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Conventional fertilizers and pesticides are not sustainable for multiple reasons, including

high delivery and usage inefficiency, considerable energy, and water inputs with adverse

impact on the agroecosystem. Achieving andmaintaining optimal food security is a global

task that initiates agricultural approaches to be revolutionized effectively on time, as

adversities in climate change, population growth, and loss of arable land may increase.

Recent approaches based on nanotechnology may improve in vivo nutrient delivery to

ensure the distribution of nutrients precisely, as nanoengineered particles may improve

crop growth and productivity. The underlying mechanistic processes are yet to be

unlayered because in coming years, the major task may be to develop novel and efficient

nutrient uses in agriculture with nutrient use efficiency (NUE) to acquire optimal crop yield

with ecological biodiversity, sustainable agricultural production, and agricultural socio-

economy. This study highlights the potential of nanofertilizers in agricultural crops for

improved plant performance productivity in case subjected to abiotic stress conditions.

Keywords: abiotic stress, bioavailability, environment, growth-production, nanoparticles, plant nutrition, soil

INTRODUCTION

The ever-increasing population and limited cultivable agricultural regions have resulted in new
farming agro-technologies to sustain agricultural production and protection worldwide (Rodrigues
et al., 2017; Adisa et al., 2019; Rajput et al., 2021a; Verma et al., 2022), as present global human
population 7.6 billion may reach 8.6, 9.8 billion by 2030 and 2050, respectively, also projected
approximately 11.2 billion by the end of 21st century with serious consequences on world food
demand (United Nations, 2017). Growth in affluence and low and middle developed nations is
anticipated to expedite a dietary shift away from cereals toward meat, fruits, and vegetables (FAO,
2017; Adisa et al., 2019; Fellet et al., 2021) to produce more food under limited resources (King,
2017; El-Saadony et al., 2021; Rajput et al., 2021a) with loss in larger quantity in developing nations
duringmanufacturing and supply chains due to the unavailability of infrastructure, equipment, and
technologies (Kah et al., 2019; Wu and Li, 2022).
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Fertilizer consumption increased globally in recent decades
with soil nutrient loss (Chugh et al., 2021) due to its cumulative
addition to enhance crop productivity (Savci, 2012; Sun et al.,
2015; Lin et al., 2019; Verma et al., 2022), with loss in soil
health and rising environmental issues (Hasler et al., 2015; Li
et al., 2018). Nanoparticles (NPs) may natural or bioengineered
with 1–100 nm diameter significantly differ in physical and
chemical properties (Rajput et al., 2021b; Verma et al., 2022),
available as commercial nanofertilizers (NFs) around the globe,
namely, nitrogen (IFFCONanoUrea, IFFCO, India), phosphorus
(TAG Nano Phos, SK Organic Farms, India), potassium
(NanoMax Potash, JU Agri Sciences, India), zinc (Geolife Nano
Zn, GeolifeAgritech India Ltd., India, SilvertechKimya Sanayi
veTicaret Ltd., Turkey, and AFME Trading Group, UK), calcium
(Nano Calcium Chelate Fertilizer, AFME Trading Group, UK,
Nubiotek R©Ultra Ca, Bioteksa, Mexico, Fertile Calcium 25,
HPL Agronegocios, Brazil and Lithical, Litho Plant, Brazil),
iron, magnesium (Nubiotek R©HyperFe+Mg, Bioteksa, Mexico),
magnesium, molybdenum, zinc (Nanovec TSS 80, Laboratories,
Bio-Medicin, Brazil), silicon (Nano Land Baltic, Lithuania),
potassium and phosphorus (Fosvit K30, Kimitec Group, Spain),
boran (Nano Bor20%, Alert Biotech, India), and silver (Nano-
Ag Answer R©, Urth Agriculture, USA) (Dimkpa and Bindraban,
2017; Rajput et al., 2021; Kalwani et al., 2022). NPs facilitate
beneficial functions for the nitrogen cycle, enhancing enzyme
activities and stimulating soil plant-friendly microbes. Silver NPs
have also been shown to increase the density of diazotrophic
bacteria in soil, while CuO NPs triggered plant growth-
promoting bacteria (PGPR) in the rhizosphere of red sage (Salvia
miltiorrhiza L.) (Shah et al., 2014; Wei et al., 2021) with beneficial
usage of NFs in crop production.

Recent advancements in sustainable agriculture have seen
the beneficial usage of various NFs for increased crop
production. However, the intentional use of this technology
in agricultural activities could have several unforeseen and
irreversible consequences (Kah, 2015; Mahapatra et al., 2022).
New environmental and unexpected health safety concerns could
limit the application of this technology in agricultural crop
productivity (Dimkpa and Bindraban, 2017; Ashkavand et al.,
2018; Mittal et al., 2020), also in food security (Lopez-Moreno
et al., 2018; White and Gardea-Torresdey, 2018; Iqbal, 2019;
Rajput et al., 2021). This review provides a better understanding
of NFs to encourage interaction among the scientists to
expand its application for crop improvement in agriculture. Our
review may extend an updated understanding of NFs in crop
production/plant productivity.

ROLE OF NFS IN SOIL

The application of NFs through soil irrigation ensures double
advantages, i.e., soil improvement to optimize plant development
productivity (Mahapatra et al., 2022) because the application
of larger amounts of inorganic fertilizers to farming land
may not be available to plants (Raliya et al., 2018; Tarafder
et al., 2020). Therefore, NFs could be a better approach for
nutrient absorption by the roots. Various edaphic parameters

regulate the range of mineral elements in the soil and may also
change microbial colonies and rhizospheric microbial biomass to
enhance soil fertility (Huiyuan et al., 2018; Wang et al., 2021),
water availability, and plant growth (Mandal and Lalrinchhani,
2021; Rajput et al., 2021a; Verma et al., 2022).

Roots are a vital interaction site between plants and soil,
allowing nutrients, water, and other physiologically important
substances to be absorbed (Figure 1), and root development
gets influenced by soil aeration, nutrient availability, pH, and
soil texture (Taiz and Zeiger, 2010; Adisa et al., 2019; Fellet
et al., 2021). The principal mechanism for nutrient accumulation
and distribution from the soil to the aerial parts of plant
tissues are diffusion and bulk (mass) flow. Diffusion is the
transfer of minerals along a concentration gradient from
cell to cell (Marschner, 2011), while the bulk flow is found
to be the pressure-driven distribution of solutes-water via
xylem regulated by transpiration and soil nutrient availability
(Lawlor et al., 2004; Zulfiqar et al., 2019; El-Saadony et al.,
2021). The accumulation of NPs is associated with several
ways of absorption/uptake via aerial surface, roots, grains,
interacting atmospheric variables, rigidity of cell wall, and
physiological, anatomical, and biochemical activities of the plant
species/cultivars (Rajput et al., 2018a, 2021c; Mittal et al., 2020).
The surface tension of NPs on the surface of fertilizer particles is
higher than that of ordinary fertilizer, which effectively regulates
the release of nutrients (Brady andWeil, 1999; Adisa et al., 2019).

Nanoparticles may get mobilized through apoplastic and
symplastic means after entering plants. The apoplastic pathway
promotes radial distribution, which moves NPs toward the root’s
core cylinder and vascular organs and also upward toward aerial
portions (Larue et al., 2012; Zhao et al., 2017; Adisa et al., 2019;
Verma et al., 2022). The apoplastic pathway is essential for NPs
delivery throughout the body, while the Casparian strip inhibits
NPs from moving radially in the endodermis of roots, which
may be avoided by converting the apoplastic to the symplastic
path being a better ordered and regulated way for NPs to travel
through the plant body (Palocci et al., 2017; Zhang et al., 2018;
Mandal and Lalrinchhani, 2021). Plasmodesmata facilitate cell-
to-cell migration once the NPs reach the cytoplasm (Zhai et al.,
2014). The smallest particles of TiO2 accumulate in plant roots
and distribute via whole plant tissues without dissolution or
crystal phase changes. The NPs of diameter 140 nm or above are
no longer accumulated in wheat plant roots, and particles of size
36 nm or above are accumulated in the plant root parenchyma
but do not reach the stele to get translocated into the aerial
plant parts (Larue et al., 2012). The nanosized NPs during
the developmental stages may cause an enhancement of root
elongation. TiO2 NPs in the range of 1–100 ppm were found
to be nontoxic to the soil microbial population, whereas CuO,
ZnO, and Ag NPs found to be toxic (Asadishad et al., 2018).
Metal NPs may enter seeds and get translocated into seedlings
to stimulate plant development via seed priming (Sanzari et al.,
2019; Seleiman et al., 2021) (Figure 1). NFs may release their
nutrients at a slow-release rate, either when applied single or
combined with synthetic or organic fertilizers. It may take 40–
50 days to release nutrients fully, while synthetic fertilizers do the
same in 4–10 days (Seleiman et al., 2021).
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FIGURE 1 | An overview of the role of nanofertilizers in soil.

INFLUENCE OF NFS ON PLANTS

The effects of NFs may be regulated by characteristics of soil,

environment, delivery mechanism of NPs, and plant species. The

foliar method of entry has proven to be the most effective, as
nutrients may be easily absorbed through nanosized pores found
in leaf plasmodesmata (Iqbal, 2019; Rajput et al., 2021; Kalwani
et al., 2022). NPs also pass-through root hairs (symplastic and
apoplastic) to the xylem to reach the stem/leaves (Mittal et al.,
2020). The use of NFs induces a considerable rise in the
physiological and biochemical indices in crop plants (Rajput
et al., 2021a) with improved chlorophyll content/SPAD units in
sunflower (Pirvulescua et al., 2015), and also in maize, it is found
to be correlated with plant productivity (Morteza et al., 2013;
Zulfiqar et al., 2019; El-Saadony et al., 2021) associated with
upgraded leaf capacity to capture sunlight, RuBisCO activity,
photosynthetic CO2 assimilation (Gao et al., 2006; Yang and
Hong, 2006; Janmohammadi et al., 2016; Fellet et al., 2021), plant
performance, nitrogen metabolism, and soluble proteins.

Zinc-based NFs enhanced peroxidase (POD), catalase (CAT),
ascorbate peroxidase (APX), and polyphenol oxidase (PPO)
enzymatic responses and proline content in maize (Zea mays
L.) and cotton (Gossypium cultivars) (Weisany et al., 2012;
Rezaei and Abbasi, 2014). Foliar application on pearl millet
(Pennisetum glaucum L.) plants resulted in enhancement of
leaf green pigments, soluble protein, and yield (Tarafdar et al.,
2014). Applied Zn NPs (15 and 25 nm diameter) enhanced plant

length (15%), root length (4%), root diameter (24%), leaf protein
(39%), dry mass (13%), and antioxidative enzymatic activities,
such as phosphatase (77%), alkaline phosphatase (62%), phytase
(322%), and dehydrogenase (21%), with improved crop/grain
productivity up to 38% (Tarafdar et al., 2014; Vafa et al., 2015)
with stress mitigation during insufficient water, salinity, and
nutrient deficiency (Rajput et al., 2021c) because NFs deliver
enough nutrients to improve antioxidant activity (Benzon et al.,
2015; Fellet et al., 2021; Wu and Li, 2022).

Nanoparticles may interact with respiratory chain enzymes,
such as NADH dehydrogenase at low levels, causing the synthesis
of uncoupled ATP during respiration. Leakage of the proton and
the collapse of the proton motive force may occur if ionic NPs
bind to transport proteins (Holt and Bard, 2005; Lok et al., 2006;
Adisa et al., 2019). NPs may induce DNA damage indirectly
by stimulating reactive oxygen species (ROS), which may affect
cross-linking, DNA strand breakage, and sugar or base adducts,
among other things (Klaine et al., 2008; Raliya et al., 2018;Mandal
and Lalrinchhani, 2021). The replication fidelity of the rpsL gene
was differently compromised by Ag NPs compared without NPs
(Yang et al., 2009).

The production of ROS by NPs is a significant fatal
mechanism, and various types of NPs produce various kinds
of ROS by decreasing O2 molecules (Adisa et al., 2019; Rajput
et al., 2021c; Verma et al., 2022). Reactive oxygen species are
the byproducts of oxidative cellular metabolism, produced by
mitochondria, i.e., hydroxyl radical (OH−), superoxide anion
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FIGURE 2 | An overview of benefits of NFs to enhance mitigating abilities of plants under environmental stress conditions. ST, signal transduction; TFs, transcription

factors.

radical (O2−), hydrogen peroxide (H2O2), and singlet oxygen
(1O

2) (Yin et al., 2012; Fu et al., 2014; Wu and Li, 2022). The
chemical makeup of designed NPs determines the amount of
ROS produced by NPs (Gonzalez et al., 2008) and the damage
of DNA (Zhu et al., 2013; Adisa et al., 2019), which is found
to be the biological target of ROS. Oxidative DNA damage
includes base and sugar lesions, DNA-protein cross-links, breaks
of double and single strands, and the creation of primary sites
(Zulfiqar et al., 2019; Mittal et al., 2020). Many studies have
demonstrated that ROS plays a vital role in regulating plant cell
physiological functions by altering various signaling routes in cell
types (Kloepfer et al., 2005; Vara and Pula, 2014; Wehmas et al.,
2015; Adisa et al., 2019), while others explored that the size of NPs
may be the principal origin of phytotoxicity (Xiao et al., 2015).
The application of traditional fertilizer into the soil may impose
various disadvantages in terms of plant nutritional bioavailability
(Fellet et al., 2021; Mandal and Lalrinchhani, 2021), while foliar
application of NFs may be more effective for enhancing overall
plant performance/productivity (Roemheld and El-Fouly, 1999;
Rajput et al., 2021b) and nutrient use efficiency (NUE) (Abou-El-
Nour, 2002; Rajput et al., 2018b; Adisa et al., 2019). Nanocoated
compounds with a diameter higher than 10 nm may increase
stomatal penetration (Eichert and Goldbach, 2008; Perez-de-
Luque, 2017) due to the wide surface area of NFs, which ensures
excess sorption capacity and controlled release kinetics with
intelligent delivery mechanisms (Rameshaiah et al., 2015; Rajput
et al., 2021a,b).

SIGNIFICANT ROLE OF NFS AGAINST THE
ENVIRONMENTAL STRESSES

Plants exposed to NFs show a variety of morphological and
physiological alterations, such as germination frequency, lengths
of the shoot-root, biomass, chlorophyll fluorescence yield
(Fv/Fm), photosynthetic efficiency, biomolecules, and cellular
injuries, i.e., lipid peroxidation, protein, and cell membrane
damage. Several variations have been observed in the plant cell
ultrastructures, i.e., disruption of the cell wall, cell membrane,
chloroplasts, thylakoids, irregular shape/size of plastoglobules
and starch granules, destructive variation in peroxisomes,
swollen and damaged mitochondrial cristae, irregular nucleus,
rough and thin mesophyll cells, and epidermal, cortical, and
stellar cells (Rajput et al., 2018b). Many factors influence
the functional expression of NFs, including host plant and
specific kinds of NP interaction, surface coating, size, range
of concentration, and exposure length (Mittal et al., 2020;
Rajput et al., 2021a). The associated mechanisms are yet to be
revealed adequately as NPs act excellently for plant performance
(Fedorenko et al., 2020; Faizan et al., 2021; Verma et al., 2022), as
listed in Supplementary Table 1.

DROUGHT

Water is essential for the transport of nutrients in plants, and its
deficiency may cause drought stress that induces morphological,
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physiological, and biochemical alterations resulting in decreased
plant productivity (Kumar et al., 2018b; Desoky et al., 2021).
Ghassemi and Farahvash (2018) demonstrated that the foliar
use of ZnO NPs (100 ppm) positively affected plant height with
increased LRWC and productivity in wheat during anthesis.
Mozafari et al. (2018) assessed the feasibility of salicylic acid (SA)
and Fe NPs to increase strawberry adaptation strategy to limited
water irrigation during the vegetative growth phase with better
plant performance and yield. The cotton characteristics and
biomass yield during water deficit may be boosted by foliar spray
of SiO2 (3,200 ppm) and TiO2 (50 ppm) (Shallan et al., 2016).
Under drought stress, CeO2 NPs may increase photosynthetic
efficiency (38%), grain yield (31%), and pollen germination (31%)
in sorghum. Treated plants of CeO2 NPs (10 ppm) decreased
superoxide radical (41%), H2O2 (36%), and MDA (37%) in
sorghum leaves subjected to water stress (Djanaguiraman et al.,
2018b). Silica NPs may improve the germination efficiency of
tomato plants grown during drought conditions (Haghighi et al.,
2013; Raliya et al., 2018; Fellet et al., 2021) (Figure 2 and
Supplementary Table 1). In contrast, limited water availability
resulted in a significant loss in overall plant biomass, including
yield (Adisa et al., 2019; Desoky et al., 2021). The use of
TiO2 NPs boosted wheat plant performance (Jaberzadeh et al.,
2013), RuBisCO activity, CO2 metabolism, photosynthetic CO2

assimilation, and grain productivity (Gao et al., 2006). Under
water stress, TiO2 NPs enhance the gluten and starch level in
wheat, presumably due to the favorable relationship between
TiO2 and photosynthetic responses (Zhao et al., 2009; Jaberzadeh
et al., 2013; Fellet et al., 2021), such as ZnNPs, which favors maize
plant productivity (Mittal et al., 2020).

SALINITY

The world’s major food crops are threatened by soil salinity
(Majeed et al., 2018; Joshi et al., 2020; Rajput et al., 2021a).
Plants’ ability to absorb water is inhibited under salinity and
impairs plant performance (Parihar et al., 2015). Babaei et al.
(2017) discovered that seed production increased ca. 17% in
treated plants of wheat with Zn-Fe oxide NPs during salinity.
By using ZnO-NPs in the callus culture of several tomato
cultivars subjected to salinity, the deleterious effects of salt were
found to be decreased (Alharby et al., 2016; Adisa et al., 2019).
The use of Cu-NPs in tomatoes may improve salt resistance
capacity (Hernandez-Hernandez et al., 2018). Farhangi-Abriz
and Torabian (2018) and Desoky et al. (2021) applied SiO2-NPs
to soybeans that improved plant development during salinity
with reduced harmful effects of NaCl on bean plants. The root
and shoot lengths were significantly increased (23% and 11%)
under salinity stress (Alsaeedi et al., 2017) in case cotton was
fertilized using Zn-NPs (Hussein and Abou-Baker, 2018). Foliar
application of Fe2O3 and ZnO NPs enhances root growth under
salinity in maize and lupine (Latef et al., 2017; Zulfiqar et al.,
2019). Silicon NPs increased salinity tolerance capacity in squash
plants (Siddique et al., 2014). Under saline conditions, FeSO4

NPs may boost sunflower biomass (Torabian et al., 2017), while
treatment of TiO2 NPs resulted in increased root morphological
traits (1.4-fold), stem height (4.8-fold), and biomass (1.2-fold)
in maize (Mutlu et al., 2018). Rossi et al. (2016) found that

the CeO2 NPs applied to rapeseed increased their sensitivity to
salinity (Figure 2 and Supplementary Table 1). Abiotic stressors,
such as salinity and drought, have harmful effects on plant
growth and production worldwide. Crop output is reduced by
50% due to these abiotic stressors (Wang et al., 2003; Rajput
et al., 2021b). Plants suffer from a lack of essential minerals,
membrane injury, and enzyme inhibition due to ionic and
osmotic stressors (Hasanuzzaman et al., 2013a; Adisa et al., 2019).
Salinity reduces the plant water availability, nutrient uptake,
productivity, and grain/fruit quality (Grattan and Grieve, 1999),
while cocultivation of crops with NPs extends better growth and
development (El-Saadony et al., 2021) with enzymatic activities
of POD, superoxide dismutase (SOD), and CAT which scavenge
ROS (Upadhyaya et al., 2015; El-Saadony et al., 2021). Foliar
spray of ZnO and Fe3O4 NPs-containing Hoagland solution may
mitigate salinity stress inMoringa peregrina (Soliman et al., 2015;
Wang et al., 2018; Fellet et al., 2021) with reduced stomatal
conductance. The use of SiO2 NPs boosted the uptake of N and
P while reducing Na buildup in cucumber plants with improved
plant performance subjected to salty circumstances (Siddique
et al., 2014), as it improves cell wall turgidity, strength, and
flexibility (Yassen et al., 2017; Desoky et al., 2021; Rajput et al.,
2021a) with enhanced antioxidative enzyme activity and reduced
stomatal conductance. The NFs may also be an effective tool for
reducing soil toxicity caused by synthetic fertilizers.

WATERLOGGING/FLOODING

The lack of oxygen in the rhizosphere during flooding stress
induces hypoxia, which may experience energy deficiency and
increased ethylene (ETH) production-related genes with reduced
respiration (Khan et al., 2017; Verma et al., 2021) with impaired
vegetative and reproductive development (Komatsu et al., 2012;
Verma et al., 2012, 2014; Banti et al., 2013; Khan et al.,
2017). The Al2O3 NPs-responsive proteins were associated with
protein synthesis/degradation of glycolysis and lipid metabolism
(Mustafa et al., 2015b) to downregulate the operation of the Krebs
cycle that strictly occurs under aerobic conditions and impairs
major gain of energy which reduces growth and maintenance
(Syu et al., 2014). However, Ag NF-applied plants may be
less exposed to O2 deprivation, which improves overall plant
performance (Rezvani et al., 2012). In soybean plants, during the
waterlogging situation, a gel-free proteomic approach revealed
that Al2O3 NPs outperformed ZnO and Ag to increase plant
development via controlling energy metabolism, causing the
death of cells (Mustafa et al., 2015a). NPs may play a key
role in lowering hypoxic conditions during waterlogging by
modifying metabolism and expression of genes, improving plant
performance (Supplementary Table 1).

HIGH TEMPERATURE

Heat stress causes changes in plant characteristics, lipid structure,
and protein–lipid interactions (Younis et al., 2020). Plants
maintain their photosynthetic efficiency and homeostasis as part
of their adaptation strategies when subjected to excess light
intensities (Nievola et al., 2017; Yue and Yun, 2018; Fellet et al.,
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2021). Ag and Si NPs boosted root morphological traits (5–5.4%),
stem length (22-26%), and other characteristics with protection
in wheat plants during temperature stress (Iqbal et al., 2017;
Younis et al., 2020). According to the study by Djanaguiraman
et al. (2018a), foliar spraying of Se NPs on sorghum grown during
high light intensities (38/28◦C) increased pollen germination,
productivity, and antioxidant enzyme activities as compared
with optimum temperature (32/22◦C). It decreased oxidant
content, protecting plants from the harmful impacts of oxidative
damage caused by high-temperature stress. However, heat altered
the interactions between plants and NPs, root development in
maize plants when ZnO NPs treated, and also enhanced plant
performance and APX activity (24%−57%) during excess light
(25◦C) (Lopez-Moreno et al., 2017). Nano-TiO2 significantly
reduced the Fv/Fm values and relative electron transport rate
(ETR) in tomato leaves (Qi et al., 2013). Significant role of TiO2

NPs on photosynthesis, stomatal conductance, and transpiration
rate in tomato leaves during excess light intensities (Qi et al.,
2013; Raliya et al., 2018; Tarafder et al., 2020; Verma et al., 2022)
(Supplementary Table 1).

FREEZING STRESS

Chilling stress may damage plant cell organelles and tissues
(Hasanuzzaman et al., 2013b) due to enhancement in distorted
permeability of the cell wall, which induces ion leakage
across the membranes and negatively affects germination plant
development (Jalil and Ansari, 2019; Mandal and Lalrinchhani,
2021), while plants also adapt freezing resistance capacity
(Heidarvand et al., 2011; Jalil and Ansari, 2019). The survival
percentage and cold-resistance capacity is the most important
factor for describing genotype resistance to low temperature
in chickpea plants under field conditions (−10◦C for 15 and
30min) (Heidarvand et al., 2011). The ability of TiO2 NPs to
reduce the detrimental effects of extremely low temperatures by
minimizing the injury caused by ion leakage from themembranes
has been demonstrated (Adisa et al., 2019; Rajput et al., 2021a).
Chilling stress threatens photosynthesis, a unique and crucial
plant carbon assimilation metabolism. It impairs photosystems
in a variety of ways, including reduced photosynthetic pigments,
transpiration, CO2 absorption, and RuBisCO (photosystem
enzyme) breakdown (Liu et al., 2012; Mittal et al., 2020).
NPs may boost the synthesis of the RuBisCO enzyme (Jalil
and Ansari, 2019), the capacity of chloroplasts to absorb
light (Ze et al., 2011), and decrease ROS formation in the
plant photosystem (Giraldo et al., 2014). The creation of the
chlorophyll-binding protein gene expression and RuBisCO,
antioxidant enzyme activity, susceptibility to freezing conditions,
and chlorophyll content increases in the presence of TiO2

NPs in chickpea plants (Mohammadi et al., 2014; Hasanpour
et al., 2015; Tarafder et al., 2020). Plants exposed to chilling
stress have higher levels of ROS-scavenging enzymes, such
as dehydroascorbate reductase (DHAR), glutathione reductase
(GR), and monodehydroascorbate reductase (MDAR), as well
as increased MeCu/ZnSOD and MeAPX2 genes, resulting in a
reduction in oxidative stress, such as the loss of green pigments,

MDA, and H2O2 generation (Xu et al., 2014; Fellet et al., 2021;
Seleiman et al., 2021), as shown in Supplementary Table 1.

HEAVY METAL TOXICITY

The heavy metal contamination may affect human via the food
chain (Arif et al., 2019) as Cd, Hg, As, and Pb are among
the top 20 toxic heavy metals according to the Agency for
Toxic Substances and Disease Registry (ATSDR) and the US
Environmental Protection Agency (EPA). Heavymetals endanger
food production (Irshad et al., 2020; Javaid, 2020), while NPs may
boost seed germination, photosynthetic rate, antioxidant defense
system, yield, and plant vigor (Lian et al., 2020; Usman et al.,
2020; Wang et al., 2020). Experts agreed using NPs to combat the
varied effects of toxic ions on plants (Liu et al., 2018; Rizwan et al.,
2018), as CuO NPs (50 and 100 nm) alleviated adverse effects
of As on the number of root branches in rice (Oryza sativa L.
subsp. japonica) plants (Liu et al., 2018) and ZnONPs enhanced
wheat plant biomass, nutrients, and reducing Cd toxicity (Rizwan
et al., 2018). Under low As concentrations, Fe3O4 NPs induced a
substantial reduction in rice As absorption (Huang et al., 2018).
Using Fe NPs, the accumulation of Cr in sunflower roots and
shoot growth was reduced (Mohammadi et al., 2018).

Fe3O4 NPs enhance bioproductivity, photosynthetic electron
transport rate (PETR), enzymatic activities, and accumulation
of Fe during Ca-deficient soil (Sebastian et al., 2017). Rice
(Oryza sativa L.) was sprayed with Si NPs reduced Cd (31–65%
and 36–61%) content in the upper- and below-ground plant
organs. Increased K, Mg, and Fe content in grains and rachises
slightly affect Ca, Zn, and Mn (Chen et al., 2018). CeO2 NPs
inhibited Cd transfer from roots to shoots (70%) in soybean
plants (Rossi et al., 2018). The Ce concentration increased in
soybean shoot (60%) and reduced in roots (45%). In rice plants,
TiO2 NPs significantly reduced Cd toxicity and enhanced plant
development, photosynthetic efficiency, and reduced Cd uptake
and distribution (Ji et al., 2017). Chitosan NPs increase the dry
mass (38%), photosynthesis (45%), and chlorophyll index (40%),
while a reduction in MDA (24%) and H2O2 (20%) content were
monitored for 4 weeks after seed sowing as compared with
control plants in Solanum lycopersicum L. (Faizan et al., 2021).

Silicon NPs protect pea plants from the adverse effects of Cr
by reducing Cr accumulation and boosting plant performance
(Tripathi and Sarkar, 2015; El-Saadony et al., 2021). Foliar
application of Si NPs reduced Cd uptake and distribution
from soil to roots and increased Mg, Fe, and Zn ions and
photosynthetic pigments in rice plants (Wang et al., 2014;
Desoky et al., 2020; El-Saadony et al., 2021). Increased MDA
and antioxidative enzymatic activities, i.e., SOD, POD, CAT, and
reduced GSH concentration, indicated that Cd caused oxidative
stress in rice plants (Adisa et al., 2019; Rajput et al., 2021a).
In contrast, the treated plants had reduced MDA but enhanced
GSH content as well as varied antioxidative enzymatic activities
indicating that they were most Cd resistant (Wang et al., 2011).
The uptake of Cd was also enhanced from 129 to 508 µg/plant
with an increasing concentration of TiO2 NPs (100-−300 mg/kg
soil). In wheat seedlings, toxic metals, namely, Pb, Zn, Cd,
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and Cu decreased root development and increased oxidative
stress (Mittal et al., 2020). NPs may be helpful to minimize
metal phytotoxicity (Zulfiqar et al., 2019; Tarafder et al., 2020;
Verma et al., 2022). Singh and Lee (2016) established the role
of TiO2 NPs in reducing Cd stress and improving soybean plant
development, as shown in Supplementary Table 1.

NUTRITIONAL IMBALANCE

Plants need nutrients for proper development from the soil.
During unfavorable environmental conditions, plant nutrient
deficit seems to be a limiting factor for plant development.
NFs may help to moderate the adverse impacts of synthetic
fertilizers (Rajput et al., 2021a) with the added advantage to
compensate nutritional deficiencies to allow the plants to develop
normally (Bernal et al., 2007; Baloch et al., 2008), as shown
in Supplementary Table 1. The nutrient shortage in soils may
pose threat to soil profile by lowering nutritional elements
for agricultural crops (Khan et al., 2021). Fertilizers are used
in large amounts to boost agricultural yield, although more
macronutrients are unavailable to plants (Zulfiqar et al., 2019).
Consequently, most plants use about half of the applied fertilizers
for proper utilization (Mittal et al., 2020; Fellet et al., 2021),
generating a long-term negative impact on the agroecosystem.
However, overuse of chemical fertilizers may damage soil
profile and microflora and disrupt below-ground food webs,
resulting in genetic mutations with variations in ecological
ecosystems/biodiversity (Solanki et al., 2016; Raliya et al., 2018;
Mandal and Lalrinchhani, 2021). Thus, sustainable alternatives
may be explored to improve the functional uses of fertilizers
in plants with phytoremediation (Pradhan and Mailapalli, 2017;
Adisa et al., 2019). The macronutrients–micronutrients regulate
plant protection against harmful stresses. Plants’ nutritional
status may be improved with the application of NPs to boost
yields, stress tolerance, and pathogenesis resistance (Zhao et al.,
2020; Verma et al., 2022), as shown in Supplementary Table 1.

UV-RADIATION

UV-B radiations are nonionizing and nonphotosynthetically
active, enhance ROS production in plant cells, and damage
biological functions, including photosynthesis, ultrastructure of
chloroplasts, and genomic DNA in plants, having acquired
antioxidative defense machinery to counteract harmful UV
radiation by accumulating phenolic chemicals (Khan et al., 2017;
Rajput et al., 2021a). NPs protect photosynthetic plant systems
from UV-B damage by enhancing photosynthetic pigments,
upgrading the RuBisCO enzyme, light absorption, photo-
transformation, and transmission of light energy, regulating
oxidative stress, and absorbing negative UV radiations (Adisa
et al., 2019). In contrast, the inclusion of NPs in the plant
development media may enhance the detrimental effects of
UV light. The application of CuO NPs alone had no adverse
effects, but in case combined with UV light may cause an
adverse impact on numerous physio-biological features (Regier
et al., 2015; Tarafder et al., 2020). The enhancement of POD
activity was found significantly in the plants subjected to

CuO NPs for 24 h (Regier et al., 2015). Interactive use of
Cd telluride-quantum dots (CdTe-QDs) with UV-B radiation
reduced enzymatic activities, photosynthetic pigments, and
increased DNA injury in wheat plants, followed by programmed
cell death as detected by DNA laddering (Chen et al., 2014), as
shown in Supplementary Table 1.

ROLE OF NFS ON CROP PRODUCTIVITY
AND QUALITY

Nanofertilizers play an important role in physiological and
biochemical mechanisms by enhancing the availability of
nutrients in crop plants. Nano NPK improves wheat leaf growth
by increasing nutrient availability and stomatal dynamics with
photosynthetic capacity (Abdel-Aziz et al., 2018; Fellet et al.,
2021; Verma et al., 2022), monitored in cotton and pearl millet
(Tarafdar et al., 2014). Electron microscopic observations could
detect the presence of NPs in the phloem route from leaf–
stem–roots (Abdel-Aziz et al., 2018). Zn NF applied to the
leaves significantly boosted overall plant performance, including
biomass (Vafa et al., 2015), photosynthetic pigments, and
enzymatic activities (Rezaei and Abbasi, 2014; Hussein and
Abou-Baker, 2018; Seleiman et al., 2021). Zinc may activate
enzymes associated with metabolic processes, i.e., glucose and
protein metabolism, growth regulators, pollen production, and
biological membrane integrity, affecting the synthesis of natural
auxin (Alloway, 2008; Rajput et al., 2021d; Wu and Li, 2022).
Thus, growth-boosting hormones may get enhanced with the use
of nano Zn fertilizer to improve photosynthetic pigments, plant
length, biomass, soluble protein, and carbohydrates in maize
(Sharifi et al., 2016). TiO2 improves plant biomass, nitrogen
assimilation, and photo-reduction activities of PS II and electron
transport chain (ETC), also scavenging ROS (Morteza et al., 2013;
Raliya et al., 2015; Janmohammadi et al., 2016). The aerosol-
amended application was found to be more efficient than soil
application on the uptake and accumulation of NPs in plants
(Raliya et al., 2015) and the growth characteristics, namely, length
of plants, branch numbers, grain weight, and biological yield were
found to be upregulated (34-38%) using Zn+Fe NFs in pearl
millet and sunflower (Drostkar et al., 2016; Sham, 2017) (refer
to Figures 1, 2 and Supplementary Table 1).

Nano Zn has an excess surface area-to-volume ratio, which
aids in improving Zn absorption and productivity (Khanm et al.,
2018). Nano Zn fertilizer requires ten times less than standard
ZnSO4. Zinc complexed chitosan NPs enhanced Zn content
in grains without affecting grain yield and quality, protein
content, spikelets per spike, and 1,000 kernel weight (Dapkekar
et al., 2018). Pomegranate fruit productivity may increase (21–
46%) per plant after foliar use with nano Zn and boron (B).
The application of TiO2 NPs as a foliar treatment affects the
development of barley plants, boosting plant yield, and seed
quality (Janmohammadi et al., 2016), while NPs improve fertilizer
efficiency and raise grain production (Janmohammadi et al.,
2016; Tarafder et al., 2020).

The amendment in TiO2 NPs increases plant biomass by
upgrading photosynthetic complexes and nitrogen metabolism
(Tarafdar et al., 2014; Janmohammadi et al., 2016; Mittal
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et al., 2020), as photocatalytic activity of TiO2 in nanoform
extends benefits for maize plant development and seed
quality by boosting pigment formation and light energy
conversion (Morteza et al., 2013; Raliya et al., 2018). The
use of Fe NFs enhanced soybean (Glycine max L.) crop
production (Sheykhbaglou et al., 2010). Jaberzadeh et al. (2013)
demonstrated that nFe boosted seed production relative to
normal plants. Manganese (Mn) NPs applied to mung bean
improved crop quality (Ghafariyan et al., 2013) with enhanced
NUE, pigments, and photosynthetic rate in groundnut nut
(Mekkdad, 2017; El-Metwally et al., 2018; Adisa et al., 2019).
At the application of 30 ppm, NFs found the highest values
of N, P, Fe, Mn, and Zn concentrations in seeds and straw as
well as photosynthetic pigments, carotenoids, total carbohydrate,
soluble sugars, protein, and seed oil (%) as relative to normal
plants (El-Metwally et al., 2018). Plant length, pod numbers, grain
weight-number, length of seeds, seed and pod output, and overall
biomass of groundnut were found to be enhanced after foliar
application of nanochelated molybdenum (Mo) NPs (Fellet et al.,
2021).

The use of NFs resulted in higher crop quality than using
standard fertilizers in Arachis hypogaea (Prasad et al., 2012).
Since Zn is associated with photosynthetic processes, synthesis
of photosynthetic pigments, and starch creation, carbonic
anhydrase boosts the oil content of sunflower seeds (Sham
(2017). Zn NFs enhanced the soluble carbohydrates content,
increasing the formation of carbohydrates (Sharifi et al., 2016).
Groundnut seeds with Zn NFs acquired higher total starch levels,
soluble sugars, protein, and oil (Safyan et al., 2012; El-Metwally
et al., 2018; El-Saadony et al., 2021), as Zn was found to be
associated with the metabolism of carbohydrates, proteins, and
phytohormones, particularly indole acetic acid (IAA), which aids
in starch synthesis and grain development (El-Metwally et al.,
2018; Zulfiqar et al., 2019) (Supplementary Table 1).

ROLE OF CARBON-BASED
NANOMATERIALS ON PLANT GROWTH
REGULATION

Nanoscale, carbon-based nanomaterials (CNMs), including
fullerenes, nanodots, NPs, nanotubes, nanohorns, nanobeads,
nanodiamonds, and nanofibers, possess novel physiochemical
activities, i.e., small surface area, enhanced chemical reactivity,
and improved efficiency to enter plant cells with typical surface
morphology (Mukherjee et al., 2016; Kumar et al., 2018a; Diez-
Pascual, 2021). CNMs have been investigated as drug carrier
vehicles and as smart delivery systems in specific areas of
nanopharmacology, nanomedicine, public health, etc. (Niazi
et al., 2014; Mohajeri et al., 2019) to ensure the availability of
delivered drugs appropriately to the specific target site (s) within
the cells (Mukherjee et al., 2016; Verma et al., 2019). Therefore,
researchers have drawn attention to advanced biological research
and bioengineering (Lowry et al., 2019; Chen et al., 2020; Peng
et al., 2020; Diez-Pascual, 2021) to acquire plant growth and
development optimally linked with plant productivity under
adverse environmental variables (Supplementary Table 1).

STIMULATING AND NONSTIMULATING
EFFECTS OF CNMS ON PLANTS

The bioregulation process of CNMs may produce two
contradictory consequences so far. The first may positively
affect plant growth and development, while the second may be
highly toxic and significantly influence plant biology. At the same
time, negatively charged carbon nanotubes with more functional
groups may boost seed germination and seedling biomass with
activation of water channel proteins based on a series of studies
(Khodakovskaya et al., 2011; Villagarcia et al., 2012; Tripathi and
Sarkar, 2015; Mukherjee et al., 2016; Diez-Pascual, 2021). The
presence and type of carbon nanotubes may influence pesticide
availability in lettuce seedlings, as evidenced by the fact that
amino-functionalized carbon nanotubes may increase pesticide
concentration in roots and shoots, while nonfunctionalized
carbon nanotubes may cause the opposite effect (Hamdi et al.,
2015; Chen et al., 2020). These days, researchers are advocating
concerns with care about using NPs in agriculture to boost crop
yields with a quality environment, while increased accretion of
NPs in the plant tissue may affect plant growth and physiological
responses by inhibiting seed germination, suppressing plant
elongation, reducing biomass, and altering expression of genes
with the increase in ROS, which induces oxidation of nucleic
acids, proteins, and lipids and poses a threat to the biomembrane
(Mukherjee et al., 2016; Yang et al., 2017; Shekhawat et al.,
2021; Verma et al., 2022). The single-walled carbon nanotubes
(SWCNTs) significantly transport and irreversibly localize within
the lipid envelope of extracted plant chloroplasts, improving
3-fold higher photosynthetic efficiency compared with an
increase in electron transport rate (Giraldo et al., 2014). The
harmful effects of CNPs in plants may get mitigated by having
a well-developed antioxidant system that includes several
nonenzymatic molecules, such as proline, carotenoids, thiols,
and enzymatic antioxidants, like APX, CAT, SOD, GPX, GR, and
heme-oxygenase, that may scavenge the surplus ROS (Balestrasse
et al., 2008; Mahawar et al., 2021). Furthermore, attempts are
yet to be put in to explore the mechanism associated with
CNM bioregulation.

ADVANTAGES AND DISADVANTAGES OF
NFS

Technological improvements may enhance the production of
agro-industrial, physiological, and agronomical essential metallic
NPs for making fertilizers with reduced nutritional losses and
enhanced NUE with smart delivery systems (Adisa et al., 2019;
Fellet et al., 2021). The NPsmay be used as NFs on the plants or in
the soil to boost fertilizer uptake and utilization to upgrade plant
performance (Liu and Lal, 2015; Rajput et al., 2021a,c) with newer
possibilities of nanobiotechnology for improved agriculture in
years to come by supporting nutrients’ delivery system with a
targeted approach and multifunctional features (Nair et al., 2010;
Adisa et al., 2019) (Figures 1, 2, and Supplementary Table 1).
NFs get delivered at slow rates to extend soil health and fertility
with nutrient balance by lowering runoff into groundwater and
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reducing the risk of toxicity (Zulfiqar et al., 2019; Seleiman
et al., 2021). Zeolites have a high selectivity for plant minerals
and a large specific surface area due to their nanoporous
properties, allowing them to be delivered in a slow, controlled,
and regular manner as needed by the plants with improved
availability (Iavicoli et al., 2017; Rajput et al., 2021a). The
treated plants’ entire life cycle was found to be reduced ca.
24% shorter than normal fertilized plants (24%) from sowing
to maturity (Abdel-Aziz et al., 2016). Innovative fertilizers are
currently getting selected as an alternative over the conventional
ones (Dimkpa and Bindraban, 2017; Iavicoli et al., 2017) by
providing balanced nutrition to combat various environmental
variables with significant advantages for physiological fitness and
performance of plants/crops as well.

Nanofertilizers may release their nutrients in 6–7 weeks, while
synthetic fertilizers do the same within a week. The synthetic
urea fertilizer rapidly loses ca. 70% of its N content after field
application through leaching and volatilization, leaving < 20%
available for plants (Kahrl et al., 2010; Seleiman et al., 2021).
The chemical fertilizers are indispensable for improving crop
productivity, extensively applied through various approaches
(Feregrino-Pérez et al., 2018), and while their actual usagemay be
less than half of the applied amount of fertilizer (Chen and Wei,
2018), the remaining gets leached down to cause water pollution
(Liu and Lal, 2015). It has been reported that macronutrient
elements, namely, N, P, and K applied to the soil get lost ca.
40–70%, 80–90%, and 50–90%, respectively (Solanki et al., 2016;
Chen et al., 2018; Feregrino-Pérez et al., 2018) with water toxicity.
Farmers tend to use repeated applications of these fertilizers to
achieve desired yields, which may decrease soil health/fertility
with the accumulation of salt concentrations in the rhizosphere
with impaired plant/crop growth, performance, and productivity
(Feregrino-Pérez et al., 2018; Zulfiqar et al., 2019; Verma et al.,
2022).

FUTURE PERSPECTIVES

Sustainable global food security seems to be a big issue in times
to come. Therefore, innovative/appropriate agricultural practices
may be explored to acquire the target of food production
under changing climate variables, rising population, and loss
of arable land. The precision crop production must be eyed
over the application of suitable NPs in diversified agricultural
cropping systems using nanoagricultural input to strengthen
plants’ capabilities to be cultivated in various agroecological
zones to address the challenges with opportunities. The
comprehensive proteomic and metabolomic approaches are to
be unlayered to correlate NPs-induced gene expression profile
of crop plants integrated and regulated by the operation of
nucleus genome (nDNA), chloroplast genome (cpDNA), and
mitochondrial genome (mtDNA), which confers an overall
plants’ growth, development, physiological fitness/performance,
and carbon concentrating metabolism, i.e., photosynthesis linked
with phototransformation of light energy using PSII and PSI
appears to play a crucial role in regulating photophosphorylation,
CO2 fixation, and plant productivity, all eventually results

to improve agriculture production worldwide through various
cropping systems (Zulfiqar et al., 2019; Aqeel et al., 2022; Kalwani
et al., 2022; Mahapatra et al., 2022).

The larger NPs can only have direct access to DNA during
cell division (Wang et al., 2013; Bhardwaj et al., 2022).
Direct genotoxicity (where NPs directly damage the DNA
either mechanically or via chemical bonding) and indirect
genotoxicity (which includes ROS formation, decreased DNA
repair, and association with nuclear protein) are the two types of
genotoxicity processes for NPs (Karami-Mehrian and De Lima,
2016; Pagano et al., 2022). The most destructive consequence
of NPs on plants is DNA damage, which can occur through
direct or indirect pathways. The application of NiO NPs revealed
direct genotoxicity in the tomato plants where these NPs could
directly access the DNA and caused irreversible cell damage.
Co3O4 NPs cause indirect DNA damage in eggplants that lead
to apoptosis in plant cells (Faisal et al., 2016). The DNA damage
occurs due to degeneration of mitochondrial cristae, peroxisome
proliferation, NO generation, and vacuolization. ZnONPs caused
membrane integrity, DNA strand breakage, and chromosomal
damage in Allium cepa L., Nicotiana tabacum L., and Vicia faba
L. (Faisal et al., 2013; Ghosh et al., 2016; Bhardwaj et al., 2022).
In terms of specific effects on plastid (pt) and mitochondrial
(mt) DNA, CdS QD exposure induced possible alterations in the
organellar genomes at the substoichiometric level, but nanoscale
FeOx and ZnS QDs caused a 1- to 3-fold increase in ptDNA
and mtDNA copy numbers. NP CeO2 did not alter ptDNA and
mtDNA stoichiometry. These results suggest that modification in
stoichiometry is a potential morpho-functional adaptive response
to NPs exposure caused by variations of bioenergetic redox
balance, which reduces the photosynthesis or cellular respiration
rate (Karami-Mehrian and De Lima, 2016; Pagano et al., 2022).

The plant–NP interactions in the field must be carefully
examined at the molecular level to minimize phytotoxic effects
to sustain the soil health, which may boost crop productivity
and extend the ecofriendly ecosystem by discouraging huge
application of conventional fertilizers. Therefore, our insight for
nanoformulation and its application must be focused on soil
and groundwater based on innovative, safe, and cost-effective
updated interventions for agroecological sustainability to feed
the future generations to ensure quality human resources. All
these intrinsic abilities of plants may be made to understand the
possibility of sustainable crop improvement to fulfill the need for
healthy food for all future generations globally.
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