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Automatic pest detection and recognition using computer vision techniques are a hot

topic in modern intelligent agriculture but suffer from a serious challenge: difficulty

distinguishing the targets of similar pests in 2D images. The appearance-similarity

problem could be summarized into two aspects: texture similarity and scale similarity.

In this paper, we re-consider the pest similarity problem and state a new task for the

specific agricultural pest detection, namely Appearance Similarity Pest Detection (ASPD)

task. Specifically, we propose two novel metrics to define the texture-similarity and

scale-similarity problems quantitatively, namely Multi-Texton Histogram (MTH) and Object

Relative Size (ORS). Following the new definition of ASPD, we build a task-specific

dataset named PestNet-AS that is collected and re-annotated from PestNet dataset

and also present a corresponding method ASP-Det. In detail, our ASP-Det is designed

to solve the texture-similarity by proposing a Pairwise Self-Attention (PSA) mechanism

and Non-Local Modules to construct a domain adaptive balanced feature module that

could provide high-quality feature descriptors for accurate pest classification. We also

present a Skip-Calibrated Convolution (SCC) module that can balance the scale variation

among the pest objects and re-calibrate the feature maps into the sizing equivalent

of pests. Finally, ASP-Det integrates the PSA-Non Local and SCC modules into a

one-stage anchor-free detection framework with a center-ness localization mechanism.

Experiments on PestNet-AS show that our ASP-Det could serve as a strong baseline for

the ASPD task.

Keywords: appearance-similarity pest detection, pairwise self-attention, skip-calibrated convolution, object

relative size, anchor-free

1. INTRODUCTION

Diversity pest control and prevention are always a crucial agricultural issue worldwide (Sivakoff
et al., 2012). To build a cost-effective and efficient pest controlling system, most of the current
methods deal with pest monitoring as a pest detection task (Shen et al., 2018). Specifically, the
applications employing computer vision techniques attempt to exploit vision features extracted
from pre-defined Convolutional Neural Network (CNN) and analyze the visual information to
recognize or detect a targeted pest (Deng et al., 2018) and plant leaf disease (Dhaka et al., 2021).
Generally, these applications are deployed into a mobile camera or other flexible vision sensors
(Liu et al., 2017).
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However, in the practical agricultural environment, the in-
field pest detection systems require high-quality image resolution
and strict image collection standards, e.g., the distance between
the camera and pest targets cannot be larger than 1 m (Wang
et al., 2021). Besides, these approaches might confront troubles in
recognizing lots of pest categories at the same time (Ayan et al.,
2020). These limit the functional performance when employing
these computer vision algorithms in real-world pest monitoring
(Wang et al., 2020). Under this case, several works attempted
to install fixed stationary cameras in light traps to monitor pest
occurrence by recognizing and detecting the trapped pests (Liu
et al., 2019a). But there are two challenges when identifying these
captured pests: (1) a large number of pest categories usually share
similar textures in images that prevent fine-grained classification.
(2) the size of one pest is very close to each other, making it
difficult to distinguish them. These challenges are considered
appearance-similarity problems in computer vision and pest
detection tasks.

In this paper, we pay attention to dealing with the challenges
of pest recognition and detection in light traps, which use
frequency-vibrating insecticidal lamps to capture pests and use
a fixed camera to take pictures of pests that fall into the
trapping tray, and stating a new task for the specific agricultural
pest detection problem, namely Appearance Similarity Pest
Detection (ASPD) task. This task clearly defines and summarizes
the appearance-similarity problems from two aspects: texture-
similarity and scale-similarity. To further describe these two
problems, we define the corresponding metrics: (1) Multi-
Texton Histogram(MTH), a statistical index representing the
distribution of pests’ textures. (2) Object Relative Size (ORS),
measuring the pest sizes in captured RGB images. From
MTH and ORS, we formulate the ASPD to be a novel pest
detection task.

To validate the difficulty of the ASPD task, we build a task-
specific dataset, namely PestNet-AS. This dataset is collected
and re-annotated from the famous pest detection benchmark
PestNet (Liu et al., 2019b). In PestNet-AS, we present a
hierarchical category taxonomy. The sup-classes in PestNet-AS
are Lepidoptera and Coleoptera, the former contains 17 sub-
class categories and the latter contains 7. In total, the PestNet-AS
dataset covers 87,672 images and 554,761 pest annotations. Our
dataset is aligned with the ASPD task.

Accompanying with ASPD task and PestNet-AS dataset, we
propose a deep learning framework ASP-Det to evaluate the
performance of the ASPD task. Specifically, our ASP-Det is
designed to solve the texture-similarity by submitting a Pairwise
Self-Attention (PSA) mechanism and Non-Local Modules to
construct a domain adaptive balanced feature module that could
provide high-quality feature descriptors. On the other hand,
we also present a Skip-Calibrated Convolution (SCC) module
that can balance the scale variation among the pest objects
and re-calibrate the feature maps into the sizing equivalent of
pests. Finally, we constructed a one-stage feature detector for
the ASPD task, using a deep convolutional layer of free-anchor.
We also introduce a center-ness calibration center strategy for
the construction to compensate for the potential localization
inaccuracy caused by the absence of the RPN. Finally, this

model considers meeting the practical application requirements
in agricultural fields.

Our contributions could be summarized as follows:

• We re-consider the light-trap pest recognition and detection
problem and state a new pest detection task ASPD. In
this task, we quantitatively define the texture-similarity and
scale-similarity problems in pest detection using MTH and
ORZ metrics.

• We build a new large-scale dataset PestNet-AS specific to
ASPD tasks. The dataset contains 87,672 images and 556,521
pest annotations.

• We propose a novel ASP-Det network to address the
challenges of the ASPD task. We present PSA mechanism
and Non-Local Modules module for dealing with the texture-
similarity problem and the SCC module for Scale-Similarity.
We believe our ASP-Det could serve as a strong baseline
for ASPD tasks and further promote agricultural pest
monitoring applications.

2. RELATED WORK

2.1. Anchor-Free Object Detection
Convolutional neural network-based Object detectors can be
divided into two types, namely anchor-based and anchor-free,
based on whether anchors are preset. The former can be divided
into one-stage and two-stage detection models, and the latter
can be divided into key-point-based and center-based detection
models. Anchor-free based on keypoint detection algorithms
include CornerNet (Law andDeng, 2020), Grid R-CNN (Lu et al.,
2020), ExtremeNet (Zhou et al., 2019), and CenterNet (Duan
et al., 2019). Anchor-free based on the center point algorithm is
a type of detection method that defines the target center point or
central area as a positive sample and then regresses the distance
from the four sides of the bounding box. YOLO series (Redmon
et al., 2016; Bochkovskiy et al., 2020), DenseBox, RetinaNet (Lin
et al., 2017b), FCOS (Tian et al., 2019), and FoveaBox (Kong
et al., 2020) all belong to this category. Generally, these methods
occupy less computing resources and are faster than anchor-
based methods. They are suitable for high-speed real-time object
detection tasks in applications.

2.2. Pest Detection
At present, scholars have studied more general object detection
methods. However, these methods cannot be directly utilized
in the pest detection tasks, which we confront are relatively
particular. Different from pest recognition methods, pest
detection methods based on the deep learning methods used
deep convolutional networks (Dai et al., 2016) to automatically
identify the category and location of the target according to the
model algorithm. Liu et al. (2019b) put forward an approach for
large-scale multi-class pest detection, which can detect 16 classes
of agricultural pests using an End-to-End deep convolutional
neural network. Jiao et al. (2020) proposed a two-stage anchor-
free convolutional neural network to realize small-scale pests
detection for the multi-categories agricultural pest. Yao and Xu
(2020) proposed an automatic detection model for pest damage
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symptoms on rice canopy based on improved RetinaNet. The
average accuracy of the detection of the two pests in the pest-
like area reached 93.76%. Dan et al. (2021) showed a method
of automatic greenhouse insect pest detection and recognition
based on a cascaded deep learning classification. Tetila, EC.
used five deep learning architectures with a fine-tuning for the
category of soybean pest images, which reached an accuracy of
up to 93.8% (Tetila et al., 2020). Wang. et al. integrated context-
aware information representation in-field. A multi-projection
pest detection model (MDM) was proposed and trained by crop-
related pest images in Wang et al. (2020). Automatic in-trap
pest detection by end-to-end on a GPU workstation with data
augmentation and then deployed on embedded devices with
minimal prepossessing in Sun et al. (2018).

2.3. Similar Object Detection
Similar object detection considers detection methods with more
detailed features. The general approaches adopt fine-grained
strategies to address the challenges. The current research on fine-
grained detection mainly includes the following content: Feng
(2013) proposed a set of training images, which can identify
a sparse number of image patches in the training set which
cover most parts of the target object in the test image. Li et al.
(2016) used fine-grained detection for face-screen distance on
smartphones. However, there are only a few applications of
fine-grained detection related to agriculture and almost few for
similar pest detection. Thus, this paper conducts a detailed study
on the feature extraction of similar pests, builds a model, and
provides an algorithm framework with better accuracy and real-
time performance.

3. PROBLEM STATEMENT

We present the Appearance-Similarity Pest Detection(ASPD)
task in our work. Specifically, we define ASPD task from two
aspects: texture-similarity that describes the gray-level and color-
level appearance of these pest targets (Section 3.1), and scale-
similarity that describes size-level appearance of pests (Section
3.2). For each problem, we propose the corresponding metrics to
define these settings.

3.1. Texture-Similarity
To quantitatively define texture-similarity, we consider it
from the following: (1) gray-level similarity that defines
whether the objects are similar in gray images. (2) color-
level similarity that defines whether the colorized pests
are similar.

For gray-level similarity, a Hash algorithm is a common
method to describe image similarity. In detail, the perceptual
Hash (pHash) algorithm usually achieves better performance
than deference Hash (dHash) as well as average Hash (aHash).
Thus, we propose to use the pHash to analyze and define
the gray-level similarity problem. In this metric, we randomly
select 100 images from one category of pest, calculate 32 × 32
Discrete Cosine Transform (DCT), and select 8 × 8 matrix
in the upper left corner. Next, we apply pHash algorithm to

extract the pest target representation value, as the object gray-
level representation. Finally, we define the object similarity such
that the representation value is larger than 0.6.

On the other hand, we consider color-level pest similarity.
In this problem, we first use MTH to describe the repetition
law and repetition mode of the image pixel-level information,
expressed in texture information in different color spaces.
In terms of texture information, the multi-element histogram
method uses the Sobel operator to detect the edge of the
image and detect the texture direction and then describes the
texture and shape information of the image. The Sobel operator
calculates the three color channels separately in the RGB color
space. The two vectors corresponding to the horizontal and
vertical directions are returned in each channel. a(Rx,Gx,Bx)
and b(Ry,Gy,By) represent the gradient information in the
corresponding direction of the corresponding channel. Further,
we can obtain the texture by calculating formulas 1–4.

| a |=
√

(Rx)2 + (Gx)2 + (Bx)2 (1)

| b |=
√

(Ry)2 + (Gy)2 + (By)2 (2)

a · b = Rx · Ry + Gx · Gy + Bx · By (3)

θ = arccos

[

a · b
| a | · | b |

]

(4)

In terms of color information, the results obtained from the three
channels of R, G, and B are quantified into 64 color images with
four different primitives in C(x, y). Perform texture detection in
the process to obtain the texture primitive image T(x, y). Finally,
according to T(x, y), a multi-element histogram describes texture
features. The definition of theMTH is shown in formulas 5 and 6:

H(T(P1)) = N
{

θ(P1) = v1
∧

θ(P2) = v2‖P1 − P2‖ = D
}

(5)

H(T(P1)) = N
{

θ(P1) = w1

∧

θ(P2) = w2‖P1 − P2‖ = D
}

(6)
where P1 = (x1, y1), P2 = (x2, y2) represent two adjacent pixels
with a distance of D in the original image. Their corresponding
pixels in the primitive image T(x, y) are T(P1) = w1 and
T(P2) = w2, respectively. In the texture direction matrix
θ(x, y), the directions of the points P1 and P2 are θ(P1) = v1,
θ(P2) = v2. N represents the number of times v1 and v2 appear
together, andN represents the number of timesw1 andw2 appear
together.H[T(P1)] represents the number of times that the same
edge direction appears at the same time under a certain color
background; it represents the number of times the same color
appears under a certain edge direction. Therefore, the texture
feature vector fv of the image is expressed as shown in formula 7:

f(v) = H(T(P1)) ◦ H(θ(P1)) (7)
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FIGURE 1 | Comparison of Object Relative Size (ORS) with common object datasets MS COCO and PestNet-AS.

where ◦means connection.
The similarity of images I1 and I2 is defined as shown

in Equation (8):

SI(I1, I2) = ‖fv(I1)− fv(I2)‖−1 (8)

where‖fv‖ denotes Euclidean distance.

3.2. Scale-Similarity
We adopt ORS to measure the problem for scale-similarity.
Specifically, given an RGB image with a shape of H ×W and the
i-th pest bounding box Hi × Wi, the ORSi of this pest object is
defined as follows:

ORSi =
Hi ·Wi

H ·W
(9)

In this way, we can count the ORS for the c-th category in the
entire dataset by

ORS(c) =
∑M

i=1 ORSi · sgn(ci, c)
∑M

i=1 sgn(ci, c)
(10)

where M is the number of pest objects and function sgn(·)
indicates whether the category of i-th pest is c-th class, that
belongs to defined as

sgn(ci, c) =

{

1 ci = c

0 ci 6= c
(11)

Finally, we can obtain the ORS distribution map of all the
categories of pest species. Figure 1 illustrates the Relative Size
distribution of our targeted 24 pest categories. All the ORS of
all pest objects are not larger than 1%, which indicates that all
the pests in our work are small in size. Furthermore, most of
the categories hold nearly 0.5% ORS, which is in line with the
difficulty of scale-similarity in the ASPD task.

4. DATASET

To solve the ASPD task, we present a large-scale dataset
named PestNet-AS, which is built from a popular dataset
PestNet (Section 4.1). To meet the ASPD problem setting,
we analyze our PestNet-AS dataset from texture-similarity and
scale-similarity (Section 4.2).

4.1. Data Collection
To the best of our knowledge, there is no dataset suitable for the
similarity pest detection task, so we extract a sub-dataset with a
similar appearance from PestNet, filter, and re-annotate it. We
select part of the categories of PestNet to validate our PestNet-
AS task and method. Specifically, we build a simple category
taxonomy, as shown in Figure 2. The taxonomy contains 2 sup-
classes and 24 sub-classes(categories).

This paper resizes these pest images to 1,333 × 800 from
2,560 × 1,920 and 2,592× 1,944. We chose 87,672 pictures and
divided into two sup-classes and 24 sub-classes. Table 1 shows
two categories of pests’ scientific names, their average relative size
to the whole pest images. The two significant pest portraits are
shown in Figure 1.

Data annotation was done by professionals using Labeling
software under the guidance of entomologists1. The pest location
coordinates and classes are saved as an XML file, then converted
to JSON format, which has the same format as COCO. The
number of annotations corresponds to the number of bounding
boxes labeled in each image. Every image could contain more
than one annotation depending on the number and classes of
pests. To evaluate the effectiveness and practicability of the
model, we randomly selected images from the dataset according
to the proportion of 80% (70,138 images) of the training set and
20% (17,534 images) of the test set.

1The PestNet is a set of light trap datasets jointly annotated by professionals

and agricultural experts from Jiaduo Company, which provides data support for

intelligence agriculture. Artificial Intelligence Agriculture Valley has developed a

special labeling software for agricultural pests and diseases. This dataset is also

selected and organized in this dataset driven by similar pest detection problems.
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FIGURE 2 | Visualization of two sup-class of pests: the figure shows the visualization of similar pests in the 17 sub-classes of the Lepidoptera and 7 sub-classes of

Coleoptera.

4.2. Dataset Analysis
The PestNet-AS dataset is established to solve the ASPD task,
thus it is built to meet the definitions of texture-similarity and
scale-similarity problems. We use the designed metric to validate
the dataset characteristics on texture-similarity. Concerning
gray-level similarity, we apply the pHash algorithm described
above to evaluate the 24 sub-classes in the two sup-classes. The
results are shown in Tables 2, 3. Almost all pest similarities
are more extensive than 0.6, which aligns with the gray-level
pest similarity problem definition, which indicates that the pest
objects in our PestNet-AS are highly similar in texture.

In terms of color-level similarity, we adopt the MTH
algorithm to evaluate PestNet-AS dataset. Specifically, we crop all
the pest targets in our dataset and calculate their MTH features.
Figure 3 shows the t-SNE map on these features. These pests
from various categories lie in very close feature spaces and have
identical characteristics. Therefore, our PestNet-AS meets the
requirement of texture similarity.

For the scale-similarity problem, we calculate ORS for each
pest object, and the results are shown in Figure 1. Due to
the specific attribute of each object class, the ORS of labeled
instances are unevenly distributed among these categories for
MS COCO (Lin et al., 2014). Compared with MS COCO, the
ORS for our dataset PestNet-AS holds a similar scale for almost
all the types, which indicates that our PestNet-AS also meets

the scale-similarity problem. Therefore, we can conclude that
PestNet-AS could be used as a benchmark for ASPD tasks.

5. ASP-DET, A DEEP LEARNING
FRAMEWORK FOR ASPD

5.1. Motivation
In this paper, we aim to solve the problem of pests with similar-
appearance and size equivalent, which is one of the major
challenges in the fine-grained detection task. Specifically, the Pest
classification problem is worse than detection. We pay more
attention to developing practical pest monitoring systems for
appearance-similar pest datasets in light-trap (PestNet-AS). As
shown in Figure 4, PestNet-AS contains many challenging issues
for pest detection approaches, such as pest targets with dense
occlusion, high similarity, including texture similarity and scale
similarity. In addition, the relative size of our similar dataset
is also smaller than that of the COCO dataset, as shown in
Figure 1. Given these thorny problems, we must consider both
the detection accuracy and real-time characteristics. Therefore,
we propose to use a one-stage pyramid feature extraction model
to detect ASPD tasks. The SCCmodule and the non-local module
are added to the model to solve the problem of scale similarity
and texture similarity.
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TABLE 1 | Description of pests of the two sup-classes.

Pest ID Sup-class Sub-class No. of images No. of instances ORS (%)

1

Lepidoptera

Spodoptera frugiperda 226 241 0.189

2 Rice leaf roller 7,430 12,994 0.124

3 Chilo suppressalis 3,323 8,462 0.206

4 Xestia c-nigrum 1,691 2,224 0.397

5 Mythimna separata 12,502 25,526 0.403

6 Helicoverpa armigera 25,364 74,769 0.293

7 Ostrinia furnacalis 19,536 43,316 0.238

8 Proxenus lepigone 24,041 122,509 0.144

9 Agrotis exclamationis 1,082 1,782 0.530

10 Spodoptera litura 8,083 10,936 0.448

11 Spodoptera exigua 14,615 28,133 0.151

12 Stem borer 5,719 8,475 0.306

13 Agrotis ipsilon 9,944 15,397 0.567

14 Land cutworms 1,131 1,805 0.601

15 Cabbage moth 7,108 10,410 0.434

16 Scotogramma trifolii Rottemberg 13,114 23,301 0.346

17 Yellow cutworms 3,825 4,933 0.434

18

Coleoptera

Holotrichia parallela 24,041 122,509 0.286

19 Anomala corpulenta 1,082 1,782 0.240

20 Gryllotalpa orientalis 8,083 10,936 0.904

21 Pleonomus canaliculatus 14,615 28,133 0.323

22 Agriotes fuscicollis miwa 5,719 8,475 0.130

23 Melanotus caudex 9944 15,397 0.101

24 Holotrichia oblita 1,131 1,805 0.320

TABLE 2 | Description of the 17 sub-classes of phash 32× 32 similarity of pests.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70.01 – – – – – – – – – – – – – – – –

2 69.74 68.16 – – – – – – – – – – – – – – –

3 68.06 68.46 68.53 – – – – – – – – – – – – – –

4 68.47 65.77 69.26 72.18 – – – – – – – – – – – – –

5 70.84 69.61 71.57 72.36 73.61 – – – – – – – – – – – –

6 70.57 69.66 71.47 70.41 71.85 75.34 – – – – – – – – – – –

7 72.76 71.35 73.17 70.01 72.97 72.97 75.34– – – – – – – – – – –

8 70.62 68.69 70.45 72.26 71.87 72.94 75.34 77.74 – – – – – – – – –

9 69.19 66.68 67.45 70.54 67.98 71.60 72.33 73.96 66.61 – – – – – – – –

10 70.44 67.85 69.91 69.90 69.69 71.58 74.17 75.16 65.17 70.30 – – – – – – –

11 70.43 67.57 69.61 71.20 71.19 72.26 74.82 77.40 66.53 70.75 65.88 – – – – – –

12 71.33 69.33 71.57 69.66 72.34 71.46 76.66 76.11 68.26 69.79 67.92 72.16 – – – – –

13 69.02 66.89 68.93 71.34 70.07 72.97 72.50 75.81 66.40 70.56 65.83 72.11 72.56 – – – –

14 70.82 68.73 69.35 73.30 70.36 74.34 74.43 76.80 68.26 71.61 67.10 72.16 72.81 72.07 – – – –

15 69.54 67.71 69.50 72.28 70.42 73.32 73.22 76.80 67.35 70.36 67.07 72.68 73.28 71.19 74.12– – –

16 71.61 68.92 71.07 72.53 71.96 74.54 76.19 78.33 67.09 71.84 67.80 74.33 73.56 73.19 76.04 74.41 –

17 70.03 68.66 71.03 70.97 71.97 71.25 76.75 76.13 66.21 70.72 67.52 71.68 69.94 70.37 73.86 71.77 68.95

5.1.1. Pest Recognition on Texture-Similarity Problem
In the process of pests in the ASPD task, it is not easy to
accurately classify because the appearance and texture are too

similar. The main reason is that the feature expression is not
strong enough. The current method only considers the low-
level feature maps in the feature pyramid as their local features.
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TABLE 3 | Description of the 7 sub-classes of phash 32× 32 similarity of pests.

18 19 20 21 22 23 24

18 62.23 – – – – – –

19 62.45 60.85 – – – – –

20 63.04 62.14 66.07 – – – –

21 63.10 63.17 67.25 68.18 – –

22 62.45 63.89 66.96 70.05 68.68 – –

23 62.42 63.64 68.64 68.42 66.92 71.41 –

24 61.75 62.23 66.93 67.21 68.02 72.45 70.63

FIGURE 3 | PestNet-AS similarity description in Multi-Texton.

It ignores the high-level semantic information so that the pest
targets have sound positioning effects, but classification accuracy
is not good. On the other hand, simultaneously considering the
simple superposition of low-level and high-level feature map
information will cause confusion on local characteristics of pests.
Lack of pertinence for pests with high similarity will affect
the recognition effect and cause the detection method to be
inaccurate. The classification results are shown in Table 4.

5.1.2. Pest Detection on Scale-Similarity Problem
The pest scales are too close, and a large number of redundant
anchors are not used, which seriously affects the positioning
of the frame, so the detection is not very accurate. First, we
investigate the network performance in the standard feature
pyramid network algorithm. The primary purpose is to express
various dimensional characteristics for objects of different sizes
effectively. However, the relative scale of our dataset changes
little, and the appearance features are incredibly similar. So, the

recall rate is not satisfactory at all stages of the IOU. Especially
when the IOU becomes more prominent, the recall rate decays
more severely. The results are shown in the following Table 5.
Considering the characteristics of the PestNet-AS dataset, we
expect to use the feature extraction of the feature pyramid
network in the model training. To avoid the poor effect caused by
small size changes, we need to reconstruct the feature pyramid.

5.2. ASP-Det Overview
This section describes the proposed scale-calibrated free anchor
CNN detectionmethod for appearance-similar agricultural pests.
The proposed pest detection model ASP-Det consists of pest
features extraction network multi-classes pest detection network.
We construct a non-local feature pyramid network (NFP). We
construct ASP-Det with PSA module,which can fuse the features
with different levels.Then joint skip-calibrated convolution
module (SCC) in the features pyramid network for detecting
similar pest object. Overview of ASP-Det framework shown in
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FIGURE 4 | Some typical challenges in appearance-similar pest detection (A) appearance-similar pest density distributed; (B,C) pests with high similarity on the

ventral and dorsal sides; (D,E) different postures of appearance-similar pests of the Lepidoptera and Coleoptera.

TABLE 4 | Classification results of appearance-similar pests using different

methods.

Methods Top-1 (%) Top-5 (%)

ResNet-50 50.2 71.1

SENet 58.6 75.6

VGG-16 48.6 73.7

Inception 42.3 62.8

Figure 5. Specifically, we first fed a picture entering the CNN
feature extraction network, and we added the PSA channel
module during the feature extraction process. Second, a non-
local operation is performed on the obtained feature map and
then input into the feature pyramid network. Finally, we design
an SCC strategy that takes an interval in the feature pyramid
to form a feature sampling layer, ensuring the integration of
sample features across levels. Third, we introduce center-ness
to suppress the low-quality detected bounding boxes produced
by the locations far from the center of an object. Finally, non-
maximum suppression (NMS) algorithm is employed to remove
redundant boxes for the same object (Symeonidis et al., 2019).

5.3. PSA Module
Because the dataset has large similarity in appearance and
morphology and the number of samples of various classes is

not balanced. This paper designs a new feature pyramid that
joins the non-local and SCC Modules to resolve the above
problems. Different from former approaches (Lin et al., 2017a;
Yu et al., 2021) that integrate multi-level features using lateral
connections, our key idea is to strengthen the multi-level features
using the same deeply integrated balanced semantic features.
Each layer simultaneously realizes two functions in CNN, feature
aggregation and feature transformation. The former incorporates
the characteristics of all positions extracted by the kernels, and
the latter performs conversion through linear mapping and
nonlinear scalar functions. Thus, the integration function is
suitable for phase detection networks, and the transformation
function is ideal for feature pyramid networks. Suppose the
feature transformation is set as an element-level operation
composed of linear mapping and nonlinear scalar functions. In
this paper, we introduce the Pairwise module (Zhao et al., 2020)
to establish feature aggregation. Consistent with global activated
PSA modules, the final result is expressed as a weighted sum of
adaptive weights and features:

yi =
∑

j∈R(i)

α(xi, xj)⊙ β(xj) (12)

Where xi and xj are feature maps with indexes i and j, ⊙ is the
Hadamard product called aggregation with the local footprint
R(i), several parameters in the PSA module will not be affected
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TABLE 5 | Recall performance: FCOS on PestNet-AS with ResNet-50-FPN as a backbone.

IoU 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Recall1 0.356 0.337 0.317 0.278 0.254 0.231 0.171 0.112 0.051 0.001

Recall10 0.472 0.431 0.415 0.356 0.314 0.251 0.192 0.163 0.082 0.003

Recall100 0.614 0.585 0.462 0.382 0.366 0.341 0.275 0.195 0.123 0.007

MRecall 0.588 0.513 0.426 0.365 0.344 0.313 0.254 0.182 0.091 0.005

FIGURE 5 | Overview of ASP-Det framework. (a) Classification branch, (b) regression and center branch. PSA, pairwise self-attention module; SCC, skip-calibrated

convolution module.

by the size of the footprint. After this aggregation, the result yi
can be obtained.

The vectorβ(xj) generated by the function β(·) will be
aggregated with the adaptive vector α(xi, xj) introduced later.
Compared with ordinary weights, adaptive vector α(xi, xj) has
strong content adaptability. It can be decomposed as follows:

α(xi, xj) = γ (δ(xi, xj)) (13)

where δ(·) and γ (·), respectively, represent a relation function
and a hybrid map composed of linear and nonlinear functions.
Based on the relation δ(·), the function γ (·) is used to obtain
a vector result, which can be combined with β(xj) in Equation
(10). In general, matching the output dimension of γ (·) with the
dimension of β(xj) is unnecessary because attention weights can
be shared among a group of channels. We choose the subtraction
as the relation function, which can be formulated:

δ(xi, xj) = ϕ(xi)− φ(xj) (14)

where ϕ(·) and φ(·) are convolution operations matching output
dimensions. δ(·) calculates spatial attention for each channel
instead of sharing between channels. We adopt a non-local refine
the feature as a pyramid network after aggregation.

Non-local mean (Wang et al., 2017) is a classical filtering
algorithm that computes a weighted mean of all pixels in an
image. It allows distant pixels to contribute to the filtered
response at a location based on patch appearance similarity. The
non-local behavior in Equation (15) is because all positions [∀(j)]
are considered in operation. A convolutional process sums up
the weighted input in a local neighborhood as a comparison. A
non-local process is a flexible building block that can be used
with convolutional layers. It can be added into the earlier part of
deep neural networks, unlike fc layers that are often used in the
end, which allows us to build a hierarchical model that combines
non-local and local information.

yi =
1

C(x)

∑

∀(j)

f (Xi,Xj)g(Xj) (15)

The above PSA module uses novel vector attention, which
can generate content adaptation ability while maintaining the
channel adaptation ability. PSA module makes our appearance-
similar target detection model have strong adaptability, which
can effectively enhance the salient differences between different
features. The pipeline is shown in Figure 6. It consists of two
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FIGURE 6 | PSA module and non-local module.

FIGURE 7 | SCC module.

branches and four steps: re-scaling, integrating, refining, and
strengthening.

Also, we observe that the similar pests in the images
are primarily small and size equivalent. Using state-of-the-art
object detection approaches to these images will make similar
pest features prone to lose after high-level convolution. It is
challenging to extract similar pest features in the network. Hence,
the novel Skip-Calibrated Convolution model can combine
the delicate features in a high-level convolutional layer. The
integral structure of pest come from a low-level convolutional
layer. Then, we could fuse the contextual information around
pests from the low-level convolutional layer and address
the issue of features misjudged for the similar object in
the deep convolution layer. In the next section, we will
present the alternative optimization for similar pest detection

from the internal structure of a CNN and give details of
the ASP-Det.

5.4. SCC Module
The structure of deep CNNs is becoming more and more
complicated, which can enhance the network’s learning ability.
The novel module called SCC considers improving the feature
transformation process in convolution since pests with high
similarity may be difficult to judge in adjacent layers. We do not
only use the features of the upper layer to perform up-sampling
directly but also introduce the information of the following high-
level into the sampling so that features have better recognition,
adding a specific architecture in Figure 7.

A given group of filter sets K with the shape (C, C, kxh, kxw) is
divided into two branches, which are responsible for conducting
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[K1, K2, K3, K4, K5] different functions, respectively. In SCC, we
perform feature transform at two scales: the original scale and the
smaller scale after down-sampling. For a given X, we adopt max
pooling to reduce the scale:

M1 = MaxPoolr(X1) (16)

T1 = MaxPoolr(M1) (17)

where r is the down-sampling rate and stride of the pooling
process. The receptive field at each spatial location can be
effectively expanded by benefiting from the down-sampling
operation. Next, T1 can be used as an input to the filter K2 and K3
following the up-sample procedure, which restores the feature to
the original scale, resulting in

X′
1 = Up(F2(T1)) = Up(T1 × K2) (18)

X′′
1 = Up(F3(X

′
1)) = Up(X′

1 × K3) (19)

where F2(T1) = T1×K2, F3(X
′
1 = X′

1×K3) is a simplified form of
convolution. Then, the calibrated operation can be formulated as

Y ′
1 = F4(X1)⊙ Sigmod(X′′

1 ) (20)

Where F4(X1) = X1 × K4, Sigmoid(·) is an activation function.
The final result of the skip-calibrated part is calculated:

Y1 = F5(Y
′
1) (21)

Where F5(Y
′
1) = Y ′

1 × K2. The other part can be obtained from
another branch that does not require scale transformation. The
formula is as follows:

Y2 = F(X2)× K1 (22)

Finally, we sum Y1 and Y2 to get the final result Y. Reviewing the
entire SCC enables each spatial position to adaptively encode the
context from a long-range region, which is also a vast difference
between it and the traditional FPN network.

5.5. Optimization
ASP-Det is a fully convolutional one-stage object detector. Unlike
anchor-based sensors, which consider the location on the input
image as the center of anchor boxes and regress the target
bounding box for these anchor boxes, we directly revert the target
bounding box for each location. Let Fi ∈ RH×W×C be the feature
maps at layer i of a backbone CNN. For each location(x, y) on
the feature map Fi, we can map it back onto the input image
as( S2 + xs, S2 + ys), which is near the center of the receptive
field of the location(x, y). Besides the label for classification, we
also have a 4D ground truth vector q = (l, r, t, b) being the
regression target for each sample. Here l, r, t, and b are the
distances from the location to the four sides of the bounding box.
If a location falls into multiple bounding boxes, it is considered
an ambiguous sample.

In addition, we observed that it is due to many low-quality
predicted bounding boxes produced by locations far away from
the center of an object. We propose a simple yet effective strategy
to suppress these low-quality detected bounding boxes without
introducing any hyper-parameters. Specifically, we add a single
layer branch in parallel with the regression branch to predict

FIGURE 8 | ASP-Det works by predicting a 4D vector (l,t,r,b) encoding the location of a bounding box at each foreground pixel.

Frontiers in Plant Science | www.frontiersin.org 11 July 2022 | Volume 13 | Article 864045

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. ASPD-Det

the center-ness of a location, as shown in Figure 8. Given the
regression targets l, t, r, and b for a site, the center-ness target
is defined as,

center − ness =

√

min(l, r)

max(l, r)
×

min(t, b)

max(t, b)
(23)

We define our training loss function as follows:

L(px,y, qx,y,Ox,y) =
1

Npos

∑

x,y

Lcls(px,y, c
∗
x,y)

+λ1
1

Npos

∑

x,y

sign(c∗x,y > 0)Lreg(qx,y, q
∗
x,y)

+λ2Lcenterness(Ox,y,O
∗
x,y) (24)

where Lcls is the focal loss as in Lin et al. (2017c), Lreg is
the IOU loss as in UnitBox (Yu et al., 2016), and Lcenterness
is the center-ness loss ranges from 0 to 1 and is thus
trained with binary cross entropy (BCE) loss. Npos denotes the

number of positive samples and the summation is calculated
over all locations on the feature maps Fi. The indicator
function being 1 if c∗x,y > 0 otherwise is 0. The balanced
parameter λ1 and λ2 are set to 1. We employ sqrt here to
slow down the decay of the center-ness. When testing, the
final score Sx,y (used for ranking the detections in NMS)
is the square root of the product of the predicted center-
ness Ox,y and the corresponding classification score Px,y. After
the above center-ness suppression, we can obtain better pest
detection performance.

Sx,y =
√

Px,y × Ox,y (25)

6. EXPERIMENTS

6.1. Experiment Settings
6.1.1. Evaluation Metrics
In this paper, we apply fivemetrics to evaluate the performance of
our similar pest detection method: AP50 (Precision in 0.5), AP75
(Precision in 0.75), mAP (mean Average Precision), Recall and
MR (mean Recall), and BPR (Best Possible Recall).

TABLE 6 | The MR and BPR for Ablation study for different strategies of assigning objects to FPN levels.

Methods PSA NFP CL SCC MR BPR

Faster R-CNN 57.0 87.2

YOLOv3 50.2 88.9

FCOS 58.8 88.7

ATSS 61.4 93.6

Swin-t 61.8 93.7

ASP-Det (ours)
√

62.2 91.9

ASP-Det (ours)
√ √

62.3 93.5

ASP-Det (ours)
√ √ √

62.4 94.3

ASP-Det (ours)
√ √ √ √

62.3 94.5

TABLE 7 | Overall performance comparison.

Method PSA NFP CL SCC AP AP50 AP75

General object detection

Faster R-CNN (Ren et al., 2015) 41.9 70.7 46.2

YOLOv3 (Redmon and Farhadi, 2018) 30.8 63.2 25.1

FCOS (Tian et al., 2019) 44.0 73.0 49.0

ATSS (Zhang et al., 2020) 44.2 73.0 49.0

Swin-t (Liu Z. et al., 2021) 43.6 74.1 47.2

Pest sdetection

AF-RCNN (Jiao et al., 2020) 31.6 50.3 32.6

PestNet (Zhang et al., 2020) 42.1 70.9 36.3

Ours

ASP-Det
√

44.1 73.2 49.2

ASP-Det
√ √

44.3 73.6 49.4

ASP-Det
√ √ √

44.6 74.3 49.9

ASP-Det
√ √ √ √

45.0 74.9 50.2

Boldface represents emphasis.
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6.1.2. Training Details
ResNet-50 is used as our backbone network, and the same hyper-
parameters with FCOS are used. Specifically, our network is
trained with stochastic gradient descent (SGD) for 90 k iterations
with the initial learning rate is 0.0125 and a mini-batch of four
images. We trained the network for 12 epochs, ran SGD for the
first eight epochs, reduced the learning rate to one-tenth in the
11th epoch, and reduced the learning rate to one-tenth in the 11th
epoch.We initialize our backbone networks with the weights pre-
trained on ImageNet (Jia et al., 2009). For the newly added layers,
we initialize them as in Lin et al. (2017c).

6.1.3. Inference Details
We first forward the input image through the network and obtain
the predicted bounding boxes with the predicted class scores. The
next post-processing of ASP-Det strictly follows that of FCOS.
The post-processing hyper-parameters are also the same, except
we use NMS threshold of 0.5 instead of 0.6 in FCOS. Moreover,
we use the exact sizes of input images as in training.

6.2. Pest Detection Performance of
ASP-Det
The section shows that the concern is not particularly important
by comparing the MR of ASP-Det and that of its anchor-based
counterpart on the dataset. The following analyses are based on
the ASP-Det implementation in mmdetection2.

6.2.1. Mean Recall (MR) Performance
Formally, MR is defined as the ratio of the number of ground-
truth boxes that a detector can recall at the average to the number
of all ground-truth boxes. A ground-truth box is recognized if
the box is assigned to at least one training sample (i.e., a location
in ASP-Det or other detectors), and a training sampling can
be associated with at least one ground-truth box. As shown in
Table 6, both with a NFP, a SCC, and Center-ness Loss (CL)
on reg obtain similar MR(58.8vs.62.3%), 12.1 points higher than
YOLOv3, 5.3 points higher than Faster R-CNN, and 3.5% higher
than FCOS.Moreover, because the best recall of current detectors
is much lower than 90%, the small Best Possible Recall gap (<1%)
between ASP-Det(NFP), ASP-Det(NFP+SCC), and ASP-Det will
not affect the performance of a detector. Therefore, the concern
about the low Best Possible Recall may not be necessary for
our method.

6.2.2. Average Precision (AP) Performance
To test the effectiveness of our ASP-Det, we compare the
quality pest bounding box by ASP-Det and other state-of-the-
art detectors. We choose faster R-CNN, FCOS, and YOLOv3 to
compare our proposed ASP-Det on a similar pest dataset. The
pest detection results are shown in Tables 7, 8. We can observe
that our method outperforms faster R-CNN and YOLOv3. The
mAP of our method can achieve 45%, 14.2 higher than YOLOv3,
and 3.1 higher than Faster R-CNN. For extreme special pests

TABLE 8 | AP50 and all classes of pests for different detection methods on the similar pest dataset.

Pest ID YOLOv3 Faster R-CNN FCOS ATSS Swin ASP-Det (ours)

1 55.6 64.7 71.2 73.2 73.6 73.9

2 56.0 65.2 68.5 70.9 70.8 70.9

3 67.9 72.0 75.3 75.6 76.4 76.6

4 64.1 72.3 69.0 72.5 72.6 73.3

5 73.0 79.1 81.4 81.4 81.5 81.6

6 85.8 88.3 90.1 90.2 89.9 90.0

7 75.7 78.7 81.0 81.4 81.5 81.6

8 72.6 76.2 78.7 78.4 78.8 78.8

9 59.0 77.6 77.7 82.1 81.5 81.6

10 65.4 72.6 75.2 76.8 76.9 77.0

11 52.6 57.4 60.0 61.6 61.2 62.3

12 74.3 79.5 82.1 82.9 83.4 82.6

13 75.6 85.6 86.6 87.5 87.6 87.2

14 38.1 62.7 67.8 66.5 69.7 69.8

15 55.5 66.5 67.9 69.8 69.8 69.6

16 65.9 74.2 75.7 76.3 75.7 75.8

17 54.3 59.4 63.4 65.4 64.0 64.1

18 84.2 87.8 89.4 89.3 89.5 89.6

19 88.3 90.1 90.3 91.1 91.1 91.2

20 94.2 95.5 95.7 95.1 95.1 95.9

21 17.5 34.4 46.1 39.7 48.9 49.0

22 79.2 82.2 83.4 85.4 84.8 85.0

23 27.9 29.4 34.4 31.7 35.4 36.0

24 35.6 46.7 50.0 54.1 54.3 54.4

mean 63.2 70.7 73.0 74.5 74.1 74.9

Boldface represents emphasis.
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(classes “21” and “23”), the detection accuracy is lower than
other classes of pests. However, our method still performs better
than YOLOv3 and Faster R-CNN, benefiting from our feature
fusion module.

In order to be able to directly observe the advantages of our
proposed pest detection method compared with other methods.
We show some visualized pest detection results of our practices,
YOLOv3 and Faster R-CNN, as shown in Figure 9. It shows that
our method can achieve more accurate results and fewer missing
pests than the other methods. The model also uses the detection
results to graph the classification value and recall rate of IOU in
the interval of 0.5 and 0.95 from the Figure 10; our model has
good convergence and a high recall rate and accuracy rate.

6.3. Ablation Experiments
6.3.1. The Effectiveness of PSA
A PSA mechanism introduces, which prevents background
noises, and refines similar pest features. The self-attention
module uses novel vector attention, generating content

adaptation ability while maintaining the channel adaptation
ability. The self-attention module makes our similar target
detection model have strong adaptability, effectively removing
and enhancing the salient differences between different features.
The PSAmechanism is beneficial for feature extraction of objects
with appearance-similar. We introduce the PSA mechanism to
obtain the weights for each channel and multiply them with the
raw feature map.

6.3.2. The Effectiveness of SCC
Because some pests are highly similar in appearance and almost
the same size, in the training process, we deal with the ambiguity
of the same FPN level by selecting the bounding box with the
smallest area. In the test, if two objects A and B with the same
category overlap, no matter which objects the position in the
overlap prediction is, the forecast is correct. The missing object
can be predicted by the work only belonging to it. If A and B do
not belong to the same category, the overlapping position may
indicate the category of A but will return to the bounding box

FIGURE 9 | Detection results of YOLOv3 (column 1), Faster RCNN (column 2), FCOS(column 3), and our ASP-Det (column 4).
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of B, which will cause errors. The SCC module is mainly used
to adjust the size jump problem in FPN. Using the SCC module
can make the pests have a larger field of vision in feature areas of
similar sizes, which helps distinguish the illusion of classification
confusion caused by similar texture problems.

6.3.3. The Effectiveness of Center-Ness
ASP-Det using multi-level FPN prediction can only solve the
target occlusion between different sizes. In the same feature-
level processing, intractable ambiguity will still appear. However,
the size of most of the target data in our dataset is not much
different. Many of these problems that need to be considered are
the occlusion problems of targets of the same scale. Asmentioned
before, we introduce center-ness to suppress the low-quality
detected bounding boxes produced by the locations far from the
center of an object. As shown in Table 7, the center-ness branch
is used in regression and classification. The AP improvement of
the dataset is not very large; AP from 44.3 to 44.6% is not obvious.

6.3.4. The Effectiveness of Different Backbones
To prove that ourmodule plays a vital role in different backbones,
we use several backbone frameworks for experiments, as shown
in the Table 9. Our proposed method has good performance
for our proposed ASPD task, so applications that expect the

same task can refer to and use this algorithm framework. Using
different backbones for ASPD tasks, from the results, the resnet
network structure is more mature and robust, and the accuracy
is higher. Without a better and faster implementation method,
it is relatively safe to use the resnet network architecture at the
current practical stage.

6.4. Real-Time Performance
In the field of real-time image enhancement, image super-
resolution (SR) is a crucial research hotspot (Liu X. et al., 2021).
In real-time applications in agriculture, real-time performance
is also critical. Real-time depth models are prominent in
practical applications as an agricultural image detection method.
Moreover, we also designed a real-time version named ASP-
Det_RT.We reduce the scale of input images from 1,333× 800 to
800× 512, which decreases the inference time per image by 50%.
The effect is shown in Figure 11.

We evaluate the computation efficiency of our multi-
categories similar pest detector from the aspects of training and
testing time and compare it with FCOS, YOLOv3, and Faster
R-CNN. The testing time of our method and FCOS method
takes 0.045 s per pest image in total, which is slightly faster than
Faster R-CNN and 2.5 times slower than the YOLOv3 detector.
However, compared with FCOS and YOLOv3 detectors, the

FIGURE 10 | Classification results of IOU (0.5–0.95).
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training time of our pest detector is faster, and most importantly,
the detection precision of our approach is primarily higher than
YOLOv3. Otherwise, the hyper-parameter of our approach is
less than Faster R-CNN and YOLOv3. Therefore, considering
detection efficiency and accuracy, our method is the best choice
and applicable to detect the 24-category similar pests.

6.5. Qualitative Results
For appearance-similar agricultural pests, even if we use the
attention mechanism, non-local fusion, and skip module for
processing, the target still has some misclassifications and
undetectable situations. As shown in Figure 12, other pests
located around the larger size pests inside the red box are difficult
to identify and may be affected by the size and posture of the

TABLE 9 | The ap value for Pest-as under different backbones.

Backbone AP AP50 AP75

ResNet-50 45.0 74.9 50.2

HRnet 44.6 74.4 49.9

ResNetXt 45.5 75.5 50.9

Res2Net 45.1 74.6 50.2

Swin-t transform 44.6 74.9 48.2

pests in the box. Another part is due to the problem of the time
interval for catching pests, which causes some distortion of the
color of some pests (the pink boxes) and misses inspection. The
model may not recognize some pests because they are too similar
to the background color or neighboring pests (like the sample
in the purple box in the first image). Another part is that the
size of the pests is relatively small compared to the original size
in other pictures, and the posture is also more diverse, which
causes themodel tomiss detection (such as the sample in the cyan
box). Finally, there may be missed detection due to the model’s
limitations, which will be the main focus of follow-up research.

7. CONCLUSION

Our proposed ASP-Det does not employ IoU scores between
anchor and ground-truth boxes to determine the training
labels. Additionally, ASP-Det avoids all computation and
hyper-parameters related to anchor boxes and solves similar
pest detection in a per-pixel prediction fashion, similar to
other dense prediction tasks, such as semantic segmentation.
Fortunately, the accuracy of ASP-Det is also excellent for
pest appearance-similarity. Given the superior performance
and merits of the anchor-free detector (e.g., much more
straightforward and fewer hyper-parameters), we encourage

FIGURE 11 | Comparisons of efficient of different modules proposed in this paper with the-state-of-arts method on similar pest dataset on a single GPU.
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FIGURE 12 | Some problems in the ASPD-Det detection method, misclassification, or omission of detection.

plant protection to rethink the necessity of anchor boxes in object
detection. Additionally, to apply our pest detection method in
practice, we present some real-time models of our detector,
which has excellent performance and inference speed. Given
its effectiveness and efficiency, we hope that ASP-Det can
serve as a solid and straightforward alternative for promoting
agricultural production.
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