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Maize leaf diseases significantly reduce maize yield; therefore, monitoring and identifying
the diseases during the growing season are crucial. Some of the current studies
are based on images with simple backgrounds, and the realistic field settings are
full of background noise, making this task challenging. We collected low-cost red,
green, and blue (RGB) images from our experimental fields and public dataset, and
they contain a total of four categories, namely, southern corn leaf blight (SCLB), gray
leaf spot (GLS), southern corn rust (SR), and healthy (H). This article proposes a
model different from convolutional neural networks (CNNs) based on transformer and
self-attention. It represents visual information of local regions of images by tokens,
calculates the correlation (called attention) of information between local regions with an
attention mechanism, and finally integrates global information to make the classification.
The results show that our model achieves the best performance compared to five
mainstream CNNs at a meager computational cost, and the attention mechanism
plays an extremely important role. The disease lesions information was effectively
emphasized, and the background noise was suppressed. The proposed model is more
suitable for fine-grained maize leaf disease identification in a complex background, and
we demonstrated this idea from three perspectives, namely, theoretical, experimental,
and visualization.

Keywords: crop disease, machine learning, deep learning, attention mechanism, neural network

INTRODUCTION

Maize is one of the most important crops for humanity, with the highest yield globally (Ranum
et al., 2014). Maize diseases can cause severe yield reductions, a critical problem (Savary et al., 2012).
Therefore, it is vital to promptly identify and monitor maize diseases during the growing period.
Accurate identification of diseases in maize is difficult for crop growers who may not be professional
in plant pathology, and expert identification is expensive and time-consuming (Ouppaphan, 2017).
Traditional image recognition methods and deep learning are gradually entering the field of plant
disease recognition (Saleem et al., 2019).

Mobile terminals based on web services and support vector machine (SVM) as back-
end algorithms can automatically identify maize diseases (Zhang and Yang, 2014). Zhang
et al. (2015) proposed an improved genetic algorithm-SVM (GA-SVM) algorithm to improve
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the accuracy. A recent study on maize disease identification
compared five standard machine learning methods (Panigrahi
et al., 2020), namely, Naive Bayes (NB), Decision Tree (DT),
K-Nearest Neighbor (KNN), SVM, and Random Forest (RF),
with RF achieving the highest accuracy of 79.23%.

However, traditional machine learning is mainly limited by
feature extraction and feature representation. Deep learning has
made significant progress in plant disease identification (Liu and
Wang, 2021). Since AlexNet was proposed in 2012 (Krizhevsky
et al., 2012), convolutional neural networks (CNNs) have been
widely used in academia and industry, e.g., face detection in
dangerous situations (Wieczorek et al., 2021) and combination
of Internet of things (IoT) and pearl millet disease prediction
(Kundu et al., 2021). In the field of plant disease identification,
Dhaka et al. (2021) provided a systematic review of relevant deep
learning techniques. Due to its low complexity, a lightweight
CNN for mobile terminals has achieved satisfactory performance
in maize disease identification (Ouppaphan, 2017). A CNN-based
system (DeChant et al., 2017) was implemented to automatically
identify northern leaf blight, addressing the challenges of limited
data and various irregularities appearing in field-grown images.
Ahila Priyadharshini et al. (2019) proposed a CNN modified from
LeNet for identifying four maize categories (three diseases classes
and one health class) with an accuracy of 97.89%.

However, most of the current studies are based on simple
background maize leaf or other crop disease recognition, and the
recognition effect of the trained models deteriorates in real field
settings, because background noise information causes serious
obstruction (Lv et al., 2020). Current research on popular or
novel deep learning image recognition algorithms (CNNs) is
mainly tested on the public dataset ImageNet, and its images
are different from fine-grained images of crop disease. Those
designed CNNs mostly focus on patterns of objects in images
(e.g., profile features of dogs or cats), and these pattern features
are reflected in feature maps of convolutional output, as can be
demonstrated by numerous neural network visualization studies
(Chattopadhay et al., 2018; Chen et al., 2020; Jiang et al., 2021).
In contrast, fine-grained crop disease lesions are usually similar
and discrete on the leaf surface; thus, CNNs may not be fully
adapted to fine-grained maize leaf disease image classification
tasks, which will result in no increase in model performance
even by stacking the network layers and increasing model
parameters. Rational model design for specific tasks is important
and necessary, and the following analysis and experiments in
this article also prove this perspective. In addition, many visual
disturbances (e.g., reflection, dispersion, and blur) seriously affect
fine-grained image classification (Lu Y. et al., 2017; Yang et al.,
2020). Therefore, fine-grained maize disease identification in
complex background field settings requires more rational models
and computerized mechanisms.

Mutual attention between words is highly essential for
machine translation tasks, which determines whether a sentence
can be translated accurately. The transformer architecture
(Vaswani et al., 2017) with the attention mechanism has
achieved significant success in natural language processing
(NLP). Although previous attention mechanisms have been
applied to some specific tasks, e.g., image caption generation

technology (Lu J. et al., 2017), text classification (Li et al., 2019),
and human action recognition (Song et al., 2017), the form
and principle of their attention mechanisms are too different
and specialized. However, the transformer’s attention mechanism
(self-attention) has a universal form.

To explore whether the attention mechanism will bring
enhancements to the field of computer vision, vision transformer
(ViT, Figure 1 depicts it) (Dosovitskiy et al., 2020) applies the
transformer architecture directly to image classification tasks for
the first time, outperforming the state of the art on large-scale
datasets. Subsequently, researchers gradually began to study ViT
and its attention mechanism. Transformer in transformer (TNT)
(Han et al., 2021) embeds the inner transformer into the outer
transformer to improve the feature extraction capability lacking
in the patch embedding method (refer to Figure 1 for the patch
embedding method). Compact convolutional transformer (CCT)
(Hassani et al., 2021) demonstrates that convolution can be used
to extract local information better, thus making it possible to
apply transformer to more tasks with small datasets.

In this study, we found that transformer and self-attention
computer mechanisms are more suitable for maize leaf
disease identification in complex backgrounds. This article will
demonstrate their efficiency and why they work from three
perspectives, namely, theoretical derivation, experiment, and
visualization. We collected maize leaf diseases datasets with
complex backgrounds in our experimental field and proposed
an improved model based on ViT and CCT to classify maize
into four categories (Figure 2), namely, healthy (H), southern
corn leaf blight (SCLB) (Aregbesola et al., 2020), gray leaf spot
(GLS) (Saito et al., 2018), and southern corn rust (SR) (Wang S.
et al., 2019). The model outperforms some mainstream CNNs
compared with it in all metrics, with a smaller number of
parameters. In addition, we also conducted experiments on the
necessity of the self-attention for the model, demonstrating that
it is essential. This article also conducts experiments to observe
the effect of the ratio of train set to validation set on the
accuracy of the model.

The rest of this article is organized as follows. The
section “Materials and Methods” introduces the details of
our experimental field and experimental sample cultivation,
describing our datasets and methods used to collect them. In
that section, we focused on describing our algorithm and the
detailed theoretical derivation and proving its effectiveness, as
well as the experimental visualization schemes (three schemes).
All experimental results are described in section “Results.” We
discussed the reasons for the efficiency of this model and some
possible future extensions in section “Discussion.”

MATERIALS AND METHODS

Data Collection and Preparation
The dataset of the images, which included 7,701 images, consists
of two parts, namely, one part is collected from the public dataset
Plant Village and the other part is taken by mobile phones in
the natural environment of our experimental field. The maize
plants grown in the experimental field are used to select suitable
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FIGURE 1 | The left side of the figure is the original vision transformer architecture, and the illustration is inspired by Dosovitskiy et al. (2020). The right side of the
figure is the patch embedding method which cuts the image into several patches.

FIGURE 2 | Showing four categories of samples of maize. (A) H. (B) SCLB.
(C) SR. (D) GLS.

disease-resistant varieties, so there are numerous maize varieties.
However, as with other studies on maize disease identification,
the variety of maize is not the focus and has no impact on
the study of this article because the images of maize leaves in
our dataset do not reflect their genetic variety. An area of the
experimental field covered 3 acres was chosen for this study,
planting a total of 80 rows of maize with 26 maize plants per
row, 65 cm between rows, and 13 m length of each row. Half
of this area was planted with maize inoculated with SCLB, and
the other half with maize inoculated with SR. The conidia with a

concentration of 106/ml were sprayed at this maize in the sixth-
leaf stage, namely, 40–50 days after sowing, to inoculate maize
with the abovementioned diseases. After inoculation, the maize
is allowed to develop naturally. One day of the milk stage of the
maize is chosen to take all the images needed for our dataset.
Every maize plant is sampling points. We walked along the rows
and remained for several minutes to take images, and the same
leaf will be photographed more than once to get 1–6 images.
Furthermore, the leaves were manually moved to find a better
angle to photograph a good image while adjusting the position of
the phones to aid this operation. Despite the fact that a leaf may
be photographed more than once, every image is different and
contains complicated background visual information because
the content of interest is different for each shot. The manual
focus is chosen to solve the issue that phones cannot focus on
the leaf lesion areas of interest, therefore, guaranteeing every
image is clear and focused. The H maize images were obtained
from another area of the experimental field where eight rows
of maize plants were planted, and the planting pattern and the
photographing mode are identical to the above. All the images
photographed are under normal uncontrolled lighting conditions
with mobile phones’ low-cost red, green, and blue (RGB) sensor.
The GLS maize images are downloaded from the Plant Village.
This article divided the dataset into a training dataset and a
validation dataset according to the principles of 3 to 1 due to the
sample balance. Table 1 shows the distribution of images and the
division of the dataset.

Data Processing
The images’ size must be unified to a standard 224 × 224-pixel
square offline to reduce the computational effort before the model
training. Furthermore, some data augmentation techniques are
separately applied to each image, with a certain probability
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TABLE 1 | Distribution of data sources and division of training set
and validation set.

Categories Shooting by us Plant village Train set Validation set

SCLB 2,243 0 1,743 500

H 1,273 1,162 1,953 500

SR 2,023 0 1,523 500

GLS 0 1,000 750 250

during model training online, thus enhancing the generalization
ability of the model and preventing its overfitting. This article
selects four data augmentation techniques suitable for maize leaf
disease identification, namely, RandomFlip, ColorJitter, Cutmix
(Yun et al., 2019), and Mixup (Zhang et al., 2018). Before an
image is imported into the model, RandomFlip randomly rotates
it horizontally or vertically, expanding the dataset, as this is
equivalent to the images in the dataset having different shooting
angles than their raw form. ColorJitter randomly changes the
image’s brightness, contrast, saturation, and hue. As a result,
ColorJitter can improve the model’s ability to adapt to different
lights in field settings. The lesions of the three diseases chosen for
the study are scattered on the surface of the leaves, which means
that the model should not focus only on the lesions of one area
but also on the entire leaf. Cutmix randomly crops a patch of the
image and fills the area with a small and same size patch from
another image. The size of the patches is a hyperparameter, and
the position of the patches on the images is random. Mixup is
widely used in image classification tasks, and it mainly constructs
a virtual sample

(̃
x, ỹ

)
by the following methods:

x̃ = λxi+ (1−λ) xj (1)

ỹ = λyi+ (1−λ) yj (2)

where xi and xj are two different images, yi and yj are the unique
one-hot labels corresponding to these two images, and λ ∈ (0, 1).
Mixup extends the distribution of samples by linear interpolation,
making it popular for various image classification tasks. Both
Cutmix and Mixup make models confusing, forcing them to
focus on global information rather than local information.
This article’s data augmentation techniques are used only in
training, not testing.

Algorithm
At the beginning of this section, we have done some specifications
of mathematical notation and some pre-paving for our model.
The upper case non-bolded symbols in this article refer to
matrices, the lower case bolded symbols refer to row vectors, and
the lower case non-bolded symbols refer to constants or scalar
variables. A complete image can be divided into several local
regions. The critical feature information of maize leaf disease
is located in some local regions where the lesions are located.
From the visual point of view, the texture and color of these local
areas are the feature information. From the algorithmic point
of view, the RGB values of the pixels in these local areas are
the feature information. Background information that interferes
with the classification is useless information. CNNs usually

downsample the image and use the generated feature maps to
represent the information of the image. Our model encodes the
feature information of local regions into vectors (called tokens)
to represent the information of the whole image. The attention
mechanism of this article will be based on these tokens to identify
those critical regions to make the classification.

Our standard model has three stages, namely, Stage 1, Stage
2, and Stage 3 (Figure 3). Stage 1 extracts the image features
and encodes them into a feature tokens matrix. Each row vector
in the tokens matrix is a token, and a token is a vector used
to represent the local visual features within a receptive field
(convolution or max-pooling kernel). Passing the input image
I ∈ Rh × w × c through a convolutional layer and a max-pooling
layer generates feature maps Fm ∈ Rl × l × d with channels of d.
The width of feature maps output from both convolution layer
and max-pooling layer is expressed by the following equation:

l =
i+2p−k

s
+1 (3)

where i denotes the width of the original image or input feature
maps, k is the size of the kernel (convolution or max-pooling), s is
the stride of kernel movement, and p is padding. We listed those
hyperparameters at the end of the section algorithm. At the end
of Stage 1, after extracting vectors along the channel dimension
for the feature maps Fm, the vectors are arranged to obtain the
feature tokens matrix, which can be described by the following
equation:

X = Flatten (Fm) (4)

where X ∈ Rn × d is the tokens matrix, and n = l2. Each row
vector of dimension d in X is a feature token.

At the beginning of Stage 2, a learnable vector “classification
token” of dimension d is appended to the top of X; hence,
X ∈ Rn × d was transformed to X ∈ Rnt × d, where nt = n+ 1.
The “classification token” is derived from NLP and is similar
to BERT’s (Devlin et al., 2018) “class token.” The classification
token will be output at the end of Stage 2 as input to Stage 3
to complete the final classification. Therefore, the transformer
encoder of Stage 2 is the core computational module of the whole
network, and the essential part of it is multi-head self-attention
(MSA) that is used to perform self-attention. The rest of the
section algorithm will introduce how it works, demonstrating
why it is effective. To better explain MSA, we first described
the computational process of single-head self-attention (SSA).
Tokens matrix X is linearly transformed into queries Q, keys K,
and values V by three matrices, WQ, WK , and WV , respectively,
and the linear transforms can be seen in the following equations:

Q = XWQ (5)

K = XWK (6)

V = XWV (7)

where WQ ∈ Rd × d, WK ∈ Rd × d, and WV ∈ Rd × d are
parametric learnable matrices. In fact, each row vector in Q, K,
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FIGURE 3 | The standard model architecture. Stage 1 extracts information from local regions of the image and encodes them into tokens. Stage 2 is the core
computational network that performs the self-attention. Stage 3 maps the classification token into four classes to complete the final classification. Linear, linear layer;
LN, layer normalization; MLP, multilayer perceptron.

and V is still a token used to represent feature information of the
corresponding local region. Assume that qi, ki, and vi denote the
i-th token of Q, K, and V, respectively; thus, they all represent
the feature information of the i-th receptive field of the original
image. The correlation between tokens is obtained by calculating
the inner product of all row vectors in Q and all row vectors in K.
For example,

〈
qi, kj

〉
= qikT

j represents the correlation between
the i-th token and the j-th token or the degree of attention of
the i-th token to the j-th token. However, it is usually not equal
to
〈
qj, ki

〉
= qjkT

i , which is due to two factors. On the one
hand, Q and K are obtained by a linear transformation of two
different learnable matrices, WQ and WK . Although both qi and
ki represent the visual information of the i-th receptive field, the
elements in WQ and WK change in the direction favorable to the
final classification as the model weights are updated. On the other
hand, the self-attention mechanism is derived from NLP, where
words are encoded as vectors (tokens) in a machine translation
task. The correct translation of a sentence requires finding the
relevance of each word, and two words have different attention
to each other, which requires the correlation calculation method
between tokens as described earlier. Therefore, the correlation
between tokens can be calculated by the following equations:

A = QKT

=


q1kT

1 q1kT
2 · · · q1kT

nt
q2kT

1 q2kT
2 · · · q2kT

nt
...

...
...

qnt kT
1 qnt kT

2 · · · qnt kT
nt



=


a11 a12 · · · a1nt

a21 a22 · · · a2nt
...

...
...

ant1 ant2 · · · antnt

 (8)

A is the preliminary tokens correlation matrix; in other words,
it represents the attention between tokens, e.g., aij denotes the
attention of the i-th token to the j-th token or the attention of

the visual information of the i-th receptive field to the visual
information of the j-th receptive field. The following equations
normalize the attention matrix A:

A
′

= softmax

(
A√
dk

)

=


σ (a1) /

√
dk

σ (a2) /
√

dk
...

σ
(
ant

)
/
√

dk

 (9)

σ (ai) =
[

eai1∑nt
j=1 eaij

eai2∑nt
j=1 eaij · · ·

eaint∑nt
j=1 eaij

]
(10)

where dk is a normalization factor and a hyperparameter. Assume
that αij is the element in row i and column j of A

′

. Subsequently,
elements in attention matrix A

′

are used as weights to linearly
combine the tokens of V, which will integrate the information
of the tokens they are focused on for each token. The following
equation describes this process:

V
′

= A
′

V

=


α11v1 + α12v2 + · · · + α1nt vnt

α21v1 + α22v2 + · · · + α2nt vnt
...

αnt1v1 + αnt2v2 + · · · + αntnt vnt

 (11)

Thus, the new tokens of V
′

are integrated with the
information they pay attention to. The above describes the
computation of the attention mechanism. In this process, the
classification token is fully involved in the computation of the
self-attention mechanism, continuously integrating information
about receptive fields in a different-attention way, and finally
being output for final classification. The mode using tokens
to represent receptive field information and integrating tokens
information is more suitable for maize leaf disease identification,
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because the main characteristic of maize leaf diseases is lesions,
which are usually small and widely distributed on the leaf surface.
Hence, similarity exists between lesions in terms of texture and
color, which is reflected in the RGB values of images. The visual
information in receptive fields where lesions exist is similar, and
vectors encoded are also similar, so critical information of images
can be highlighted by the computational model presented earlier.
Subsequent experiments and visualizations in this article will also
demonstrate that the model will focus on lesions rather than
background noise information. MSA is a simple extension of SSA,
performing head SSA calculations independently of each other
in parallel (Figure 4), and head is a hyperparameter. Based on
the SSA presented earlier, the MSA is briefly described by the
following equations:

Qi = XWQ
i (12)

Ki = XWK
i (13)

Vi = XWV
i (14)

A
′

i = softmax

(
QiKT

i√
dk

)
(15)

V
′

i = A
′

iVi (16)

V
′

= Concat
(

V
′

1, V
′

2, · · · , V
′

head

)
= V

′

1 ⊕ V
′

2 ⊕ · · · ⊕ V
′

head
(17)

where i = 1, 2, · · · , head, WQ
i ∈ Rd × d

head , WK
i ∈ Rd × d

head ,

WV
i ∈ Rd × d

head , and
⊕

is the concatenated operation to
matrices. Therefore, tokens matrix X ∈ Rnt × d is calculated by
the MSA and outputs V

′

∈ Rnt × d.
Layer normalization (LN) (Ba et al., 2016) normalizes input

tokens to speed up the convergence by the following equations:

LN
(
yi, α, β

)
=

yi−µ

σ
� α+β ∈ Rn × d (18)

µ =
1
d

d∑
j = 1

yj
i (19)

σ =

√√√√√ 1
d

d∑
j = 1

(
yj

i−u
)2

(20)

where yi is the i-th token, and yj
i refers to the j-th element of the

i-th token. α and β are learnable gains and bias, respectively.
Linear layer can perform a linear transformation of the input

matrix, which is described by the following equation:

Mo = MW + b (21)

FIGURE 4 | The schematic of implementing multi-head self-attention.
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where M ∈ Rm × n is the input matrix, W ∈ Rn × o refers to the
learnable matrix, b ∈ R1 × o refers to the learnable bias vector,
and Mo ∈ Rm × o refers to the output matrix.

Multilayer perceptron (MLP) obtains nonlinearity and
transformation (Han et al., 2021), benefiting from the linear layer
and the activation function Gaussian error linear units (GELU)
(Hendrycks and Gimpel, 2016). This nonlinear transformation
can be described as follows:

Mo = GELU(MW1 + b1)W2 + b2 (22)

GELU(x) = 0.5x
(

1+ tanh
[√

2/π(x+ 0.044715x3)
])

(23)

where M ∈ Rm × n and M ∈ Rm × o refer to input matrix
and output matrix, respectively, W1 ∈ Rn × h and W2 ∈ Rh × o

are learnable matrices, and b1 ∈ R1 × h and b2 ∈ R1 × o are
learnable bias vectors. The GELU function, when applied to
a matrix, will perform a nonlinear transformation on all
elements of that matrix.

Stage 3 maps classification token (v
′

0, the first row vector of the
matrix V

′

of the last transformer encoder block) of the output of
Stage 2 to four categories by a linear layer.

We conducted an ablation experiment on MSA to investigate
the necessity of self-attention. The experiment needs to remove
the MSA from transformer encoder. However, without the MSA,
the classification tokens cannot participate in the computation
of the integrated tokens information. Therefore, we designed
Model-1 and Model-2 based on the standard model. Model-1
does not use classification tokens but integrates feature tokens

to classify, and Model-2 removes MSA from Model-1 (refer to
Figure 5 for Model-1 and Model-2).

Hyperparameters and Training Facilities
The hyperparameters of our standard model are as follows:

• Max pool layer: number = 1, kernel size = 3, stride = 2,
padding = 1,
• Convolutional layer: number = 1, kernel size = 7,

stride = 4, padding = 1,
• Transformer encoder blocks: 12,
• Heads of MSA: 4,
• Dimension of token: d 64,
• Normalization factor: dk = 16,
• Batch size: 64,
• Learning rate: 0.004,
• Weight decay: 0.05.

We have made our dataset and code, as well as all the trained
models of this article, publicly available in the site: https://github.
com/haiyang-qian/code-and-dataset. Our model is trained on
the open-source deep learning framework Pytorch 1.9, and
the programming language is Python 3.7.10. Our experimental
facilities are as follows:

• CPU: Xeon Gold 6142
• GPU: RTX 3090
• CUDA: V11.2
• OS: Ubuntu 20.04
• Memory: 60.9 GB
• SSD: 429.5 GB

FIGURE 5 | Two models changed from the standard model. (A) Model-1. (B) Model-2.
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Visualization Methods
In this article, three visualization schemes are designed, targeting
three network outputs, namely, convolutional or pooling layers,
tokens matrix, and classification token for feature tokens’
attention. First, for the feature maps of the output of the
convolution or pooling layer, we have applied the Grad-Cam
method (Selvaraju et al., 2017). The method first computes
gradients for class c regarding feature maps Fm of a convolutional
layer (assume that Fmk is the k-th channel of the feature maps).
These gradients are globally averaged over the corresponding
channels of Fm to obtain the weights of that channel αc

k. αc
k is the

importance of feature map Fmk for class c and is used to weigh the
feature map Fmk. Then, the class discriminative localization map
(CDLM) (a map of the importance of different regions of input
image for class c) can be obtained by completing this operation
for all the feature maps. The above computation can be described
by the following equations:

αc
k =

1
z

∑
i

∑
j

yc

Fmk
ij

(24)

Lc
Grad−CAM = ReLU

(∑
k

αc
kFmk

)
(25)

ReLU (x) =

{
x if x > 0
0 if x < 0

(26)

where Lc
Grad−CAM is a CDLM calculated by the Grad-Cam

method, and it will be mapped back to the input image to obtain
the visualization result. The Grad-Cam method is usually used
for feature maps of the convolution or pooling layer output.
Therefore, in our second visualization scheme based on the
tokens matrix, we have reshaped the two-dimensional feature
tokens matrix Y into a three-dimensional feature map matrix,
expressed as the following mapping:

Y ∈ Rn × d
→ Fm ∈ Rl × l × d (27)

where n = l2. We applied the Grad-Cam method to Fm to obtain
the results of the second visualization scheme in this article. The
third visualization scheme is used to directly map the attention
of the classification token to the feature tokens back to the input
image. Our standard model has 12 transformer encoder blocks,
and each MSA has four heads. The attention of each MSA is
combined by the following equations:

A(i)
=

4∑
j = 1

Aij,i = 1, 2, · · · , 12 (28)

A =
12∑

i = 1

A(i) −min
(
A(i))

max
(
A(i)

)
−min

(
A(i)

) (29)

where Aij denotes the attention map of classification token to
feature tokens in j-th head of i-th transformer encoder, and A(i) is
the attention map that fuses the attention maps of all the heads in
i-th transformer encoder. A will be mapped directly to the input

image. This visualization scheme does not involve any gradient
calculation. It will reflect the attention of the classification token
to feature tokens and demonstrate whether the calculation of
MSA without increasing parameters is effective for identifying
diseased maize leaves.

Evaluation of Model Performance
We chose accuracy, precision, recall, F1 score, parameters, and
floating-point operations per second (FLOPs) to evaluate our
classification model. Among them, precision, recall, and F1 score
can be calculated by the following equations:

Precision =
TP

TP + FP
(30)

Recall =
TP

TP + FN
(31)

F1 =
2Precision × Recall

Precision+ Recall
(32)

where TP refers to the number of true positives, FP refers to
the number of false positives, and FN refers to the number of
false negatives.

RESULTS

All models in this article were trained with 110 epochs. Figure 6
shows the accuracy and loss of all models as a function of
epochs. As can be seen, the performance dramatically improves
within the first 20 epochs, but improvement is minor beyond 20
epochs. We compared five mainstream CNNs with our standard
model. These CNNs have achieved excellent performance on
some specific tasks. For example, MobileNet (Sandler et al.,
2018) can be applied to mobile terminals due to its lightweight
architecture. ResNet (He et al., 2016) as a baseline is widely used
in the industry. EfficientNet (Tan and Le, 2019) has a relatively
significant advantage in terms of speed and accuracy. Table 2
compares the standard model with these CNNs in terms of six
metrics (i.e., accuracy, precision, recall, F1 score, parameters, and
FLOPs). The accuracies of CNNs reached VGG11 (Simonyan
and Zisserman, 2014) 97.9%, ResNet50 96.6%, EfficientNet-b3
91.6%, Inception-v3 (Szegedy et al., 2016) 97.2%, and MobileNet-
v2-140 90.7%, whereas the standard model reached 98.7% and
surpassed these CNNs. Figure 7 shows that comparison of the
accuracy trends of the standard model with the mainstream
CNNs and ViT-base during training. The recall of the standard
model for class H is 1% lower than that of Vgg11, but it
surpasses Vgg11 in all other metrics. Except for VGG11, the
standard model surpasses or ties the rest of these CNNs in
accuracy, precision, recall, and F1 score. For the FLOPs metric,
MobileNet-v2-140 has lower FLOPs than the standard model
and requires less computing power. Since MobileNet-v2-140 is
designed for mobile terminals, its FLOPs must be lower than
common models. Nevertheless, MobileNet-v2-140 has 6.6 times
the number of the standard model parameters. The number of
parameters and FLOPs of other models are significantly higher
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FIGURE 6 | Accuracy curve and loss curve of validation set of all models in this article (i.e., Model-1 and Model-2).

TABLE 2 | Comparison between the standard model and the other mainstream models.

Standard VGG11 EfficientNet-b3 Inception-v3 MobileNet-v2-140 ResNet50 Vit-base

Accuracy (%) 98.7 97.9 91.6 97.2 90.2 96.6 93.9

Precision (%)

H 97 96 88 96 88 94 91

SCLB 99 99 90 97 88 99 92

SR 99 98 94 98 92 96 98

GLS 100 100 97 99 99 100 96

Recall (%)

H 99 100 92 98 93 99 95

SCLB 97 96 86 94 86 91 90

SR 100 99 98 100 96 99 97

GLS 99 97 89 98 85 97 92

F1 (%)

H 98 98 90 97 91 97 93

SCLB 98 97 88 95 87 95 91

SR 100 98 96 99 94 98 98

GLS 100 98 93 99 91 98 94

Parameter (M) 0.65 128.78 10.70 21.79 4.32 23.52 82.80

FLOPs (G) 1.47 7.61 1.62 5.72 0.59 4.10 17.58

than the standard model (Figure 8 clearly shows the comparison
of parameters and FLOPs of the models), which means that
these CNNs are designed to be bloated for maize leaf disease
identification in a complex background. As can be seen, for the
specific task of this article, stacking the number of layers of
the network and increasing the number of parameters of the
model are not effective in improving the performance of the
model. Our model has only one convolutional layer and one
pooling layer to encode local regions of images into tokens, and
transformer encoder as the core computational module, which
not only significantly reduces the number of parameters and
FLOPs of the model but also achieves the best performance.

From another perspective, although the number of parameters
of the standard model is on average three orders of magnitude
lower than the other models in Table 2, its FLOPs are in the
same order of magnitude as theirs. Since MSA involves large-
scale matrix computation when computing the attention matrix
between tokens, this operation does not involve the model’s
parameters but increases the model computation. A comparison
in Table 2 between the standard and ViT (accuracy 93.9%)
was created to compare the patch embedding method with the
convolution method, showing that the convolution method is
superior to the patch embedding method from the perspective of
results, which indicates that convolutional layer and max-pooling
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FIGURE 7 | The accuracy line chart of the standard model and the other
models.

FIGURE 8 | Comparison of the standard model and the other models in
parameters and FLOPs.

layer can sufficiently encode information of maize leaf disease
lesions into tokens and reduce model’s parameters.

Figure 9 shows the confusion matrices of all models of
this article (i.e., Model-1 and Model-2). The confusion matrix’s
abscissa axis represents actual class and ordinate axis represents
predicted class. As can be seen, for the nine models, they always
tend to identify the SCLB class as the H class. SCLB lesions
on maize leaves are minor and scattered, which results in some
samples infected similar to H class. In contrast, considering
computing power limitation, the size of images can be shrunk

small, which leads to SLCB lesions-pixels disappearing and
classification error. SR and GLS are rarely misclassified, because
their symptoms are markedly distinct from other categories of
this article. SR lesions on the leaf tissue’s aboveground surface
resemble flecks that develop into small golden-brown pustules or
bumps. Tan lesions of SR can be distinguished readily from yellow
lesions on the surface of maize leaf infected SCLB or GLS.

Table 3 compares the three models to explore the necessity of
the self-attention. Model-1 and Model-2 (Figure 5) are modified
from the standard model to conduct this study. Model-1 fuses
feature tokens into a classification token in Stage 3 by a linear
layer instead of adding a classification token at the end of Stage
1, and Model-2 removes the MSA based on Model-1. Figure 10
clearly shows the increased curve of accuracy of the three models.
The accuracy of the standard model exceeds Model-1 by 1%. They
have almost the same number of parameters, which indicates
that the classification token participating in MSA computation
is better than fusing feature tokens into classification tokens.
The accuracy of Model-2 is substantially lower than Model-
1 by 7.5%. Among other metrics (e.g., precision, recall, and
F1 score), Model-2 is also substantially lower than Model-1.
The expected results indicate that the self-attention dramatically
improves the performance of the model. Model-1 and Model-2
have the same number of parameters, but the FLOPs of Model-2
are much lower than those of Model-1. As mentioned above, the
large-scale matrix operations involved in MSA do not increase
the number of parameters in the model but do increase the
computational complexity of the model. This little computational
cost is worth the significant improvement it brings to the model,
which also shows that self-attention, a computation that involves
almost no parameters of the model, can dramatically improve the
identification of maize leaf diseases in complex backgrounds.

In addition, we compared the effect of different train and
validation set ratios on the accuracy of the standard model
(Table 4). As can be seen, the model’s accuracy gradually increases
as the ratio increases. When the ratio reaches 20–80%, the
accuracy reaches 94.0%, while when the ratio reaches 50–50%, the
accuracy almost stops increasing. Figure 11 shows the validation
accuracy curve of the standard model over 9 ratios in the training
process. The experiment indicates that the standard model can
achieve satisfactory performance even when the number of
training samples is small.

Figure 12 provides the results of the visualization of the
regions of interest to the model during the classification process.
We chose ResNet50 to compare with the standard model and
three visualization schemes. For the convolutional or pooling
layer-based scheme, we chose the output of the last convolutional
layer of layer2 of ResNet50 and the output of the first pooling
layer of the standard model because they both output feature
maps with a width of 28. In the tokens-based visualization
scheme, we selected the output of the first LN layer in the last
transformer encoder of the standard model. In the attention
matrix-based visualization scheme, we combined the attention
matrix of all transformer encoders in the entire model. By
comparing Figures 12A,B, as can be seen, in field settings
with complex backgrounds, ResNet50 has a large amount of
attention scattered in the background. In contrast, the attention
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FIGURE 9 | Confusion matrices of all models of this article (i.e., Model-1 and Model-2).

TABLE 3 | Research of importance of the self-attention.

Standard Model-1 Model-2

Accuracy (%) 98.7 97.7 90.2

Precision (%)

H 97 95 85

SCLB 99 98 90

SR 99 99 94

GLS 100 100 96

Recall (%)

H 99 99 94

SCLB 97 96 85

SR 100 99 94

GLS 99 94 85

F1 (%)

H 98 97 89

SCLB 98 97 87

SR 100 99 94

GLS 100 97 90

Parameter (M) 0.65 0.66 0.66

FLOPs (G) 1.47 1.46 0.33

of the standard model is mainly focused on the leaf surface.
Figure 12C shows that the attention is more refined when
representing features based on tokens, effectively suppressing
the background information and focusing more on the leaf
surface lesions. Figure 12D shows the attention distribution of
classification token to other feature tokens, which is consistent
with the area of attention of the model, which also shows that the
MSA calculation mechanism that does not increase the number of
model parameters effectively enhances the attention of the model
to crucial information and suppresses the useless background
noise information.

FIGURE 10 | The accuracy line chart of the standard model, Model-1, and
Model-2.

DISCUSSION

The common CNNs represent the feature information of an
image via feature maps, and deepening the depth of the network
can generally achieve better performance, but this also increases
the number of model parameters and computational effort. They
are more suitable for object recognition. The pixels where these
objects are located usually do not have similarities, and the overall
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TABLE 4 | The standard model accuracy results for each train-validation set.

Train-test
split (%)

H SCLB SR GLS Accuracy

10–90 243/2,192 224/2,019 202/1,821 100/900 0.894

20–80 487/1,948 448/1,795 404/1,619 200/800 0.940

30–70 730/1,705 672/1,571 606/1,417 300/700 0.967

40–60 974/1,461 897/1,346 809/1,214 400/600 0.980

50–50 1,217/1,218 1,121/1,122 1,011/1,012 500/500 0.977

60–40 1,461/974 1,345/898 1,213/810 600/400 0.980

70–30 1,704/731 1,570/673 1,416/607 700/300 0.986

80–20 1,948/487 1,794/449 1,618/405 800/200 0.990

90–10 2,191/244 2,018/225 1,820/203 900/100 0.989

Total 2,435 2,243 2,023 1,000

pixels composition of the pattern presents the features of the
target object. For maize leaf disease recognition, the pixels where
the lesions are located usually have similarities (reflected in the
RGB values), which requires a feature representation with higher
resolution rather than the feature maps of CNNs. Since the
feature maps increases with the number of channels but decreases
in width as the network feeds forward. The relationship between
lesions information and receptive field becomes blurred. There
is no correlation computed between the lesions, so increasing
the number of network layers will only bring a slight increase in
recognition rate while also increasing the volume and complexity
of the network. The model used in this article is entirely different
from CNNs in that it is based on tokens to represent the
visual information of local areas of the image. Stage 1 encodes
the visual information of the receptive field into a matrix of
feature tokens. The subsequent network does not perform any

FIGURE 11 | The validation accuracy curve of the standard model in nine
train-validation sets.

compression of this matrix. However, it continuously computes
the correlation (attention) between tokens by MSA, making the
network pay more attention to information about the lesions
useful for classification and suppressing the noisy information
in the background. We demonstrated this idea from this article’s
theoretical, experimental, and visual analysis perspectives.
Tokens represent the local feature information of images,

FIGURE 12 | Visualization results of the three schemes. (A) Grad-Cam method for visualization of the feature maps output by the Resnet50 convolutional layer.
(B) Grad-Cam method for visualization of the feature maps output from the max-pooling layer of the standard model. (C) Grad-Cam method for visualization of the
tokens of the standard model. (D) Directly map the attention of the classification token on feature tokens to the original image.
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and self-attention calculates the correlation of local information,
which is more suitable for maize leaf disease identification in
complex background. Therefore, guided by the above analysis,
we designed a more reasonable model that achieves the best
performance with minimal computational cost and number of
parameters compared with other mainstream CNNs. However,
our model has some limitations. The token (i.e., a single vector)
dimension is a hyperparameter. As it increases, the feature
information can be represented more abundantly, increasing
the attention matrix’s scale. Large-scale matrix operations can
rapidly increase the computational complexity of the model.
Many researchers are now actively working to overcome this
challenge (Carion et al., 2020; Liu et al., 2021; Touvron et al.,
2021).

In addition, the results above indicate that convolution
method outperforms the patch embedding method in encoding
maize disease features into feature tokens. Convolution kernel
as receptive field extracts visual information by sliding of itself.
Two slides of the receptive field have an overlapped area,
associating the semantic information of the area. However,
the patch embedding method cuts a complete image into
many irrelevant patches and directly encodes these patches
into tokens, leading to the semantic information of adjacent
areas to be lost. Humans tend to process critical vision
information instead of all receptive field information, which
is mainly limited by the brain’s inability to process massive
information simultaneously. The mechanism by which humans
process visual information is consistent with our model
based on the attention mechanism, and they both prefer
critical information.

In the field of plant disease identification, the hyperspectral
imaging technology is usually used for object detection because
the difference in reflectance of plant disease features is slight
(Yue et al., 2015; Polder et al., 2019; Wang D. et al., 2019). The

investigation of Nagasubramanian et al. (2019) demonstrated
that soybeans infected the charcoal rot are more sensitive than
healthy soybeans in the wavelengths of visible spectra (400–
700 nm). Yang et al. (2021) have achieved good results in the
Citrus Huanglongbing detection task by fusing hyperspectral
data in CNNs using a multimodal approach. Recent research
has shown that the transformer architecture is better suited
for multimodal tasks (Frank et al., 2021; Zhang et al., 2021).
We will conduct research by extending our model to combine
with multimodal approaches for crop disease identification and
detection in complex backgrounds in future.
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