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In recent years, the National Climate Center has developed a dynamic downscaling
prediction technology based on the Climate-Weather Research and Forecasting (CWRF)
regional climate model and used it for summer precipitation prediction, but there are
certain deviations, and it is difficult to predict more accurately. The CWRF model
simulates the summer precipitation forecast data from 1996 to 2019 and uses a
combination of dendrite net (DD) and artificial neural networks (ANNs) to conduct a
comparative analysis of summer precipitation correction techniques. While summarizing
the characteristics and current situation of summer precipitation in the whole country,
the meteorological elements related to precipitation are analyzed. CWRF is used to
simulate summer precipitation and actual observation precipitation data to establish
a model to correct the precipitation. By comparing with the measured data of the
ground station after quality control, the relevant evaluation index analysis is used to
determine the best revised model. The results show that the correction effect based
on the dendritic neural network algorithm is better than the CWRF historical return, in
which, the anomaly correlation coefficient (ACC) and the temporal correlation coefficient
(TCC) both increased by 0.1, the mean square error (MSE) dropped by about 26%, and
the overall trend anomaly (Ps) test score was also improved, showing that the machine
learning algorithms can correct the summer precipitation in the CWRF regional climate
model to a certain extent and improve the accuracy of weather forecasts.

Keywords: machine learning, summer precipitation correction, dendrite net (DD) and artificial neural networks
(ANN), mean square error (MSE), temporal correlation coefficient (TCC), anomaly correlation coefficient (ACC)

INTRODUCTION

Climate prediction is the process of predicting the likely trend of climate development in the
future based on the changing laws of the past climate. In recent years, the forward-looking
role of climate prediction in disaster prevention and mitigation has been recognized more and
more, and the demand for prediction in all walks of life is increasing. With the needs of
social and economic development, research on climate prediction needs to be improved urgently
(Yingdong et al., 2011; Bannister et al., 2019; Xinmin et al., 2019). Accurate precipitation data
are essential for understanding climate change and associated hydrological responses from small
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basins to large regions around the world (Pan et al., 2016). At
present, global and regional climate models are the primary
tools for climate change simulation and prediction research
(Rummukainen, 2010), but they are restricted by the complexity
of the climate system and the level of scientific development.
Compared with actual observations, climate model simulations
always show deviations in precipitation (Ren and Li, 2007; Kim
et al., 2015, 2020).

Precipitation correction is an effective way to improve model
forecasts. The concept of precipitation correction is proposed
because there is some model data for flood season precipitation
forecast in the current climate forecast business, but there are
certain deviations. Therefore, it is hoped that the correction will
reduce the error and improve the precipitation forecast accuracy
and performance (Yao et al., 2017). With the development of
weather forecasting technology, artificial intelligence, and data
mining research, the use of intelligent computing and data
mining technology to correct regional precipitation provides a
new and effective method for improving the existing precipitation
forecast quality and prediction accuracy, which has become one
of the research hotspots.

The dendritic neural network has achieved great success in
many fields (Wu et al., 2009, 2018; Kisi et al., 2017; Egrioglu
et al., 2019; Xue et al., 2021; Achite et al., 2022). The diverse
kinds of synaptic plasticity and non-linearity mechanisms enable
synapses to take a valuable part in calculation (Gao et al.,
2018). Synaptic non-linearity is implemented in a dendritic
structure to effectively solve linearly inseparable problems,
and this model has been applied to a variety of complex
continuous functions (Zhou et al., 2016; Chen et al., 2017; Ji
et al., 2019, 2021). Among the various types of soft computing
approaches, the artificial neural networks (ANNs) models have
satisfactorily been applied to non-linear hydrologic simulations
such as rainfall (Acharya et al., 2014), evapotranspiration (Kisi
et al., 2015), and river flow (Zounemat-Kermani et al., 2013).
In recent years, related research has also been carried out
at home and abroad. For example, Huating Xu (Xu et al.,
2018) mentioned that the global environmental multiscale
(GEM) model is widely used as a high-resolution medium-term
prediction model for precipitation forecasting in various parts
of Canada. With the continuous deepening of regional climate
simulation research, the new generation of regional climate
models, Climate-Weather Research and Forecasting (CWRF),
has begun to be widely used because of its excellent performance
(Guanzhou and XinZhong, 2017). For example, Xiaoyun et al.
(2019) used the CWRF regional model to propose a cumulative
probability transformation deviation correction method for
extreme precipitation to test and evaluate its applicability to
extreme precipitation correction. For example, Zhang and Zhi
(2018) proposed using the frequency matching method (FMM)
to calibrate the large-scale precipitation forecast data obtained
from the Public Meteorological Service Center of the China
Meteorological Administration (CMA). The results show that
FMM calibration can significantly improve the forecasting skills
of large-scale precipitation forecasts. For example, Jixue et al.
(2016) used 18 meteorological elements, such as temperature,
humidity, pressure, and wind field, in high-altitude weather

observation data to train a three-layer BP neural network
model. The experimental results show that the ANN has good
application prospects in short-term precipitation forecasting.
For example, Yuting et al. (2020) trained the ANN model
with the annual precipitation of five stations in the western
area of Taihu Lake. The results showed that the fitting and
prediction accuracy and stability of the ANN model based on
component analysis were higher than those of the original ANN
and linear autoregression models and the other 4 types of
neural networks. For example, Liu and Wang (2021) proposed
a white-box dendrite net (DD) with a logical operational
relationship, while the ANN network is a black-box network that
does not consider the fuzzy non-linear mapping of the logical
operation. DD has better generalization. Li et al. (2020) used
the integrated network model of ANN and DD, and through
digital recognition tasks, experiments proved the potential of
artificial DDs to improve overall performance. Liangmin et al.
(2016) proposed an objective clustering method based on nearest
neighbor propagation to divide the climate of summer rainfall
in China while using factors such as sea temperature and sea
level pressure to establish a least-squares regression method to
predict precipitation. Moreover, Chow and Cho (1997) described
the development of new approaches to rainfall forecasting using
ANN (Egrioglu et al., 2019).

In this article, the artificial DD is used to correct the CWRF
simulation of summer precipitation so as to improve the accuracy
of the CWRF prediction of precipitation. The data mining
correlation algorithm is used for the correction of precipitation
forecast results, and a precipitation correction scheme based on
NN is proposed, which is used for the correction of precipitation
in the summer flood season in China.

DATA AND METHODS

Data Sources
The data used were obtained from the historical return results of
the CWRF regional climate model (Climate Extension of WRF)
(30 km resolution) in the summer of China (June–August) from
1991 to 2020 in the National Climate Center. Among them, 7
physical configuration combinations (i.e., case 01, 02, 06, 15, 16,
23, and 28) are selected from the four starting times (i.e., 00, 06,
12, and 18) on March 2 each year, a total of 28 samples; at the same
time, the actual observation data (OBS) data from the ground
station during the summer of 1991–2019 is selected as the target.
The main meteorological elements included are precipitation,
wind speed (10 m), wind volume (10 m), relative humidity (2 m),
temperature (2 m), 500 altitude field, sea level pressure, whole
layer water vapor, and vertical speed.

Method Introduction
Artificial Neural Network Algorithm Model
Artificial neural network is a system with non-linear and adaptive
information processing capabilities composed of a large number
of neurons connected by different weights. ANN is a model that
simulates the biological nervous system, which can approximate
any non-linear function. There are three kinds of neurons,

Frontiers in Plant Science | www.frontiersin.org 2 May 2022 | Volume 13 | Article 862558

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-862558 May 19, 2022 Time: 16:15 # 3

Li et al. Neural Network Based Precipitation Correction

FIGURE 1 | Flowchart of artificial neural network model.

namely, (a) output neurons, those that send data out of the
network; (b) input neurons, which receive external data; and (c)
hidden neurons, whose signals remain in the ANN and join the
input layer neurons to the neurons of the output layer (Samani
et al., 2007; Zounemat-Kermani, 2012). Traditional precipitation
forecasting and correction methods need to be analyzed by
understanding precipitation principles and related influencing
factors, while the ANN to achieve interannual precipitation
forecasting does not need to be clear about the precipitation
mechanism, and a model can be learned by learning precipitation
and related element data to forecast future precipitation.

Artificial Neural Network Model

Where X = [x1, x2, ..., xn] ,W =


wi1
wi2
·

win

 , b =


bi1
bi2
·

bin


The ANN algorithm model includes two parts, namely,

forward propagation of information and back propagation
of error. In Figure 1, X1 ∼ X2 are the input characteristic
signals passed in from the neuron. Wi1 ∼Win are the weights
corresponding to the incoming signals of different neurons.
bi1 ∼ bin represent a bias. The setting of bias is to achieve
accurate output and is an important parameter in the model.
Different neurons are combined into the final input signal
through different weight matrices. In Figure 1, f(∗), f are called
activation functions. The activation function mainly acts on
the linear connection, and the non-linear function is added to
the model, which can well realize the learning of non-linear
problems. In the figure, y is the final output of the neuron.

Error Back-Propagation and Improvement
Back-propagation (BP) neural network is a process of continuous
repetition when training the network, by collecting the errors
generated by the system, returning these errors to the output
value, and then using these errors to adjust the weight of the
neurons so that the loss of the model propagates along the
direction of the negative gradient. The parameters that affect
the performance of the BP neural network mainly include the
number of hidden layer nodes, the choice of activation function,
and the choice of the learning rate. This article is based on the

number of hidden layer nodes of the neural network to improve.
According to the empirical formula:

√
N + X (1)

Among them, N represents the number of sample features,
and the value range of X is 1–10. The number of hidden layer
nodes is determined step by step, and the prediction performance
of each model is obtained by comparing different numbers of
nodes, and the number of nodes with the best effect is selected
as the number of hidden layer neurons. When determining the
number of hidden layer nodes, the following conditions must be
met: First, the number of hidden layer nodes must be less than
N−1, that is, less than the number of input features. Otherwise,
the system error of the network model is independent of the
characteristics of the training sample and tends to be zero, i.e.,
the constructed network model has no generalization ability.
Second, the number of training samples must be more than the
connection weight of the network model, generally 2–10 times.
Otherwise, the sample must be divided into several parts and
the method of “training in turn” can be used to obtain a reliable
neural network model.

Artificial Dendrite Net Algorithm Model
Dendrite Net Algorithm Model
The main concept of the DD model is that if the output logical
expression contains the logical relationship of the corresponding
class between the inputs (and\or\not), the algorithm can identify
the class after learning. The white box machine learning
algorithm DD shows excellent system recognition performance
for the black box system. The DD has white box properties,
controllable accuracy, better generalization ability, and lower
computational complexity. Not only can DD be used in general
engineering but as a module of deep learning, it also has broad
development potential. The expression of the DD module is as
follows:

Al
= W l,l−1Al−1

◦ X (2)

Among them, Al−1 and Al represent the input and output of
the model, X represents the input of DD, Wl,l−1 is the weight
matrix from module l−1 to module l, and ◦ is the multiplication
of corresponding elements, sometimes called Hadamard product.

Artificial Dendrite Net Algorithm Model
The artificial dendritic neural network model is shown in Figure
2. The ANN algorithm model adds a DD module on the basis
of ANN. The connection of different DD modules enhances the
processing ability of neurons carrying information. The number
of modules can effectively adjust the logic expression ability of
DD and avoid excessive simulation. Together, it is easy to obtain
models with outstanding generalization capabilities. By analyzing
the existing ANN network model, it does not consider that the
logical operation is a fuzzy non-linear mapping relationship, and
the DD considers that the logical operation can converge to the
global optimum with a high probability, so the integration of DD
and ANN is adopted. The network model of the ANN adds a
dendritic module to the hidden layer of the ANN to improve the
generalization ability of the ANN algorithm model.
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Evaluation Index
In this article, three indicators such as mean square error (MSE),
temporal correlation coefficient (TCC), and spatial anomaly
correlation coefficient (ACC), commonly used in meteorological
services are used to evaluate the effect of machine learning on the
correction of CWRF summer precipitation. The definitions are,
respectively, as follows:

(1) The MSE is often used as an indicator to evaluate the
prediction results of a machine learning model. The
formula is as follows:

MSE =
1
N

N∑
i = 1

(
prei−obsi

)2 (3)

(2) The time correlation coefficient (TCC) can better represent
the model’s ability to predict the abnormality of each grid
point in a statistical sense and obtain a complete spatial
distribution of correlation techniques. When calculating
TCC, the mean square deviation and covariance of each
grid point are required. The formula is as follows:

TCC =

∑N
i = 1

(
prei−prei

) (
obsi−obsi

)
√∑N

i = 1
(
prei−prei

)2 ∑N
i = 1

(
obsi−obsi

)2
(4)

In the formula, prei and prei are the model return value or
precipitation data model forecast value of i sample point
and its multiyear average value; obsi and obsi are the actual
observation values of the precipitation data of sample point
i; N is the total number of grid points actually participating
in the evaluation.

(3) The ACC mainly reflects the degree of similarity between
the forecasted value and the actual value of the space type
and can also be called the spatial similarity coefficient.
The spatial similarity coefficient can be calculated for
each forecast field. The formula for calculating ACC is as
follows:

ACC =
∑N

i = 1
(
1Rf−1Rf

) (
1Ro−1Ro

)√∑N
i = 1

(
1Rf−1Rf

)2 ∑N
i = 1

(
1Ro−1Ro

)2 (5)

In the formula, 1Rf and 1Rf are the forecast value
and multiyear average value of precipitation anomaly
percentage ((actual measured value-historical average
value of the same period)/historical average value of
the same period); 1Ro and 1Ro are the corresponding
observation values; N is the total number of stations
actually participating in the evaluation.

The formula for the abnormal comprehensive (Ps) test score,
which is a commonly used predictive scoring index in business,
is:

PS =
a ∗ N0 + b ∗ N1 + c ∗ N2

(N−N0) + a ∗ N0 + b ∗ N1 + c ∗ N2 + M
∗ 100

(6)
The scoring steps are as follows:

1. Determine whether the forecasted trend is correct from
station to station and calculate the total number of stations
with correct trend prediction N0;

2. Determine whether the first-level anomaly prediction is
correct from station to station and calculate the total
number of stations N1 with the correct first-level anomaly
prediction;

3. Determine whether the second-level anomaly prediction is
correct from station by station and count the total number
of stations N2 with the correct second-level anomaly
prediction;

4. The number of stations where the percentage of
precipitation anomaly is ≥ 100% or equal to −100%,
and the temperature anomaly is ≥ 3◦C or ≤ −3◦C
(referred to as missed stations, denoted as M) without a
second-level anomaly forecast;

5. Count the number of stations N that actually participated
in the assessment, that is, the number of stations that are
required to participate in the assessment minus the number
of stations that are not in the live test;

a, b, and c are the weight coefficients of the climate trend
item, the first-level anomaly item, and the second-level anomaly
item, respectively. This algorithm takes a = 2, b = 2, and
c = 2, respectively.

PRECIPITATION CORRECTION MODEL
CONSTRUCTION

National Climate Division
In this study, the precipitation prediction results of the CWRF
model in the flood season (June–August) in China (8.37◦N–
58.75◦N, 58.40◦E–161.60◦E) were selected as the target of
forecast correction. The geographical diversity of climate is
obvious, which makes it difficult for a single model to represent
the climate characteristics of the entire China, leading to certain
difficulties in climate forecasting. To realize the correction
of the national regional precipitation forecast data, regional
modeling forecasts are carried out for the whole country. That is,
according to the climatic characteristics of different regions, they
establish model algorithms suitable for their respective climatic
characteristics, promote the high generalization ability of the
model, and improve the accuracy of precipitation forecasting.
According to the climate characteristics of different regions,
China is divided into eight regions (Wang and Yang, 2017). The
specific results are shown in Table 1.

In the precipitation data file, the data size is 231 × 171, that
is, 231 × 171 grid points, including the China region. Now, the
regions are divided according to Figure 3 and Table 1.

Feature Selection and Data Organization
Feature Selection
Pearson correlation coefficient (PCC) and random forest
algorithm for feature selection comparison.

Pearson correlation coefficient, also known as Pearson
product-moment correlation coefficient (PPMCC or PCCs), is
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FIGURE 2 | Flowchart of artificial dendritic neural network model.

used to measure the correlation between two variables X and Y
(linear correlation), and its value is between -1 and 1.

The PCC between two variables is defined as the quotient of
the covariance and standard deviation between the two variables:

ρX,Y =
cov (X,Y)

σXσY
=

E [(X−µX) (Y−µY)]
σXσY

(7)

The above formula defines the overall correlation coefficient,
and Greek lowercase letters are commonly used as representative
symbols. Estimate the covariance and standard deviation of the
sample to get the PCC. Commonly used English lowercase letter
r stands for:

r =
∑n

i = 1
(
Xi−X

) (
Y i−Y

)√∑n
i = 1

(
Xi−X

)2
√∑n

i = 1
(
Y i−Y

)2
(8)

r can also be estimated from the mean value of the standard scores
of the sample points (Xi, Yi), and an expression equivalent to the
above equation can be obtained:

r =
1

n−1

n∑
i = 1

(
Xi−X

σX

)(
Y i−Y

σY

)
(9)

Among them, Xi−X
σX

, X, and σX are the standard score, sample
mean, and sample standard deviation of Xi sample, respectively.

TABLE 1 | Eight area names.

Abbreviations Full name

NWCH Northwest China

TP Tibetan Plateau

BBYR Big Bend of Yellow River

SWCH Southwest China

NECH Northeast China

NCH North China

YHRB Yangtze–Huaihe River Basin

SCH South China

1. Use PCC to select features for precipitation data.
2. Use random forest model to select features.

After experiments, for the random forest model, using the
attribute column obtained through the PCC in step 1 for training,
the score is 0.97; while using the features selected by the random
forest for training, the score is 0.98. It can be seen that the use
of random forest for feature selection still has a certain effect on
improving the ability of the model on this dataset.

Later, we picked the characteristics that are most important to
us: the precipitation and the historical return of the CWRF. These
are cumulative wind volume v component, cumulative wind
speed, cumulative temperature 2 m, and precipitation correlation
of the historical return.

Data Organization
First of all, considering the influence of the age average on
forecasting, anomalies are commonly used in meteorological
forecasting operations, so this article also chooses anomalies
to preprocess the data. Taking precipitation as an example,
comparing the rainfall forecasted by the model with the average
rainfall over the years, the forecast is the value of the forecast

FIGURE 3 | China’s terrestrial climate regional division map.
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rainfall minus the average rainfall over the same period. It is
generally used in medium- and long-term forecasts and can be
used as a reference for flood control and drought resistance. The
historical year-month (year) precipitation distance is equal to the
difference between the historical year-month (year) precipitation
and the cumulative year-month (year) average precipitation.

Dpt = Pre− AvgPre (10)

Among them, Pre represents the precipitation of a certain
location in a certain month in a certain year, AvgPre represents
the average precipitation of a certain location in the historical
years that have been recorded at that point, and Dpt represents
the precipitation of a certain location in a certain year from the
average value in a certain month. If Dpt < 0, it is a positive
anomaly, and the annual precipitation at the location is greater
than the cumulative annual average precipitation; if Dpt > 0, it
is a negative anomaly, and the annual precipitation at the location
is less than the cumulative annual average precipitation.

Then, the summer precipitation data are gridded data. Each
grid point has only the CWRF return data and actual observation
data at a specific time and a specific location. Based on the
similarity characteristics of the climate in the neighboring areas,
the target point is divided into small areas of M∗M, and then
each grid point has M∗M feature data; (1) the precipitation is
corrected by the single-element integration method: the value of
M is 3, which is a small area of 3 × 3 around the grid point.
Second, taking into account the influence of the precipitation
months in summer (6–8), the average precipitation anomaly of
the past 5 months (4–8) is used as the input feature of the model
to organize the data. That is, the April–August precipitation
anomaly and the average precipitation of the 3 × 3 grid points
around the current year of the CWRF model precipitation
are used as the characteristics of the model training input,
and the output is the precipitation anomaly from April to
August of the current year; (2) using the multifactor integration
method to correct the precipitation: select the historically
reported precipitation of CWRF, the cumulative wind volume
u component, the cumulative wind volume v component, the
cumulative wind speed, and the cumulative temperature 2 m.
The data are preprocessed and converted into monthly anomaly
data. Five meteorological elements, input according to 3 × 3
grid points are selected; the input data from June to August (or
a single month) are organized, and the corresponding 1-month
precipitation anomaly is delivered. Data according to the above
different methods are organized, and a data format suitable for
network model training is constructed. Finally, based on the
interdecadal influence in the meteorological field, this article uses
the data of nearly N years when training based on the artificial DD
model and then predicts the summer precipitation in N1 years.
The range of N selected in this article is 3–10. The analysis of the
experimental comparison results shows that N is set to 5, that is,
the training algorithm model using the data of the past 5 years is
better than the correction results of other years.

Through the above-mentioned modeling method, the forecast
factors are optimized at the same time for the 28 sample forecast
data of 7 different physical parameter configurations and 4

FIGURE 4 | Flowchart of summer precipitation correction algorithm based on
artificial dendrite net.

start times. One or more forecast factors are used to predict
the precipitation, and the 28 sample forecast results use the
weighted average method to integrate as the final output. First,
the organized data are divided as follows: 70% of the data as the
training set, 20% of the data as the validation set, and the rest as
the test set. At the same time, the MSE is selected as the error loss
function for network model training, based on the artificial DD
model summer precipitation. The flowchart is shown in Figure 4.

ANALYSIS OF PRECIPITATION
CORRECTION RESULTS

Regional Precipitation Forecast Revision
(1) Comparison of TCC before and after the regional
correction in China.

The eight sub-areas are divided to calculate the TCC of
each grid point, and the correction results of the precipitation
forecast of the flood season model are tested. Figures 5A,B shows
the TCC comparison test of precipitation and actual observed
precipitation (OBS) in the eight sub-regions during the flood
season from 1996 to 2019. It can be seen from Figures 5A,B that
after the machine learning method is revised, the positive value
range of the TCC of precipitation prediction in different regions
has been improved to varying degrees, especially in the eastern
key areas of the rain belt during the flood season in China [South
China (SCH), Yangtze-Huaihe River Basin (YHRB), North China
(NCH), Northeast China (NECH)] TCC correction effect is more
obvious. The YHRB, the NECH, and the Southwest Region
(SWCH) have significantly improved TCC compared with other
regions. After the revision, the regions that passed the 90%
significance test significantly increased.
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FIGURE 5 | (A) Comparison of regional precipitation time correlation coefficients [Climate-Weather Research and Forecasting (CWRF) vs. Machine Learning (ML)],
the color code numbers 0.33, 0.388, and 0.496, respectively, represent that the correlation coefficients have passed the significance test of 90%, 95%, and 99%,
respectively. (B) Comparison of regional precipitation time correlation coefficients (CWRF vs. ML); the color code numbers are the same as panel (A).

It can be seen from Figure 6 that after the correction of the
machine learning method, the mean value of the TCC of the
precipitation prediction in different regions has been improved
to different degrees. The range of the positive value after the
correction by the improved ANN algorithm has been improved
more obviously, especially in the rainy season in China. The effect
of TCC correction in key eastern regions of the belt [Big Bend of
Yellow River (BBYR), Northwest China (NWCH), SCH, YHRB,
NCH, and NECH] is more obvious. The Jianghuai River Basin
(YHRB), BBYR, NCH, and NWCH have significantly improved
TCC compared with other regions. From the regional average,
the difference between the results of experiments before and after
the correction has more than 0.2.

(2) Comparison of spatial correlation coefficients (i.e.,
ACC) before and after the revision of China’s regional
precipitation forecasts.

Calculate the spatial correlation coefficients between the
precipitation during the flood season from 1996 to 2019 and the
actual observed precipitation for the eight sub-regions divided,

and the ACC values before and after the correction are shown
in Figure 7. It can be seen from Figure 7 that the spatial
correlation coefficient of the corrected results of ML in the 8
regions is larger than the original prediction of CWRF. The
spatial correlation coefficient of b is relatively close. After the
machine learning method is revised, the spatial correlation
coefficients of precipitation forecasts in different regions have
been improved to varying degrees. The algorithm has certain
predictive performance.

It can be seen from Figure 8 that after the correction of
the machine learning method, the mean values of the spatial
correlation coefficients of precipitation forecasts in different
regions have improved to varying degrees. Among them,
BBYR, NCH, NWCH, SCH, SWCH, and YHRB have improved
significantly, especially during the flood season in China. The
ACC correction effect in the key eastern areas of the rain
belt (i.e., SCH, YHRB, NCH, NECH, and SWCH) is more
obvious. The Jianghuai River Basin (YHRB), the NECH, and
the Southwest Region (SWCH) have significantly improved ACC
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FIGURE 6 | Comparison of mean values of regional precipitation time correlation coefficients (CWRF vs. ML). (a) CWRF prediction and (b) machine learning
correction.

FIGURE 7 | Comparison of anomaly correlation coefficient (ACC) before and after precipitation correction in 8 sub-regions.

Frontiers in Plant Science | www.frontiersin.org 8 May 2022 | Volume 13 | Article 862558

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-862558 May 19, 2022 Time: 16:15 # 9

Li et al. Neural Network Based Precipitation Correction

FIGURE 8 | Comparison of mean values of spatial correlation coefficients of
regional precipitation (CWRF vs. ML). (a) CWRF prediction and (b) machine
learning correction.

compared with other regions. From the regional average, the
difference in results before and after the correction has risen more
than 0.1 on average.

Evaluation of the Effect of the National
Precipitation Forecast Revision
(1) Comparison of the MSE before and after the correction of the
national summer precipitation forecast (puzzle).

Figure 9 contains the comparison of two calculation
results, namely, (1) MSE change (CWRF) between simulated
precipitation (case) and actual observed precipitation (OBS)
in CWRF model and (2) use artificial network to correct
precipitation and actual observation (OBS) between MSE change

(ML) under the corresponding parameters; from Figure 9, it can
be seen that there are fluctuations between the different CWRF
model data and the MSE of the actual observation data, indicating
that different physical parameter configurations have different
degrees of error in the simulated flood season precipitation; after
correction, the rainy season precipitation of the next 7 cases
all increased to varying degrees. The 7 case results of CWRF
simulated precipitation, respectively, calculate the MSE, and the
average MSE is 9.45, and the corrected average MSE is 7.03, a
decrease of 2.42 (equivalent to a 26% decrease in MSE). It can
be seen from the figure that the MSE of the CWRF model rainy
season precipitation data fluctuates greatly, and the corrected 7
case results have stabilized, indicating that the artificial network
model has improved the accuracy of the model forecast data
to a certain extent. The forecasting performance of CWRF
has to be improved.

(2) Comparison of the TCC before and after the correction of
the national summer precipitation forecast (puzzle).

Figure 10 shows the TCC comparison before and after the
correction of CWRF forecasts for 7 cases and 4 time-time
sets (28 samples in total). It can be seen from the figure that
there are fewer positive correlation areas for TCC before the
correction, especially in eastern China. There is a large area
of negative value in the key area (the Yangtze River Basin to
SCH). After the correction of the artificial network model, the
TCC of the key precipitation area in eastern China shows a
large positive correlation, especially in the south of the Yangtze
River and the northeast. After correction by machine learning,
the number of positive TCC regions and significant regions
increased significantly across the country, especially in the
Yangtze River Basin and Northeast China, indicating that the
ANN-DD algorithm model can achieve certain corrections to
the national regional precipitation forecast data during the flood
season. Forecasting skills have been significantly improved.

FIGURE 9 | Mean square error (MSE) change graph of precipitation data correction results for 7 cases (i.e., 01, 02, 06, 15, 16, 23, and 28) of CWRF based on the
artificial DD model.
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FIGURE 10 | Comparison of TCC before and after CWRF prediction correction for 7 case sets, (A) CWRF prediction and (B) machine learning correction, the color
code number is the same as Figure 4.

(3) Comparison of the spatial correlation coefficient (ACC)
before and after the correction of the national summer
precipitation forecast (puzzle).

Figure 11 shows the ACC comparison before and after the
correction of CWRF forecasts for 7 cases and 4 time sets (28
samples in total). It can be seen from the figure that the average
ACC before correction is −0.01, and the ACC value in most
years is low at 0, there is a negative correlation. After correction
by machine learning, the ACC value has increased significantly.
The correction result of the ML (curve b in the figure) scheme
is about 0.1 higher than before the correction, and the ACC
value in most years is greater than 0. At the same time, the
predicted result after correction can be seen in the figure. The
stability has improved, and the fluctuations before correction
are large, showing a good correction effect. It shows that the
ANN algorithm model can make certain corrections to the
national regional rainy season precipitation forecast data, and the
forecasting skills have improved.

(4) Comparison of comprehensive trend anomaly scores (Ps)
before and after correction of the national summer precipitation
forecast (puzzle).

Consider case 28 (Figure 12) and 7 case set (Figure 13) as
examples to illustrate the improvement effect of the CWRF model
prediction Ps of the machine learning correction method.

Figure 12 shows the comparison of the CWRF prediction and
the Ps score corrected by ANN after the 4 time collections of case
28 (the 4 time precipitation predictions of case 01 are collected
before calculating the Ps). It can be seen from the figure that the
average value of Ps before correction is around 70.87, and after
correction by machine learning, the Ps score is around 72.55, and
the overall prediction skills have improved. Among them, ML
(curve b in the figure) has a better overall trend abnormality score
in 1996–2014 than CWRF’s original prediction (curve a in the
figure); the Ps score in 2015–2019 fluctuates more. This means

that the simulated precipitation of case 28 is better because of
machine learning.

Figure 13 shows the comparison of CWRF prediction and
ANN corrected Ps after the collection of 4 starting times for 7
cases (before calculating Ps, the precipitation predictions for 4
times (28 samples in total) of 7 cases are collected) deal with.
The CWRF forecast on the graph shows that the average Ps
score from 1996 to 2019 is about 67.79; the average Ps score
after machine learning correction is about 74.34; Figure 13
generally shows the same correction effect as Figure 12, except
for the Ps value of individual years’ difference. This shows
that the precipitation forecasting skills during the flood season
have improved to a certain extent compared with before the

FIGURE 11 | Comparison of ACC before and after CWRF forecast correction
for 7 case sets. (a) CWRF forecast, (b) machine learning correction, and (a, b)
1996–2019 average.
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FIGURE 12 | Comparison of Ps before and after CWRF forecast correction for the 4 time-time sets of case 28. (a) CWRF forecast, (b) machine learning correction,
and (a, b) mean Ps from 1996 to 2019.

correction, and the Ps score of most years after the correction
has improved. The Ps score shows a stable trend with a small
fluctuation range. Based on the above two calculations of Ps
anomaly scores for different physical parameter configurations
and integrations, it can be concluded that the prediction
performance of the revised algorithm model based on machine
learning for the rainy season precipitation prediction results is
improved compared with the climate model simulation, which

FIGURE 13 | Comparison of Ps before and after CWRF forecast correction for
7 case sets. (a) CWRF forecast, (b) machine learning correction, and (a, b)
mean Ps from 1996 to 2019.

can achieve a certain degree of improvement in the rainy season
precipitation forecast skills.

In summary, it can be concluded from Figure 13 that the
MSE, Ps, ACC, and TCC values before and after the CWRF
prediction are improved, and the prediction performance of
the summer precipitation prediction result correction algorithm
model based on the dendritic neural network model can be
obtained. Compared with the CWRF climate model simulation,
it is improved and can realize the correction of summer
precipitation forecast data to a certain extent.

CONCLUSION AND FUTURE WORK

In this article, we used the information from nearby regions
and time series and latitude and longitude positions to organize
the data and then divide it into eight regions according to
the climate characteristics of different regions. Then, the ANN
model is improved, and the dendritic module is introduced
to improve the generalization ability of the model. When
constructing the network model in this article, the number
of hidden layers is 2, and the number of neurons in each
layer is 9. The back propagation algorithm is used for model
training. Through cross-validation experiments on the model,
it is found that the activation function of the hidden layer
is adopted by the RELU function. The optimization algorithm
adopts the Adam algorithm model to predict better. The CWRF
regional climate model simulated summer precipitation was
corrected by optimizing the relevant meteorological elements
such as precipitation and temperature and analyzed with related
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evaluation indicators such as MSE, TCC, and ACC. It was
found that all three indicators were improved, indicating that
the artificial dendritic network model is effective for CWRF.
The accuracy of model forecast data has been improved,
which can improve the forecasting performance of CWRF to
a certain extent. The experimental results are obtained using
the cross-validation method, which can objectively evaluate the
generalization performance of the model. Experiments show that
good results can be achieved, which makes this method a good
choice for the meteorological field.

This article mainly discusses the problem of precipitation
correction in flood season. In theory, this idea and method
can be used in other related meteorological forecasting fields
and can be used as future work. At present, the model
only considers the output of the climate model, and many
other related elements are not used for modeling, so the
advantages of big data are not fully utilized. In the future,
more meteorological elements can be introduced to overcome
this limitation. This article cannot remove the impact of
extreme weather precipitation data when using precipitation
data, and only the forecast output of the meteorological model
is used as the modeling object of the algorithm in this
article. Taking into account the complexity of meteorological
problems. Furthermore, we hope to reduce the impact of
extreme weather by layered modeling of precipitation. Other
data, such as relevant observation data, can be added as
model inputs to check whether the accuracy of the model
can be improved.
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