relationships between
biangular-combined vegetation indices (VIs) vs. canopy chlorophyll content
and mono-angular VIs at +30◦ viewing angle vs. canopy chlorophyll content.

in Figures 10E–H, the sensitivities of NDVI[705,750](Nadir) and
NDVI[705,750](+30) were most affected by high values of CCC,
showing a saturation effect when CCC exceeded 400 µg/cm2.
However, the BCVINDVI[705,750] improved the linearity and
reduced the saturation limit of mono-angular NDVI[705,750] at
the three viewing angles to a great extent.

Testing Canopy Chlorophyll Content Estimation
Models
The mono-angular MCARI[705,750] at the nadir and +30◦
viewing angles, as well as the BCVIMCARI[705,750] were chosen
to test the potential of these VIs in predicting the CCC by the
means of cross-validation since they were proven to be reliable
in CCC estimation both for simulated data and experimental
data. The predictions of the three indices against the ground
measured CCC were plotted in Figure 11. The CCC was well-
predicted by MCARI[705,750](+30) and MCARI[705,750](Nadir),
with RPDs larger than 2.12 and scattered in both plots fell into the
95% confidence intervals. The MCARI[705,750](+30) generated
relative higher accuracy than the MCARI[705,750](Nadir) and
R2 of 0.50 (p < 0.01) were observed for the measured dataset
with RMSE of 63.51. In comparison with the two mono-
angular MCARI[705,750], we found a more consistent agreement
between CCC values measured in the field and those estimated
by the new derived BCVIMCARI[705,750], with coefficient of
determination of 0.70 (p < 0.01), RMSE of 42.36, and RPD of
3.57. The results suggested that the BCVIMCARI[705,750] at +30◦
and −20◦ angle combination performed better and could be
more preferable than the conventional nadir direction approach
to remote sensing CCC in wheat.

DISCUSSION

In this study, we estimated crop CCC using simulated multi-
angle remote-sensing data produced with the PROSAIL model

and canopy multi-angle hyperspectral reflectance measured
from the field of winter wheat. We developed the BCVIs
by coupling, not only spectral but also angular information,
and compared the performances of these BCVIs with the
corresponding mono-angular VIs to evaluate whether the CCC
estimate could be improved from multi-angle observations. From
the characteristics of multi-angle spectral reflectance, angular
anisotropy was greatly different at the chlorophyll absorbance
and canopy reflective bands. This was mainly due to the
discrepancy of the contrast between shadowed and illuminated
canopy components at both two types of bands, which resulted
from viewing and illumination geometry and the sensor’s field
of view (Kollenkark et al., 1982; Galvao et al., 2009). In the
case of crop canopy, the reflectance at the green, red edge, and
particular NIR bands had low absorbance but highly reflective
values. The contrast at these bands was effectively reduced
because of multiple scattering processes (Sandmeier et al., 1998),
compared to the red absorbance band, weakening the expression
of angular anisotropy as demonstrated in Figure 3. However,
for all spectral bands tested, reflectance exhibited higher values
at back-scattering directions than forward-scattering directions
in the solar principal plane, primarily because more and more
fractions of illuminated leaf surfaces were viewed by the sensor,
along with its rotation from the side facing away from the sun
to the side facing into the sun. As confirmed by the study of
Sandmeier et al. (1998), the well-illuminated vegetation canopy
would be less vulnerable to the shadow effect, which led to
more signals from leaves that can be detected by the spectral
reflectance measured from the back-scattering directions. Indeed,
our results also indicated that almost all mono-angular VIs were
more closely related to the CCC at the back-scattering directions
than the forward-scattering directions for datasets of both model
simulation and ground measurements (Table 4 and Figure 7).

Angular effect presented in VIs can either be regarded as a
superfluous uncertainty for vegetation parameters estimation or
as a source of additional information that enhances the accuracy
of the parameter assessment at canopy scale (Verrelst et al.,
2008). In this study, the CCC estimation based on 30◦ back-
scattering spectral data led to an improvement, as compared
to the conventional nadir data. This can be attributed to the
reduction of soil background impact which is mostly contained
at the nadir observation. A similar result was also observed in
the studies of He et al. (2016), Kong et al. (2017), and Inoue
et al. (2008), who studied the improvements of physiological
parameters estimation for crops (e.g., canopy nitrogen content,
canopy carotenoid content, and photosynthetic efficiency) based
on multi-angle hyperspectral remote-sensing. However, it is
important to notice that the estimation of CCC improved even
further than mono-angular VIs at any viewing angle when the
multi-angular information was added, especially in the case of
the ground truth measurement. There are several explanations
for having excellent behavior. In this study, we developed
the BCVIs based on existing VIs proposed for vegetation
chlorophyll and nitrogen estimates, by applying an iterative
optimization approach, since it can search for the optimal
biangular combination from all the available viewing angles
and the most suitable adjusting factor value used. The result
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FIGURE 10 | Scatterplots of relationships between canopy chlorophyll content and BCVIs and the corresponding mono-angular VIs based on MCARI[705,750] and
normalized difference vegetation index (NDVI)[705,750] for filed experimental datasets. The blue points (A–D) represent the BCVINDVI[705,750], MCARI[705,750](Nadir),
MCARI[705,750](+30), and MCARI[705,750](−20), respectively; the black points (E–H) represent the BCVINDVI[705,750], NDVI[705,750](Nadir), NDVI[705,750](+30), and
NDVI[705,750](−30), respectively.
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FIGURE 11 | Scatterplots between measured canopy chlorophyll content and estimated canopy chlorophyll content based on the MCARI[705,750](Nadir),
MCARI[705,750](+30), and BCVIMCARI[705,750]. The solid lines indicate the regression fitting lines, the dash lines indicate the 95% confidence intervals of prediction,
the long and short dash lines indicate 1:1 lines.

showed that the angular combination composing of the best
BCVI came close to the positions of hot-spot and dark-spot
in the solar principal plane. For one thing, vegetation canopy
is a non-Lambert in nature, multi-angle spectral reflectance
can capture the uneven scattering of sunlight by vegetation,
reaching the maximum at the hot-spot direction, and the lower
value at the dark-spot position as suffering from the shadow
effect. Because the composition of shadowed and illuminated
canopy components is highly dependent on LAI, leaf orientation
distributions, and other structural properties (Stagakis et al.,
2010), the striking difference of VI values between hot spot and
dark spot, that adjusted by the value of “f,” not only facilitated
to provide more information on chlorophyll than the VI at the
solely mono-angle, but more importantly, made the information
on three-dimensional vegetation structures prominent when the
BCVI was used for tracking the changes of chlorophyll content
at canopy scale. Additionally, our work also put heavy emphasis
on the importance of the value of the adjusting factor “f ” in the
formula of BCVI for promoting the CCC estimation, but it has
not yet received widespread attention from researchers working
on quantifying CCC using multi-angle spectral data. We selected
the value of “f ” systematically, from 0 to 1 with a step of 0.1,
and concluded that the BCVIs performed best when f was 0.6
or 0.7, which implied that the contribution of VIs around the
hot-spot angle was greater than that of VIs around the dark-spot
angle. This allowed more signals from sunlit leaves to be included,
consequently, increasing the quality of vegetation biochemical
parameters (e.g., chlorophyll) reflectance contained. For another,
compared the reflectance spectra measured at a single viewing
angle, the BCVIs derived from multi-angle spectral data may
improve the CCC inversion by including additional information
on leaf chlorophyll at different vertical layers within canopies
(Huang et al., 2011).

A high amount of studies have demonstrated that many VIs
are prone to saturation with increasing vegetation biological
variables (Broge and Leblanc, 2001; Haboudane et al., 2004; Wu
et al., 2008). This limitation of saturation was also found in
the analysis of the relationship between mono-angular VIs and

CCC for overall datasets in our study (Figures 6, 10), including
the best performing MCARI[705,750], which may restrict the
reliability of their use in monitoring dense canopies with higher
CCC. Nevertheless, the saturation phenomenon was overcame in
large part by introducing the corresponding VI obtained from
another viewing angle to construct the BCVI; results of the newly
developed BCVI showed better linearity and higher accuracy
(e.g., R2 = 0.98 and 0.72 for BCVIMCARI[705,750] for PROSAIL-
simulated and filed experimental datasets, respectively), and
features the scattered display more intensively, along with the
changing of CCC than those for any mono-angular VI. This is
another reason why the BCVIs held more promising potential
in CCC assessment.

For the simulated and experimental datasets, the accuracy
of CCC estimation was all improved when using the BCVIs
we proposed. However, there were evident discrepancies in the
magnitude of improvement observed between both datasets. The
main possibility was that the PROSAIL model was not capable of
adequately reproducing the real physiological and morphological
conditions of the wheat canopy that we used in this study.
For instance, more and more studies have demonstrated that
the vertical distribution of leaf biochemical variables (e.g.,
chlorophyll and nitrogen) was non-uniform within plant canopy
(Ciganda et al., 2012; He et al., 2020), leading to different
contributions of the vertical layers to canopy spectra (Li et al.,
2015). Moreover, apart from leaves, the presence of other canopy
components, such as wheat spikes and plant stems, would
also have an impact on canopy reflectance (Haboudane et al.,
2004; He et al., 2019) and as a result the quality of extracted
crop CCC. But these factors are not taken into account in
the PROSAIL model. In addition, to focus on exploring the
sensitivities of different mono-angular VIs and the developed
BCVIs to CCC variation, LCC and LAI were set as free variables,
while the other vegetation parameters were set to fixed constants
at their respective mean values when conducting the canopy
multi-angled spectral reflectance simulation. Nevertheless, this
vegetation parameter setting may become a primary source
causing the differences with results of field measurements, since
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many parameters (e.g., leaf carotenoid, water, and fresh and
dry matter), besides LCC and LAI, were continually changing
with the growth of crops and the implementation of different
agricultural managements in reality. Due to large improvements
for field measurement dataset were obtained, our results establish
the confidence in the use of the BCVIs we developed for crop
CCC modeling in the future practical application. Nowadays,
some space-borne sensors have been specifically designed to
collect data from multi-angle observations (Barnsley et al.,
2004; Roosjen et al., 2018), solid coupling of radiative transfer
model, and multi-angle spectral information will be key to the
successful assessment of chlorophyll content at canopy scale.
Because the hot-spot reflectance is difficult to be adequately
acquired and, thus, they might be interpolated from the adjacent
measurements, future studies will be needed to further validate
whether the BCVIs derived from satellite data could provide
more accurate crop CCC estimation.

CONCLUSION

The CCC is a measure of photosynthetic potential at the canopy
level and was retrieved as the product of leaf chlorophyll and LAI.
Unlike previous analyses that mainly focused on establishing
VI from mono-angular remote sensing data, we proposed a
new method of developing the BCVIs for high-throughput
estimation of crop CCC using canopy multi-angle observations.
The BCVI was calculated by the subtraction of chlorophyll-
sensitive VI values, computing from reflectance measured around
hot-spot and dark-spot positions, with 0.6 or 0.7 as an adjusting
factor. This algorithm involved both leaf chlorophyll and canopy
structural information making the BCVIs derived from multi-
angle spectral reflectance more effective when compared to solely
using corresponding mono-angular VIs at arbitrary viewing
angle for assessing CCC across PROSAIL model-simulated
dataset and field experimental dataset. The MCARI[705,750]
was proven to be the best mono-angular VI among previously
published VIs tested, +30◦ back-scattering angle produced
better performing VI than the nadir direction. However, as they
were equally subject to the saturation limit with increasing of
CCC based on the results, we developed the BCVIMCARI[705,50]
at +30◦ and −20◦ angle combination, formulated as
0.6 × MCARI[705, 750](+30) − 0.4 × MCARI[705, 750](−20)

where +30◦ and −20◦ angles were the closest measurements
to the hot-spot and dark-spot positions in this study. We

found that the BCVIMCARI[705,750] was not only resistant to
the saturation effect, but also exhibited the highest sensitivity to
CCC variation over all datasets. Our results demonstrate that the
BCVI that taking spectral and angular information into account
could substantially improve the estimation of crop CCC, and
consequently offer more accurate information to understand
crop’s phenotypic trait across growth stages and their response to
environmental changes in agro-ecosystem.
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