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Our knowledge of iron (Fe) uptake and mobilization in plants is mainly based on
Arabidopsis and rice. Although multiple players of Fe homeostasis have been elucidated,
there is a significant gap in our understanding of crop species, such as wheat. It is,
therefore, imperative not only to understand the different hurdles for Fe enrichment in
tissues but also to address specifically the knowns/unknowns involved in the plausible
mechanism of Fe sensing, signaling, transport, and subsequent storage in plants. In the
present review, a unique perspective has been described in light of recent knowledge
generated in wheat, an economically important crop. The strategies to boost efficient
Fe uptake, transcriptional regulation, and long-distance mobilization in grains have been
discussed, emphasizing recent biotechnological routes to load Fe in grains. This article
also highlights the new elements of physiological and molecular genetics that underpin
the mechanistic insight for the identified Fe-related genes and discusses the bottlenecks
in unloading the Fe in grains. The information presented here will provide much-needed
resources and directions to overcome challenges and design efficient strategies to
enhance the Fe density in wheat grains.

Keywords: iron, wheat, transporter, grains, phloem, basic helix loop helix

INTRODUCTION

Iron (Fe) is an essential micronutrient for all life forms that participate as catalytic cofactors in
several vital processes; including phosphorylation, photosynthesis, and chlorophyll biosynthesis
in plants (Yadavalli et al., 2012; Kroh and Pilon, 2020; Schmidt et al., 2020). The connection
between Fe deficiency and its effect on human health is an important research subject nowadays.
Improving the grain Fe content has been considered a unique way to tackle the hidden hunger and
Fe deficiency ailments in humans (micronutrient biofortification). Wheat is an important source
of energy nutrition in developing countries and has been a target crop for addressing multiple
nutritional traits, including micronutrient enhancement, such as Fe and Zinc (Zn) (Borg et al.,
2012; Sui et al., 2012; Chattha et al., 2017; Sazawal et al., 2018). The limited genetic variation for
Fe content and its low bioavailability in improved adapted wheat varieties have posed challenges to
the breeders (Velu et al., 2014). In addition to this, multiple bottlenecks have been identified for the
uptake and mobilization of Fe in plants. After the uptake of Fe, it has to be distributed into plant
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organelles through various transporters, tissues via the cell-to-cell
communication network and different organs through phloem
and xylem mediated long-distance transport systems. Research
on Fe homeostasis has been largely focused on the model plant
Arabidopsis thaliana, which represents a non-graminaceous plant
system. Earlier, the lack of wheat gene resources and information
about detailed mechanisms involved in Fe homeostasis was
a major obstacle for devising biofortification approaches.
Therefore, it is imperative to discuss and explore new target areas
that could be conserved or specific to wheat crops to deploy
biotechnological routes to generate high Fe in grain.

Herein, we primarily provide a glimpse of the genetic
components involved in the uptake and mobilization of Fe from
roots to the grains and the potential gene targets. Although
Fe loading in cereals’ grain is a multistep process, few reliable
strategies for grain micronutrient enrichment can be devised by
drawing parallels with other plants, including the model plant
Arabidopsis and Oryza sativa. Some of these genetic components
have been specifically identified and reported recently in wheat
(Kaur et al., 2019; Wang M. et al., 2019). In the present review,
some of the important candidate genes that could be used
by biotechnological interventions are described and innovative
measures have also been discussed. We have provided an insight
into the comparative account of genes involved in Fe homeostasis
from well-studied plants, such as Arabidopsis and O. sativa, and
presented an overview of the gene regulatory network. We have
also emphasized the anatomical bottlenecks and the key areas
that need immediate attention to finally generate new genotypes
with high Fe in grains for developing viable and sustainable
approaches to overcome low Fe in wheat grain. In turn, the
challenges of grain Fe enrichment and bottleneck through genetic
engineering are discussed in this review with emphasis on
possible solutions as well.

CONSERVED MOLECULAR
COMPONENTS OF Fe UPTAKE IN
WHEAT

Fe is found to be the fourth most abundant metal in soil.
However, the majority of Fe in the soil is present in the form
that plants cannot assimilate. In aerobic soil, Fe concentration
and bioavailability depends on inorganic forms, such as oxides,
hydroxides, and phosphate. Trivalent form (Fe3+) is the
predominant form of Fe present in soil and the alkaline
pH of soil favors the formation of hydrous Fe3+ oxides (a
solid and insoluble state of Fe), hence becomes inaccessible
to the plants (Lindsay, 1991). To acquire this form, strategy
I plants reduce Fe3+ to ferrous (Fe2+) and then facilitate its
transport whereas strategy II plants export phytosiderophores
(PS) that chelate Fe3+ and make this form bio-available to plants
(Kobayashi and Nishizawa, 2012).

Wheat utilizes a chelation-based strategy (strategy-II) of Fe
uptake. The Fe transport mechanism in wheat is coupled with the
production of Fe chelators, such as 2-deoxymugineic acid (DMA)
and mugineic acid (MA), and their subsequent secretion into
the rhizosphere. Among these PS, DMA is the predominating

Fe chelator secreted by wheat roots (Tolay et al., 2001) into the
rhizosphere through the transporter of mugineic acid (TOM)
and facilitates the formation of PS-Fe3+ complex (Nozoye et al.,
2011). This bioavailable PS-Fe complex is further taken up in
the plant root through yellow stripe-like transporters (YSL; Curie
et al., 2001). The gene families that constitute the strategy-II
pathway of Fe transport have been characterized in wheat. The
wheat genome encodes for 21 NAS, 6 NAAT, 3 DMAS, 5 TOM,
and 26 YSL genes (Bonneau et al., 2016; Beasley et al., 2017;
Kumar et al., 2019; Sharma et al., 2019). Table 1 summarizes
the number of genes reported in Arabidopsis, rice, and wheat.
The expression analysis of these identified genes under Fe
limiting conditions showed significant induction in wheat root
and shoot (Kaur et al., 2019; Wang M. et al., 2019). Although
the differential expression pattern of these genes indicates their
potential involvement in Fe transport, their site of action and
functional studies in wheat are yet to be explored. Interestingly,
the number of genes for each family shows the highest number of
genes in hexaploid wheat compared to rice and other crops.

Interestingly, transcriptome data showed the presence of
strategy I components, including Iron-Regulated Transporter 1
(IRT1) and Ferric Reduction Oxidase (FRO) genes, in wheat. The
functional studies of IRT1 and FRO2 in Arabidopsis and other
crops are already known for Fe transport via strategy I (Eide
et al., 1996; Wu et al., 2005). However, rice, barley, and other
prominent graminaceous cereals retain both strategies for Fe
acquisition simultaneously (Ishimaru et al., 2006). The expression
analysis showed significant induction of IRT1 orthologs in wheat
under Fe limiting conditions, whereas strategy 1 genes were
unaltered (Kaur et al., 2019). Our previous study also showed
that as many as 51 genes encoding putative IRT/ZIP Fe and
Zn transporters are present in wheat (Kaur et al., 2019). This
may suggest that the IRT1 genes could function independently
of strategy II component, which is the predominant route of Fe
acquisition in wheat.

Moreover, the production and release of various metabolites
are paired with changes in root phenotype under Fe deficiency
in wheat. In the recent past, numerous reports have described
that the exudation of phenylpropanoids and flavin-derived
metabolites from roots are essential for efficient Fe uptake
in calcareous soil and alkaline conditions (Rodríguez-Celma
et al., 2013; Schmid et al., 2014; Sisó-Terraza et al., 2016).
These derivatives may help in the solubilization of (Fe3+) Fe
precipitates and subsequent reduction of Fe3+ to Fe2+ for direct
import (Mladìnka et al., 2010). Metabolic analysis of wheat under
Fe limiting conditions revealed the enhanced production of
organic acids and polyhydroxy acids, such as fumarate, malonate,
succinate, and xylofuranose, along with PS release in wheat
(Garnica et al., 2018; Kaur et al., 2019).

INTERACTION OF Fe WITH
PHOSPHORUS AND SULFUR

Despite the varying concentrations of nutrients in soil, plants
maintain a cellular nutrient balance for optimal growth as well
as avoid toxic effects. This is achieved by the interwoven nutrient
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TABLE 1 | Putative orthologs/homologs and their number of genes for the Fe uptake reported from Arabidopsis, rice, and wheat.

Gene Plant Number Potential function References

NAS Arabidopsis 3 NA biosynthesis Higuchi et al., 1999

Rice 6 Inoue et al., 2003

Wheat 21 Bonneau et al., 2016

NAAT Arabidopsis – Intermediary enzyme
for NA biosynthesis

–

Rice 6 Cheng et al., 2007

Wheat 6 Beasley et al., 2017

DMAS Arabidopsis – Intermediary enzyme
for NA biosynthesis

–

Rice 1/(1*) Nozoye et al., 2004; Bashir et al., 2006

Wheat 3 Beasley et al., 2017

TOM Arabidopsis – MAs efflux transporters –

Rice 3 Nozoye et al., 2011, 2015

Wheat 5 Sharma et al., 2019

YS/YSL Arabidopsis 8 Uptake/Long Distance
transport/remobilization

of metal-chelates

Curie et al., 2001

Rice 18 Gross et al., 2003

Wheat 26 Kumar et al., 2019

(1*) Putative OsDMAS2.

homeostasis and synergistic/antagonistic interactions among the
nutrients. Any change in soil nutrients is efficiently sensed by
the root, which initiates a transcriptional network that eventually
helps the plant to deal with the deficiency/excess response.
Depending on the charge, some nutrients interact with others
in the rhizosphere and determine their bioavailabilities. For
instance, phosphorus (P) and sulfur (S) display interconnected
homeostasis with Fe in the rhizosphere (Hirsch et al., 2006;
Ward et al., 2008). P exists in many chemical forms in soil,
but plants acquire mainly inorganic phosphate (Pi) and organic
phosphorus (Po) for their growth and development. The strong
interaction between Fe and Pi in soil forms precipitates, affecting
the availability of both nutrients to the plant. It has been observed
that a high-affinity root Fe2+ uptake system which is usually
activated under Fe-deficiency, is also induced under excess Pi
environment (Ward et al., 2008). Similarly, under Pi-deficient
conditions, Arabidopsis accumulated more Fe and heavy metals
(Misson et al., 2005; Hirsch et al., 2006). Studies showed that
increased accumulation of Fe in Pi-deficient medium causes
Fe-toxicity leading to primary root inhibition (Ward et al.,
2008; Ticconi et al., 2009). In Arabidopsis, the increase in Fe
availability after Pi-deficiency was thought to be correlated at
the molecular level by induction of AtFER1, which encodes
ferritin (a Fe storage protein) (Hirsch et al., 2006). However,
other ferritin genes, such as AtFER3 and AtFER4 lack PHR1-
binding sites, in their promoters and are induced under high Fe
but non-responsive to Pi-starvation (Petit et al., 2001; Bournier
et al., 2013). In hexaploid wheat, the physiological effects were
accounted for the molecular changes that involve the regulation
of a subset of downstream signaling genes potentially cross-
regulated by Fe and Pi (Kaur et al., 2021). The data set from
this study reveals that PS release and metabolic pathway for
phenyl-propanoid plays an important role for Fe mobilization

in the roots under single and dual deficiency of these nutrients
(Kaur et al., 2021).

By contrast, many studies have reported a synergistic
interaction between Fe and S in the rhizosphere. The S and Fe
are highly essential for the optimal functioning of chlorophyll
biosynthesis, thereby controlling the plant’s photosynthetic
ability through modulating the assembly of Fe-S cluster proteins
(Couturier et al., 2013). The genes involved in S assimilation,
namely TdSultr1.1, TdSultr1.3, TdAPR, and TdSiR showed
similar overlapping expressions under Fe and S deficiency in the
durum wheat (Ciaffi et al., 2013). Fe uptake and assimilation are
hampered under the S depleted condition (Astolfi et al., 2003,
2018; Ciaffi et al., 2013). Further, when plants are subjected to
an S limiting environment, a reduction of NA in the shoot is
observed even under Fe sufficient conditions resulting in the
low mobilization of micronutrients (Fe and Zn) toward the sink
tissue. Thus, it is conclusive that elemental interactions in the
rhizosphere also create multiple nutrient deficiencies for plants
and dramatically affect plant growth, and could modulate the Fe
availability in roots for its directional uptake.

TRANSCRIPTIONAL REGULATION OF Fe
HOMEOSTASIS IN WHEAT

Although few molecular components, including transporters,
are largely known, the entire transcriptional regulation of genes
involved in Fe deficiency response remains elusive mainly
in wheat. Under Fe-deficiency, hexaploid wheat revealed a
perturbation of the sub-set of transcription factors (TFs),
including basic helix-loop-helix (bHLH), basic leucine zipper
(bZIP), WRKY, C2H2, MYB, NAC, and homeobox-leucine zipper
(Figure 1). Among these, bHLHs were found to be the most
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FIGURE 1 | TF subfamilies differentially expressed (DE) in response to Fe starvation in Arabidopsis, rice, and wheat. Expression bar plot representing transcription
factor subfamilies differentially expressed in response to Fe starvation in Arabidopsis, rice and wheat. X-axis depicts the TF genes in respective species and Y-axis
shows the log fold change (logFC) for the respective genes under Fe starvation with reference to the respective control samples. TF subfamilies are color-coded
according to the legend on the right. Respective datasets were downloaded and analyzed for DEGs using the Kallisto-DESeq2 pipeline after getting high-quality,
adapter trimmed reads using Trimmomatic. The DEGs for respective species were annotated for TF subfamilies using Mercator4 v2.0 (Schwacke et al., 2019) (TF
subfamilies with only 1 gene DE in At and rice; less than 5 genes DE for wheat are not depicted in this graph).

predominant TFs suggesting their conserved role in regulating
Fe deficiency-related responses (Kaur et al., 2019). The role of
bHLHs mediated transcriptional regulation has been extensively
investigated in Arabidopsis and to some extent in rice. Given
the large role of bHLH in Fe-homeostasis, we will be focusing
on the homologs of the candidate bHLH genes in wheat. We
have summarized the paralogs of bHLHs in wheat-related with
Fe-homeostasis based on orthologous sequence similarity with
Arabidopsis and rice (Table 2). The bHLH family in plants is
clustered into 26 different groups out of which six sub-groups
are reported to regulate Fe homeostasis or deficiency response
in Arabidopsis (Pires and Dolan, 2010). The FIT (Fer-Like Fe
Deficiency-Induced Transcription Factor), a homolog of the FER
transcription factor, has been demonstrated to play a central
role in adapting and controlling the amount of Fe uptake in
Arabidopsis (Ling et al., 2002; Colangelo and Guerinot, 2004;
Jakoby et al., 2004; Yuan et al., 2005; Mai et al., 2015; Schwarz
and Bauer, 2020). The FIT is shown to interact with members
of the bHLH subgroup Ib (bHLH38, 39, 100, 101) leading to
stabilization of FIT and activation of other subgroup Ib bHLHs
(Naranjo-Arcos et al., 2017; Cui et al., 2018; Trofimov et al., 2019).
These transcriptional networks, in turn, provide the adaptive and
sustainable condition for regulating the expression of multiple
downstream genes committed for Fe uptake and mobilization
in plants (Mai et al., 2016; Schwarz and Bauer, 2020). Further,
OsIRO2, a Fe related bHLH TF, is thought to be a master
regulator of Fe deficiency response in rice and five orthologs
of IRO2 are present in the hexaploid wheat genome (Table 2;
Ogo et al., 2007). IRO2 and OsbHLH156 regulate the expression
of a subset of root-specific Fe deficiency responsive genes, thus
helping Fe mobilization. Feedback regulation of FIT can also be
tightly controlled by other bHLH TFs as FIT interaction with
IVa subgroup members (bHLH18, bHLH19, bHLH20, bHLH25)

leads to proteasomal degradation (Cui et al., 2018). The MYC2,
a bHLH of subgroup IIIe, regulates the expression of the other
genes representing the IVa subgroup (Li et al., 2016; Cui et al.,
2018). The bHLH121/URI (member of IVb subgroup) and
bHLH034, bHLH104, bHLH105/ILR3, and bHLH115 (members
of IVc subgroup) were shown to be involved in the regulation
of Fe homeostasis in both rice and Arabidopsis (Li et al., 2016;
Liang et al., 2017; Wang et al., 2017; Kim et al., 2019; Tissot
et al., 2019; Gao et al., 2020). Similarly, OsbHLH057/PRI4,
OsbHLH058/PRI2, OsbHLH059/PRI3, and OsbHLH060/PRI1 act
upstream to bHLH genes namely OsIRO2, PYE, and IRO3 by
binding to their promoters under Fe deficiency (Zhang et al.,
2017, 2020; Kobayashi et al., 2019). It is important to mention that
bHLHs do not always positively activate Fe homeostasis-related
genes expression but AtPYE and OsIRO3 are characterized as
negative regulators of certain Fe-deficiency-induced genes (Long
et al., 2010; Zheng et al., 2010). OsIRO3 was found to repress
OsIRO2 transcripts to regulate Fe uptake in rice (Long et al., 2010;
Zheng et al., 2010).

Although the role of bHLHs has been systematically
characterized in Arabidopsis and rice, their distinct or conserved
function in wheat is still largely unaddressed. Thus, we decided
to generate a transcriptional network of bHLHs in wheat based
on their annotation corresponding to homologs in Arabidopsis
and rice (Figure 2). This network depicts the categorization of
the identified bHLHs of wheat into five subgroups and explains
how subgroups interact with each other to evoke the gene
expression of Fe deficiency (Figure 2). The functional validation
of candidate bHLH using genome editing tools or overexpressing
wheat lines could be the appropriate way to investigate their
role in Fe-homeostasis. It is worthy to mention here that cis-
regulatory elements (CRE) are the binding sites for TFs regulating
the expression of Fe homeostasis-related genes in plants.
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A machine-learning-based computational method identified
novel CREs (∼100 putative CREs) involved in Fe deficiency
regulation have been identified in rice and Arabidopsis (Schwarz
et al., 2020). Similarly, several Fe homeostasis-related orthologs in
wheat show the presence of multiple important CREs, including
E-box/G-box, in the promoter regions suggesting the occurrence
of bHLHs transcriptional hub in wheat (Beasley et al., 2017;
Kumar et al., 2019; Sharma et al., 2019, 2020). Altogether,
the network of TFs especially the bHLHs hub defines the
integration of different regulatory nodes for controlling the
downstream target genes involved in Fe uptake and mobilization.
Upon functional characterization, these bHLH TFs could be
utilized to enhance the mobilization of Fe to foliar parts
mainly in grain.

BIOTECHNOLOGICAL ROUTES FOR Fe
FORTIFICATION AND
ACCOMPLISHMENTS IN WHEAT

In the past few years, limited attempts have been made to
increase Fe content or its bioavailability in wheat grain using a
biotechnological route. The criteria for the selection of genes were
mainly based on overlapping functions in rice, maize, barley, and
Arabidopsis. At this point, it is important to consider the loading
of Fe in the grains and enhance its bioavailability for better
human nutrition. Therefore, biotechnological routes to enhance
these two traits is challenging in crops. Therefore researchers have
opted for different strategies to target these traits.

Targeting Genes for Uptake and Loading
in Grains
The first successful report to achieve high Fe in cereals was
demonstrated by transferring the soybean ferritin gene driven
under rice glutelin-1 promoter resulted in threefold higher Fe
content as compared to wildtype rice (cv. Kita-ake) (Goto et al.,
1999). Subsequently, many research groups have attempted to
improve Fe content in the rice grain using SoyFer1 in different
rice cultivars under the control of different promoters (Drakakaki
et al., 2000; Qu et al., 2005; Oliva et al., 2014). The genes involved
in Fe uptake like OsIRT1, OsTOM1, OsYSLs (YSL15, YSL2, and
YSL13), and long-distance Fe translocation namely OsNAS1,
OsNAS2, OsNAS3 have been targeted to achieve a significant
increase (up to 40 µg/g) of Fe levels in rice (Lee and An,
2009; Lee et al., 2009a,b, 2012; Ishimaru et al., 2010; Nozoye
et al., 2011; Díaz-Benito et al., 2018; Zhang et al., 2018). The
transfer of genes related to Fe uptake, such as NAS and YSL from
Hordeum vulgare, has also been able to increase Fe content in rice
varieties (Masuda et al., 2012; Boonyaves et al., 2016; Banakar
et al., 2017). A study reported that OsIRO2, a gene responsible
for Fe utilization and regulatory response, improves growth and
yield in calcareous soil as well as accumulated Fe in rice grain
(Ogo et al., 2011). Simultaneously, the gene silencing approach
was also employed to enhance Fe levels in rice by targeting
the intercellular/intracellular transporters comprising OsVIT1,

OsVIT2, OsYSL9, and OsDMAS1 (Zhang et al., 2012; Bashir et al.,
2017; Senoura et al., 2017).

Ferritin is a Fe storage protein exclusively targeted to plastids
and mitochondria in plants. The ferritin encoding genes are well
conserved in the plant kingdom, and the genome of hexaploid
wheat contains two ferritin genes. The two separate pioneering
studies reported that expression of the ferritin gene in endosperm
enhanced Fe up to 1.25–1.35 fold and 1.04–1.64 fold, respectively,
in the wheat grain (Borg et al., 2012; Sui et al., 2012). TheVacuolar
Iron Transporter (VIT), which transports Fe into vacuoles, is
involved in Fe loading in the Arabidopsis seeds (Kim et al., 2006).
The overexpression of TaVIT2 in endosperm caused efficient
vacuolar Fe transport in the endosperm which ultimately resulted
in a significant ∼2-fold increase in Fe content in wheat grain
(Connorton et al., 2017). In an elegant study, Narayanan et al.
(2019) combined three genes from the Arabidopsis (VIT, IRT1,
and FER1) into one expression cassette and developed transgenic
lines in cassava (Manihot esculenta Crantz), a staple crop in the
West African human population. The field data of transgenic
lines suggested an elevated Fe and Zn in cassava roots that
may benefit the long-awaited goal of improved nutritional status
of consumers (Narayanan et al., 2019). Therefore, multiplexing
of important genes with different combinations might be a
viable option to channelize more Fe in the wheat endosperm.
Such a strategy has also been attempted in rice, for instance,
overexpression of AtIRT1, PvFerritin, and AtNAS1 led to an
increment in grain Fe content (2–10 µg/g) (Boonyaves et al.,
2016), and a combination of AtNAS1, PvFer, and AtNRAMP3
resulted in the rise of Fe from 2 to 13 µg/g (Wu et al.,
2019). Using OsNAS2, PvFERRITIN, and in a combination of
both genes, Singh et al. (2017) developed wheat transgenic
lines containing enough Fe in grain to meet the recommended
dietary allowances for humans (Singh et al., 2017). Moreover,
there are several genotypes available with higher Fe and Zn
concentrations that could be important resources for breeding
(Khokhar et al., 2020). Such wheat lines can also serve as excellent
germplasm for the introgression of this trait in elite varieties via
conventional breeding.

Enhancing Grain Fe Bioavailability
The cereals accumulate phytic acid (phytate) in the vacuoles
which chelate Fe and its metal ions, thereby drastically reducing
its bioavailability. The phytate is thus considered an anti-nutrient
and low phytate (lpa) could be another promising strategy
for improving Fe accessibility in cereals (García-Estepa et al.,
1999; Bhati et al., 2016). The lpa can be attained by repressing
or inducing mutation in the genes either responsible for PA
biosynthesis or transport to seed. The previous study of our
research group identified putative PA-related genes, such as
TaIPK1, which catalyzes the last step of PA biosynthesis and
TaABCC13 in wheat (Bhati et al., 2014). The silencing of TaIPK1
using RNAi significantly lowered PA production and led to
an increased Fe and Zn content in wheat grain (Bhati et al.,
2016; Aggarwal et al., 2018). However, pleiotropic developmental
changes, including low crop yield, were observed in wheat RNAi
lines. Moreover, Abid et al. (2017) have used phytase gene
from Aspergillus japonicus for the degradation of stored PA in
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TABLE 2 | Fe homeostasis-related regulatory bHLH protein from A. thaliana and their homologs from rice and wheat.

bHLH (subfamily) bHLH name
(A. thaliana)

Gene ID
(A. thaliana)

Homolog in rice Homolog in wheat

Ib AtbHLH038
(ORG2)

AT3G56970 OsIRO2 TraesCS2A02G515300 (TabHLH452)
TraesCS2D02G517000 (TabHLH453)
TraesCS3A02G489600 (TabHLH462)
TraesCS3B02G550000 (TabHLH460)
TraesCS3D02G495600 (TabHLH461)

AtbHLH039 AT3G56980

AtbHLH100 AT2G41240

AtbHLH101 AT5G04150

IIIa AtbHLH029 (FIT) AT2G28160 OsbHLH156 TraesCS2A02G281200 (TabHLH311)
TraesCS2B02G298600 (TabHLH312)
TraesCS2D02G280100 (TabHLH313)

IIIe AtbHLH006
(MYC2)

AT1G32640 OsbHLH009 TraesCS1A02G193200 (TabHLH183)
TraesCS1B02G208000
TraesCS1D02G196900 (TabHLH184)

IVa AtbHLH018 AT2G22750 OsbHLH018 TraesCS4B02G056600 (TabHLH284)
TraesCS4D02G056900 (TabHLH285)
TraesCS4A02G257900 (TabHLH283)
TraesCS4A02G408800 (TabHLH260)
TraesCS4D02G019100 (TabHLH265)
TraesCS4A02G292700 (TabHLH266)
TraesCS4D02G018800 (TabHLH268)
TraesCS4B02G020700 (TabHLH267)

AtbHLH019 AT2G22760

AtbHLH020 (NAI) AT2G22770

AtbHLH025 AT4G37850

IVb AtbHLH047 (PYE) AT3G47640 OsIRO3 TraesCS2B02G095900 (TabHLH417)
TraesCS2D02G079100 (TabHLH418)
TraesCS4B02G125400 (TabHLH419)

IVc AtBHLH034 AT3G23210 OsbHLH057
(OsPRI2)

OsbHLH058
(OsPRI2)

OsbHLH059
(OsPRI3)

OsbHLH060
(OsPRI1)

TraesCS2B02G240600 (TabHLH406)
TraesCS2D02G221200 (TabHLH405)
TraesCS2A02G215600 (TabHLH404)
TraesCS7A02G307700 (TabHLH407)
TraesCS7B02G208000 (TabHLH408)
TraesCS7D02G304500 (TabHLH409)

AtbHLH104 AT4G14410

AtbHLH105 AT5G54680

AtbHLH115 AT1G51070

endosperm leading to enhanced bioavailability of both Fe and Zn
in wheat (Abid et al., 2017). More recently, using the genome
editing-based tool, TaIPK1 was chosen as a target (Ibrahim
et al., 2021). The indel mutations increased the accumulation of
both Fe and Zn contents in genome-edited Borlaug 2016 wheat
variety wheat compared to the non-edited. Both these studies
highlight the IPK1 gene target as a major factor contributing to
the bioavailability of Fe in cereal crops.

Furthermore, the constitutive overexpression of the rice
OsNAS2 gene resulted in an increased Fe and Zn content in
wheat endosperm. Moreover, the same study also showed an
enhanced bioavailability of both metals (Beasley et al., 2019).
Recent studies suggest that Fe-bioavailability and its absorption
are independent of the enhanced Fe-content in grains. The
foremost reason for this is that even though Fe content in
the whole seed is increased, it is stored in the aleurone layer

which gets removed while milling, leaving only the endosperm
for consumption. Therefore, both Fe content and bioavailability
should be taken into account while addressing the biofortification
of wheat (Eagling et al., 2014; Wright et al., 2021). To further
address this, the wheat genome was studied for the identification
of the QTLs that could be responsible for both high Fe-content
and bioavailability (Wright et al., 2021). Very recently, a two-gene
strategy to overexpress VIT-NAS in wheat endosperm showed
high Fe concentration and also improves mineral bioaccessibility
(Harrington et al., 2022). Such innovative approaches directed at
content and its bioavailability is a feasible approach to generate
nutrition-rich grains. Our insight about genes and rate-limiting
steps of Fe homeostasis in wheat is increasing day by day.
The recent characterization of TaYSL and TaZIFL/TaTOM genes
has filled the knowledge gap of the Fe-transport mechanism in
wheat (Kumar et al., 2019; Sharma et al., 2019). In addition,

Frontiers in Plant Science | www.frontiersin.org 6 April 2022 | Volume 13 | Article 863849

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-863849 April 25, 2022 Time: 15:1 # 7

Kumar et al. Strategies for Mobilizing Iron in Wheat Grains

transcriptional activators, namely NAM-B1 and GPCs have been
found to control Fe and Zn remobilization to sink organs during
senescence and grain filling (Uauy et al., 2006; Pearce et al.,
2014). We assume that these genes can be potential candidates
for gene manipulation/editing efforts either independently or via
multiplexing to meet the ultimate goal of Fe enriched wheat
grain in the future.

CHALLENGES OF Fe ENRICHMENT IN
WHEAT GRAIN AND INTEGRATING
NOVEL APPROACHES

Being the second most produced cereals in the world, wheat can
be the most promising crop for Fe fortification to combat the
hidden hunger caused by Fe deficiency in human beings. In the
past few years, some efforts have been made in this direction;
however, limited success is achieved using genetic engineering. It
is noteworthy to mention here that the use of orthologous genes
is not sufficient to mobilize Fe in wheat grain up to a certain level.
In this section, we describe the main hurdles of increasing Fe
content in wheat grain via transgenic technology and discuss the
future strategies to address limitations as well.

Loading in the Grains: The Real
Bottleneck of Fe Fortification
The main bottleneck of Fe fortification using the transgenic
approach appears to be the lack of molecular details of its
homeostasis and transcriptional regulators of Fe mobilization in
wheat. Upon uptake, micronutrients enter into the root xylem
and reach the spikelets where it gets discontinued at the base
of the grain (Zee and O’Brien, 1970). At this site, phloem takes
a central role to mobilize the macro-and micronutrients by
providing passage for unloading into the grain. Studies exhibited
that NA is required for phloem unloading and loss of function
mutant of NAS led to sterility whereas RNAi lines of NAS resulted
in low nutrients in Arabidopsis seeds (Klatte et al., 2009; Schuler
et al., 2012).

There is an almost complete lack of knowledge about genes,
transporters, and transcriptional activators responsible for the
root to shoot distribution (xylem loading), phloem loading and
unloading of Fe at the time of grain filling in wheat (Figure 3).
It should be noted that transfer cells (TCs) play a central role
in nutrient distribution by facilitating high rates of transport
for apo-/symplastic solute exchange during nutrient loading in
phloem and unloading in the endosperm. The TCs found near the
endosperm, are specialized cells having unique wall architecture
with abundant transporters to enhance membrane transport
capacity (Offler et al., 2003). The mechanical removal of TCs
reduced in vitro photo-assimilate transport rates suggesting that
they are responsible for 70–80% of sucrose imported by the filial
tissues in wheat (Wang et al., 1995). TCs are also present near
fine veins in leaf and nodes where phloem loading takes place
and at the interface of maternal and filial tissues which form
symplastic solute transport routes in connection with vascular
conduits. Even though all imported solutes, including Fe and Zn,

have to be transported through TCs in the endosperm cavity,
there is a complete lack of understanding about the mode of
transport and genes in TCs.

Exploration of Hitherto Regulators of Fe
Homeostasis in Wheat
Recent studies demonstrated that stem nodes in the
graminaceous species are important transient sites for the
mobilization of micronutrients, including Fe and Zn, to the
above-ground organs (Yamaji and Ma, 2014). The genes
encoding for plasma membrane-localized efflux transporter
for citrate Ferric Reductase Defective like-1 (OsFRDL1) and
a yellow stripe-like transporter (OsYSL) were specifically
shown to be expressed in nodes, and demonstrated to be
important for the distribution of Fe and Cu in rice grains
(Zheng et al., 2012; Yokosho et al., 2016). It has been shown that
Arabidopsis Ferric Reductase Defective-3 (AtFRD3) maintains
citrate levels in the xylem of Arabidopsis, and mutation in this
gene caused an accumulation of Fe in roots (Durrett et al.,
2007). However, a distinct anatomical tissue arrangement
has been reported in wheat, and multiple modes of efficient
distribution of mineral elements have been speculated but the
transporters and regulators involved at specific sites are largely
unaddressed (Yamaji and Ma, 2014). Studies illustrated that the
heterologous expression of Triticum polonicum genes namely
TpSnRK2.10 and TpSnRK2.11 increased Fe accumulation in
roots and influenced Fe distribution in Arabidopsis (Wang R.
et al., 2019). Later studies reported the accumulation of IRT1
transcripts occurred in SnRK2.2/2.3 dependent manner in
Arabidopsis (Fan et al., 2014). Furthermore, the plant hormone
gibberellic acid (GA) is known to control the expression of
IRT1 and FRO2 via DELLA protein in Arabidopsis (Matsuoka
et al., 2014). The DELLA protein interacts with transcriptional
activators, such as FIT, bHLH38, and bHLH39, and limits their
transcriptional activities (Wild et al., 2016). The abundance of
DELLA is regulated by Fe deficiency which ultimately favors
Fe acquisition in roots. It should be worthy to mention here
that semi-dwarf alleles of wheat were preferred during the green
revolution and modern wheat varieties have been developed
showing improved harvest index and resistance to water lodging.
In general, modern wheat varieties are less sensitive to GA
and contain less Fe in grain as well. Now, it is still unclear
whether GA insensitivity and DELLA accumulation may be a
reason for the low Fe in grains of commonly growing semi-
dwarf modern wheat varieties. Furthermore, Fe interaction
with other nutrients is a well-recognized phenomenon in soil
for ensuring the bio-availability of Fe to plants which have
been described in detail in previous sections of this review.
The presence of excess/limited nutrients in the rhizosphere
challenges the plant to integrate nutrient signals in the form
of genetic shift which finally changes root architecture. The
studies have shown that gaseous hormone ethylene is extremely
required for the maintenance of primary and lateral root growth
as well as Fe homeostasis in Arabidopsis (García et al., 2015;
Li et al., 2015). Hence, focusing on unconventional hitherto
regulators of Fe, such as SnRK, DELLA, components of ethylene
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FIGURE 2 | Transcriptional homologs of Arabidopsis and rice bHLH proteins reported for their functional activity for Fe homeostasis. The respective homologs from
wheat were identified and placed in the network as a probable candidate for function. Their conserved role in Fe-related phenomenon remains to be tested and
validated. Many of these bHLH transcription factors are in turn regulated by BRUTUS, IRON MAN: IMA, and bHLH-like MYC2. Schematic arrangement of bHLH
dependent interaction and control at the transcription level is indicated by respective arrow signs: Green arrow: transcriptional activation; Inverted T: gene repression;
Both side arrow: protein-protein interaction.

FIGURE 3 | Schematic representation of the primary bottleneck for Fe acquisition, uptake and mobilization in wheat shoot and grain. Multiple target areas have been
identified to enhance the mobilization of Fe from soil to roots, from roots to shoots, and subsequently their loading in the grains through specific conducting tissue.
The first is referred as Target-I, and Target-II depict the uptake of Fe in roots and then to shoots and eventually loading to the edible grains. In wheat, primarily at this
stage, the bottleneck includes the transfer and mobilization of Fe from discontinued xylem to the transfer cells and subsequently to the endodermal cells (Target-III
and IV). The target areas Target-III and IV remained unexplored in hexaploid wheat. The area that needs attention is to perform grain or Tissue or single
cell-specific-omics approach that will help in identifying key transporters and regulators. These identified key genes could be tested for their functional validation in
yeast and subsequent proof-of-function in Arabidopsis, Brachypodium, or in wheat. The red arrow indicates the process in wheat, and the blue arrow indicates the
means to further characterize wheat genes in different model species.
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signaling and others can boost our endeavor for not only Fe
enrichment perspective but also enhanced crop productivity in
the Fe deficient soil.

In this line, we describe four research directions that
could be emphasized viz. Fe uptake, long-distance transport,
remobilization, and unloading of Fe in developing wheat grains
for dealing with Fe fortification. The schematic representation
of these four main target areas has been illustrated in Figure 3.
Targets I and II have been proposed to utilize a strategy wherein
overexpression of genes encoding for NAS, NAAT, DMAS, TOM,
and YSL could lead to an increase in Fe uptake by enhancing the
PS production and release in soil. Next, the collective candidates
of Target III and IV cover Fe transport from flag leaf to developing
grains. The identification and characterization of transporters
and TFs especially comprising Targets III and IV would provide
molecular assets to be useful for Fe accumulation through genetic
engineering or molecular breeding. Therefore, a concerted effort
will be required to identify TCs/tissue-specific genes to cross
the bottleneck, and which will serve as potential targets for
developing wheat varieties having more Fe in grain.

Single-Cell RNA Sequencing
The evolution of high-throughput sequencing techniques is
going very fast in recent years. The establishment of single-cell
RNA sequencing (scRNA-seq) tools revolutionized the molecular
studies of developmental processes in any organism. The single-
cell transcriptome analysis is very helpful for the spatio-temporal
characterization of genes and gene regulatory networks recruited
in specific developmental trajectories. Nevertheless, the isolation
of single-cell from plant tissues is the most crucial step and is a
major constraint for the wide application of scRNA-seq analysis
in crops. The technical advancements in this area, such as Drop-
seq and InDrop-seq, will gear the implementation of scRNA-seq
analysis in plant research. In recent years, scRNA-seq analysis
has been successfully implemented to decipher cell type-specific
information, for instance, developmental programs leading to
meiosis in maize (Nelms and Walbot, 2019) and dynamics of gene
expression in the root cells of Arabidopsis (Jean-Baptiste et al.,
2019). We believe that scRNA-seq analysis of cell files involved in
vascular loading and unloading of Fe in sink organs at the time
of grain filling stage in wheat can be an ideal way to investigate
the gene regulatory network of Fe mobilization. Furthermore,
nucellar projection and TCs are the two main cells through which
Fe has to pass before loading into the endosperm. The genes that
facilitate Fe loading from these cells are still unknown not only in
wheat but in model plants as well. Thus, sc RNA-Seq study either
under varying Fe conditions or in contrasting Fe accumulating
wheat varieties can potentially reveal these missing molecular
links that will help in exploring new candidate genes to enhance
Fe loading into seed.

Genome Expression Bias and Fe
Homeostasis in Wheat
The modern wheat contains hexaploid genome (2n = 6x = 42)
with much complex genome organization. Hence, the
investigation of mechanisms, transcriptional regulators, and
genes involved in Fe uptake and homeostasis in wheat seems to

be a tough task. The wheat genome is derived from three related
ancestral genomes from the genera Aegilops and Triticum. It is
of high interest to understand how individual genomes interact
with each other for determining the expression of highly related
genes in wheat. The phenomenon of genome biasness has been
reported earlier in polyploid plants, such as cotton and soybean
(Roulin et al., 2013; Yoo et al., 2013). A homeolog-specific
differential regulation of genes controlling growth and vigor
was also observed in wheat (Akhunova et al., 2010). Subsequent
studies pointed the homeolog induction bias under Fusarium
infection in wheat (Powell et al., 2017). A large expression
landscape study was recently conducted suggesting the existence
of a tissue-specific co-expression network as well as coordination
of homeologs during different developmental stages (Ramírez-
González et al., 2018). Such induction bias is not only restricted
to growth or biotic stresses but rather plays a significant role
during Fe deficiency response in wheat (Kaur et al., 2019).
Homeolog induction bias was observed under Fe deficiency for
A and B genomes in wheat. Genes contributing toward induction
bias comprises metal transporters, Zn transporters, and MYB
transcription factors. Furthermore, it has been shown that Fe
deficiency response, such as PS release, was more in tetraploid
wheat with AABB sub-genome compared to DD genome (Ma
et al., 1999). This explains why hexaploid wheat releases high
PS simply due to retaining AABB genome biasness. The factors
influencing such homeolog induction bias and genome bias
remain largely unaddressed. A recent study demonstrates that
varying chromatin accessibility of homeologs might be the reason
for such genome bias in wheat (Jordan et al., 2020). Therefore, it
will be interesting to pinpoint spatio-temporal genome biasness
invoked due to Fe deficiency in wheat.

CONCLUSION AND FUTURE
PERSPECTIVES

Improving the nutritional quality of cereals is of prime
importance and yet challenging. The Fe biofortification in
wheat has been an arduous task for many decades with
limited success. Therefore, the means to design better strategies
for improving Fe uptake by the roots, genetic screening of
germplasm showing tolerance under limiting Fe conditions,
and combining approaches of classical physiology with the
omics data-driven system biological studies will certainly help
in undermining the limiting steps involved in Fe remobilization
into wheat grain. Also, homeolog specific expression analysis of
Fe-regulated genes has revealed the expression biasness for A,
B, and D subgenomes (Kaur et al., 2019). These studies have
streamlined the selection of candidate gene/s and/or homeologs
and also made it much more efficient and rational. The genetic
engineering tools, genomic sequence information, gene mining,
and functional genomics would help to carry forward the research
for developing novel strategies of micronutrient enhancement
in wheat. Moreover, controlling the transcriptional regulation of
genes through gene editing could be an alternate strategy for
trait improvement. Advancements in CRISPR/Cas9 technology
would help to know gene expression regulation in a better way
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and provide an additional tool. Keeping in mind that excessive
Fe concentration causes oxidative stress in plants, future
attempts for the modulation of Fe homeostasis may consider
both negative and positive regulators, including new players,
such as IRO3, HRZ, and IMA, in wheat (Kobayashi et al.,
2013; Grillet et al., 2018). Moreover, to control excessive
Fe loading into the plant, the gene expressions can be
fine-tuned with the use of CRISPRi and/or CRISPRa. For
this, several vectors and toolkits with various monocot-
specific strong promoters and gene regulatory elements
(activators/repressors) are available in the Addgene repository
(Kamens, 2015). The expansion of wheat genomic resources
(Borrill et al., 2016; Appels et al., 2018; Ramírez-González
et al., 2018) along with the modern gene-editing tools via
CRISPR/Cas9 could offer a reliable potential to achieve Fe-
rich wheat grains.
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