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Knowledge of the interactions between long non-coding RNAs (lncRNAs) and
microRNAs (miRNAs) is the basis of understanding various biological activities and
designing new drugs. Previous computational methods for predicting lncRNA–miRNA
interactions lacked for plants, and they suffer from various limitations that affect
the prediction accuracy and their applicability. Research on plant lncRNA–miRNA
interactions is still in its infancy. In this paper, we propose an accurate predictor, MILNP,
for predicting plant lncRNA–miRNA interactions based on improved linear neighborhood
similarity measurement and linear neighborhood propagation algorithm. Specifically, we
propose a novel similarity measure based on linear neighborhood similarity from multiple
similarity profiles of lncRNAs and miRNAs and derive more precise neighborhood ranges
so as to escape the limits of the existing methods. We then simultaneously update
the lncRNA–miRNA interactions predicted from both similarity matrices based on label
propagation. We comprehensively evaluate MILNP on the latest plant lncRNA-miRNA
interaction benchmark datasets. The results demonstrate the superior performance of
MILNP than the most up-to-date methods. What’s more, MILNP can be leveraged for
isolated plant lncRNAs (or miRNAs). Case studies suggest that MILNP can identify
novel plant lncRNA–miRNA interactions, which are confirmed by classical tools. The
implementation is available on https://github.com/HerSwain/gra/tree/MILNP.

Keywords: plant lncRNA-miRNA interaction, theoretical derivation, multilevel similarity, linear reconstruction,
label propagation

INTRODUCTION

An increasing number of studies have shown that non-coding RNAs (ncRNAs), especially long
non-coding RNAs (lncRNAs) and microRNAs (miRNA), act in various biological processes
(Amin et al., 2019). miRNAs with a sequence length of approximately 22 nucleotides
control post-transcriptional gene expression (DeVeale et al., 2021). lncRNAs, usually with
a sequence length greater than 200 nucleotides, are widely engaged in essential regulatory
processes (Ard et al., 2014; Chen et al., 2017; Fang et al., 2020; Statello et al., 2020; Goodall
and Wickramasinghe, 2021). lncRNAs control the expression of miRNAs to influence the
expression of their target genes: lncRNAs compete with mRNA for miRNAs, thereby regulating
miRNA-mediated target inhibition (Geisler and Coller, 2013). For example, in the lumbar
intervertebral disk degeneration (Zhu et al., 2019), lncRNAs may act as competing endogenous
RNA (ceRNAs) that bind competitively to miRNAs through their miRNA response elements,
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thereby regulating the expression of miRNA-targeted mRNAs.
miRNAs and lncRNAs interact with each other to exert higher
levels of post-transcriptional regulation.

As computer technology advances rapidly, numerous methods
are employed to study miRNAs, lncRNAs, and proteins, as well
as their interactions (Fu et al., 2019, 2020; Cai et al., 2020a,b,
2021; Dai et al., 2021; Li P. et al., 2021; Liu et al., 2021; Rahaman
et al., 2021; Song et al., 2021; Tan et al., 2021; Zhang C. L. et al.,
2021; Zhang et al., 2022). With regard to miRNAs, a miRNA
that is positively selected during human evolution is identified to
regulate energy expenditure, and the relevance of this positively
selected locus to metabolic disorders may explain the link
between this locus and metabolic diseases (Stower, 2020). With
regard to lncRNAs, a lncRNA GCMA activated by SP1 acts as a
competing endogenous RNA in gastric cancer via competition
for miR-124 and miR-34a to promote tumor metastasis (Tian
et al., 2020). With regard to interactions between lncRNAs
and proteins, lncRNA DIGIT regulates endoderm differentiation
by promoting the formation of phase-separated condensates
of bromodomain and the extraterminal domain protein BRD3
(Daneshvar et al., 2020). With regard to interactions between
lncRNAs and miRNAs, the targeting lnc–MGC inhibits host
lnc–MGC expression while suppressing the expression of key
cluster miRNAs in the kidneys and preventing early diabetic
nephropathy (Allison, 2016). Studies such as these are abundant
and have made important contributions.

Although predictions about lncRNA–miRNA interactions
exist, most of them are not about plants (Jiang et al., 2018,
2019; Ayachit et al., 2020; Banerjee et al., 2020; Ma et al., 2020;
Qazi et al., 2020; Shen et al., 2020; Aglawe et al., 2021). The
confirmed plant lncRNA–miRNA interactions are very limited
and have been barely covered. For instance, the NPInter4.0 (Teng
et al., 2020) documents extensive functional interactions between
ncRNAs and molecules of over 30 species, yet only two of them
are plants. From 71 RNA–RNA interactions for the two plants,
only one of them is a miRNA–lncRNA interaction. It is no
secret that the mechanisms of plant miRNA–lncRNA interactions
remain elusive. Also, lncRNAs are characterized by low sequence
conservation, especially among distantly related species.: The
lncRNA molecules of different species or the same species may
vary in terms of amino acid and nucleotide fragments during
biological evolution, which entails that predictions obtained
from animal studies are not guaranteed to be applicable in
plants (Noviello et al., 2018). As a result, conclusions about
the mechanism of plant lncRNA–miRNA interactions cannot be
completely copied from animals and must be explored.

Studies on lncRNA–miRNA interactions generally fall under
two categories, namely, bioinformatics-based machine learning
methods and similarity network-based methods (Liu et al., 2017,
2020; Peng et al., 2017; Zeng et al., 2017, 2018, 2019; Zhao et al.,
2020; Chen et al., 2021; Singh et al., 2021; Wang et al., 2021;
Zhang Y. et al., 2021; Zhou et al., 2021; Zhu et al., 2021). The
former extracts biological features and trains models to obtain
dichotomous results (i.e., the output is whether lncRNA and
miRNA interact) (Intell, 2019; Li J. et al., 2021). By comparison,
the latter computes single or multiple correlation similarity
matrices to obtain the final predictions (Wang et al., 2014). The

works that use machine learning, even deep learning methods,
do succeed. However, machine learning is flawed in terms of two
aspects (Peng et al., 2018; Zhang et al., 2019b). First, it relies
on data features. For certain lncRNAs or miRNAs, they may
not have expression profiles or target genes. In this situation,
machine-learning methods are not applicable. Moreover, for
some isolated lncRNAs or miRNAs that do not have any
interactions with miRNAs or lncRNAs at all, they have difficulty
forecasting any unknown interaction. By contrast, similarity
network-based approaches can address such imperfections.
Constructing similarity networks does not necessarily depend
on specific data features (Zhang et al., 2019b), and it is able
to predict isolated lncRNAs and miRNAs solely on the basis
of sequence information. Linear neighborhood similarity, which
refers to selecting the most appropriate neighborhoods for linear
reconstruction, as a new similarity measurement perspective, is
currently gaining momentum in bioinformatics (Li et al., 2018;
Zhang et al., 2018a, 2019a; Xie et al., 2020; Zhang W. et al., 2021;
Jia and Luan, 2022; Zhu et al., 2022), such as LPLNP (Zhang
et al., 2018a) and MPLPLNP (Jia and Luan, 2022), in predicting
lncRNA–protein interactions, and FLNSNLI (Zhang W. et al.,
2021) and LPLNS (Li et al., 2018) in predicting miRNA–disease
associations. To the best of our knowledge, no similarity network-
based method is available to date for predicting lncRNA–miRNA
interactions in plants. Owing to the imperfections of machine-
learning methods and the necessity to independently detect
plant lncRNA–miRNA interactions, novel and effective methods
must be constructed.

In this study, we hypothesize that lncRNA–miRNA
interactions with highly similar lncRNAs will have similar
interaction or non-interaction patterns with miRNAs. Under
this assumption, a multi-source information-based linear
neighborhood propagation method (MILNP) is proposed.
The similarity is calculated through our improved linear
neighborhood similarity (ILNS) algorithm, where ILNS has the
advantage of obtaining a more accurate neighborhood range
over the pre-improvement. First, multidimensional features
are separately extracted from the sequences of lncRNAs and
miRNAs to calculate sequence similarity, whereas interaction
profile similarity is obtained using their interactions. These two
similarities are then combined to obtain integrated similarity.
Label propagation based on the integrated similarity is used
to calculate individually the prediction matrix of lncRNAs
and the prediction matrix of miRNAs. Finally, the two
prediction matrices are summed by taking different weights
to obtain the final prediction. The contribution consists of the
following components.

• We proposed a novel similarity measurement, ILNS, for
calculating multiple similarity profiles.
• We constructed MILNP based on ILNS to predict

lncRNA–miRNA interactions and discovered new
interactions in the plant.
• High-accuracy prediction results in multiple experiments

and showed superiority over the existing methods and
reliability for finding new interactions of MILNP.
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DATASETS AND METHODS

Dataset Construction
The original data used herein are derived from a previous
study (Kang et al., 2020) that investigated plant lncRNA–
miRNA interactions. miRNA sequences are downloaded from
miRBase22.1 (Kozomara et al., 2019), whereas lncRNA sequences
are downloaded from GreeNC1.12 (Paytuvi-Gallart et al., 2019)
and CANTATAdb2.0 (Szcześniak et al., 2019). Datasets of
lncRNA–miRNA interaction from Arabidopsis thaliana, Glycine
max, and Medicago truncatula are chosen with 2,500 positive
samples from the positive dataset of each species, for a total of
7,500 positive samples. Similarly, 2,500 negative samples from
the negative dataset of each species are chosen, also for a total
of 7,500 negative samples. These positive and negative samples
are intermixed as the training–validation set to avoid imbalance
in sample distribution.

The dataset consists of five parts per sample: the symbol, the
miRNA name, the lncRNA name, the sequence yielded from
combining the miRNA sequence with the lncRNA sequence,
and the sample label (0 for the absence of interaction, and 1
for the presence of an interaction). However, such a format is
inappropriate for the method we applied herein. The processing
is as follows. First, the original sequence binding files are
separated by name, sequenced, and labeled to obtain the name
of miRNA, name of lncRNA, binding sequences of miRNA and
lncRNA, and labels. Second, all miRNA sequences are found
according to the miRNA name order by checking against the

reference documents from miRBase22.1 (Kozomara et al., 2019),
and the lncRNA sequence of each line is intercepted according
to the binding file, which happens to follow the lncRNA name
order. Third, all miRNAs and lncRNAs (originally 15,000 lines
each) are de-duplicated to obtain 1,340 unduplicated miRNAs
and 7,963 unduplicated lncRNAs. Finally, the serial numbers of
the remaining miRNAs and lncRNAs are determined, and the
miRNA–lncRNA interaction matrix is drawn in accordance with
the tag file. A rough workflow is shown in Figure 1.

Given that multiple pieces of information are required to
calculate the interactions when we adopt the linear neighborhood
similarity method, we also utilize these features that represent
sequence information in addition to the interaction matrix.
Owing to the existence of orphaned miRNAs and lncRNAs, the
sequence is more versatile than the interaction. We collate the
k-mer frequency (Ahmed et al., 2020), GC content, number
of base pairs, and MFE (Negri et al., 2018) of miRNAs and
lncRNAs according to the de-duplication files, the original files,
and the features here.

The data are summarized in Table 1.

Exact Linear Neighborhood Propagation
Method Based on Combined Information
Improved Linear Neighborhood Similarity Measure
A matrix M is formed by n-dimensional feature vectors x1, . . .,
xm in space, where each row xi (xi1, xi2, . . ., xin) is regarded as
a data point, and we assume that we can gather the attribute
parts of other data points to get the current one. Adjacent data

FIGURE 1 | Dataset processing.
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points are usually viewed as possessing similar properties. Hence,
the neighbors can be selected as the contributing force for the
reconstruction of the point, whereas other irrelevant data points
participate in the calculation but are assigned a weight of 0.
For xi, the common calculation method for selecting neighbors
is Euclidean distance. Considering that various features, such
as GC content and MFE, characterize the components of the
data point in these dimensions and that similar data points
are assumed to eventually form multidimensional vectors with
similar directions, the Cosine distance is then chosen to select
neighbors N1(xi) (a total of n1), and then the Euclidean distance
is chosen to select nearer neighbors N2(xi) (a total of n2) on
the basis of the Cosine distance to select more exact neighbors.
The latter is a subset of the former, ensuring that neighbors are
nearer in both direction and position. The order of the two can
be swapped since the final selected neighborhood is the same.
The percentages of neighbors are expressed by K1 and K2 where
K1 = n1/m and K2 = n2/n1.

To minimize the reconstruction error for m data points, we
propose the objective function:

min
G,W

1
2

∣∣∣∣2M − (C1 � G)M − (C2 �W)M
∣∣∣∣2
F

+
µ
2
∑m

i=1
∣∣∣∣(C1 � G)e+ (C2 �W)e

∣∣∣∣2
2

s.t.(C1 � G)e = (C2 �W)e = e,G ≥ 0,W ≥ 0

(1)

where M is an m × n matrix in the feature space, and both
C1 and C2 are indicator matrices that separately indicate whether
they are neighbors on the basis of the Cosine distance and nearer
neighbors on the basis of the Euclidean distance. G and W are
both weight matrices. Here, µ is a weight parameter, and e is an
m× 1 column vector with all elements being 1. ||•||F is to obtain
the Frobenius norm of a matrix. ||•||2 is to obtain the 2-norm
of a vector. The first term of the objective function is to get the
optimal weight matrix to minimize the reconstruction error of
all data points, whereas the second term is to reduce overfitting
during the reconstruction. For the weight matrices G and W, the
elements are non-negative.

Given that the first neighbors are required to find the second
ones, the objective function must be decomposed:

f (G) = 1
2

∣∣∣∣M − (C1 � G)M
∣∣∣∣2
F +

µ
2
∑m

i=1
∣∣∣∣(C1 � G)e

∣∣∣∣2
2

s.t.(C1 � G)e = e,G ≥ 0
(2)

The Lagrange multiplier method is used to solve Equation (2),
which then has the following form:

min
G

f (G)

s.t. g(G) = e− (C1 � G)e = 0
h(G) = −G ≤ 0

.

Then
L(G, λ1, λ2) = f (G)+ λT

1 h(G)+ λT
2 g(G)

=
1
2
||X − (C1 � G)M||2F +

µ

2

m∑
i=1

(C1 � G)e||22

+ λT
1 (−G)+ λT

2 (e− (C1 � G)e) (3)

where λ1 and λ2 are Lagrange factors.
According to the Karush–Kuhn–Tucker condition (Kjeldsen,

2000), the following conditions must be satisfied to determine the
optimal value: 

∇GL = 0
g(G) = 0
λT

1 h(G) = 0
.

The partial derivative of L is determined with respect to G:

L(G, λ1, λ2)

=
1
2
∣∣∣∣M − (C1 � G)M

∣∣∣∣2
F +

µ

2

m∑
i=1

∣∣∣∣(C1 � G)e
∣∣∣∣2

2

+λT
1 (−G)+ λT

2 (e− (C1 � G)e)

=
1
2
tr((M − (C1 � G)M)T(M − (C1 � G)M))

+
µ

2

m∑
i=1

((C1 � G)e)T((C1 � G)e)− λT
1 G− λT

2 ((C1 � G)e− e)

=
1
2
[tr(MTM)− tr(MT((C1 � G)M))− tr(((C1 � G)M)TM)

+tr(((C1 � G)M)T((C1 � G)M))]

+
µ′

2
((C1 � G)e)T((C1 � G)e)

− λT
1 G− λT

2 ((C1 � G)e− e) (4)

∇GL

=
1
2
[∂tr(MT M)

∂G
−

∂tr(MT ((C1 � G)M))

∂G

−
∂tr(((C1 � G)M)T M)

∂G

+
∂tr(((C1 � G)M)T ((C1 � G)M))

∂G
]

+
µ′

2
(∂tr((C1 � G)e)T ((C1 � G)e)

∂G
)

−
∂ tr(λT

1 G)

∂G
−

∂ tr(λT
2 ((C1 � G)e− e))

∂ G

=
1
2
[
0− C1 � MMT

−
∂ tr(MT ((C1 � G)M))

∂G

+
∂ tr(MT (C1 � G)T (C1 � G)M)

∂G
]

+
µ′

2
(∂tr(eT (C1 � GT (C1 � G)e)

∂G
)

−λ1 − C1 �
(
λ2eT

)
=

1
2
[
− C1 � MMT

− C1 � MMT
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+ 2C1 � (C1 � G)MMT]
+

µ′

2
× 2C1 � (C1 � G)eeT

−λ1 − C1 �
(
λ2et) = C1 � (C1 � G)MMT

−C1 � MMT
+ µ′C1 � (C1 � G)eeT

−λ− C1 �
(
λ2et

)
= C1 � ((C1 � G)MMT

+ µ′(C1 � G)eeT −MMT

−λ2eT)− λ1 (5)

Then


∇GL = C1 � ((C1 � G)MMT

+

µ′(C1 � G)eeT −MMT
− λ2eT)− λ1 = 0

e− (C1 � G)e = 0
λT

1 (−G) = 0

If λ1
T = 0, then there will be

∇GL = C1 � ((C1 � G)MMT

+µ′(C1 � G)eeT −MMT
− λ2eT) = 0 (6)

In that case,

Gij =
Gij(MMT

+ λ2eT)ij

((C1 � G)MMT + µ(C1 � G)eeT)ij
(7)

If λ1
T
6= 0, then there will be G = 0. Thus, Gij = 0.

Given the relevance of data point-based reconfiguration that
Gij 6= 0 when xj∈N1(xi), the solution is

Gij =

{
Gij(MMT

+λ2eT)ij
((C1�G)MMT+µ(C1�G)eeT)ij

, xj ∈ N1(xi)

0 , xj /∈ N1(xi)
(8)

Thus far, the iterative form with unknown parameters has
been obtained. We inscribe its equivalent form for Equation (2)
to obtain the following parameter:

min
Gi

Li =
1
2
||xi −

∑
j : xj ∈ N1(xi)Gi,j||

2

+
µ

2
(
∑

j : xj ∈ N1(xi)|Gi,j|)
2
=

1
2
ϑT
i Gr

iϑi +
µ

2
||ϑi||

2
1

s.t.eTϑi = 1, ϑi ≥ 0 (9)

where Gri is the gram matrix. If xj∈N1(xi) and xk∈N1(xi), then
Grj, k = (xi – xj)T(xi – xk). Otherwise, Grj,k = 0. Solving Equation
(9) using the Lagrange multiplier method yields

Li =
1
2
ϑT
i Gr

iϑi +
µ

2
||ϑi||

2
1 − λi(eTϑi − 1)− ηTϑi (10)

By taking the partial derivatives of g and λ, λi can be obtained:

λi = (ϑT
i Gr

iϑi + µ(eTϑi)
2)
/
eTϑi (11)

TABLE 1 | Dataset composition.

Molecule Quantity Features

lncRNA 7,963 k-mer frequency (k = 1, k = 2, k = 3), GC
content, number of base pairs, MFE

miRNA 1,340 k-mer frequency (k = 1, k = 2), GC content,
number of base pairs, MFE

interaction 7,500 -

where the reconstruction error is close to none, i.e.,
1/2ϑT

i Gr
iϑi ≈ 0. According to the Lagrange multiplier method,

eTϑi − 1 = 0. Thus, λi = µ. If λ = µ× e, G can be represented as

Gij =

{
Gij(MMT

+µeeT)ij
((C1�G)MMT+µ(C1�G)eeT)ij

, xj ∈ N1(xi)

0 , xj /∈ N1(xi)
(12)

The similarity matrix based on the Cosine distance is then
acquired through iteration until convergence. Similarly, W is
obtained with respect to G:

Wij =

{
Wij(MMT

+µeeT)ij
((C2�G)MMT+µ(C2�G)eeT)ij

, xj ∈ N2(xi)

0 , xj /∈ N2(xi)
(13)

The final similarity matrix can be acquired by iterating until
convergence or the maximum rounds.

Feature Extraction and Symbol Definition
Given a set of l lncRNAs, l1,..., li,..., ll, and a set of m miRNAs,
m1,..., mj,..., mm, whose interaction is represented by a matrix Y
of l × m, if there exists an interaction between lncRNA li and
miRNA mj, then Yij = 1; otherwise, Yij = 0.

Four features of lncRNAs and miRNAs are extracted (110
features in total). The frequency of l lncRNAs with 4k long
contiguous subsequences is calculated. Herein, we assumed k = 1,
2, 3 to obtain the lncRNA-related feature vector. The sequence
similarity between pairs of l lncRNAs is calculated to yield the
similarity matrix of l × l, which is denoted as S_lncS. In the
same manner, the similarity matrix of m miRNAs is denoted
as S_miS of m × m. The interaction profiles of lncRNAs and
miRNAs are derived from the interaction matrix. For lncRNA
li, the interaction profile indicates whether it interacts with each
miRNA, matching the i-th row of Y, i.e., Y(i,:). Similarly, for
miRNA mj, it matches the j-th row of Y, i.e., Y(:, j). The similarity
between two interaction profiles of l lncRNAs is calculated as
the matrix S_lncP of l × l, whereas the similarity between two
interaction profiles of m miRNAs is computed as the matrix
S_miP of m×m.

Label Propagation Based on Improved Linear
Neighborhood Similarity
Label propagation (Kato et al., 2009) assigns labels to previously
unlabeled data points. During label assignment, the labels of
labeled data points are propagated to unlabeled data points.
The core idea of the label propagation algorithm is that similar
nodes should have similar labels. It involves two stages, namely,
calculating the similarity matrix and propagating the labels.
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FIGURE 2 | MILNP for predictions. Phase 0: Extraction of sequence features and interaction profiles. Phase 1: Calculation of sequence similarity and interaction
profile similarity to generate integrated similarity. Phase 2: Label propagation using weighted sum to obtain the final prediction matrix.

The edge from node i to node j represents the similarity of
these nodes. All edge weights constitute a weight matrix, where
the higher the similarity the larger the weight. Herein, ILNS
is adopted to construct the similarity matrix and calculate the
Cosine-distance neighbors and the Euclidean-distance neighbors
of each node until convergence. Nearer neighbors of each data
point are fixed to a certain proportion, and the weights of others
are 0. The weight matrix is actually a sparse matrix. The labels are
propagated through the edges between the nodes. The larger the

weight of the edge, the more similar the nodes are to each other
and the easier to propagate the labels (Zang and Zhang, 2012;
Zhang et al., 2016). For m data points x1,..., xm, an m × m
probability transfer matrix P is defined as

Pij = P(i→ j) =
wij∑m
k=1 wik

(14)

where Pij represents the transferring probability and wij is the
weight. The propagation involves three steps. First, a unique label
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TABLE 2 | Parameter setting.

Phase Parameter Range Step length

Phase 1 K1 0.1 — 0.9 0.1

Phase 1 K2 0.1 — 1.0 0.1

Phase 2 α 0.1 — 0.9 0.1

Phase 2 β 0.0 — 1.0 0.05

is allocated to each node, i.e., label one for node one and label i
for node i, where the labels are different from each other. Second,
for node j, all nodes are traversed to discover their neighboring
nodes and obtain their labels to obtain the label with the most
occurrences. If more than one label satisfies the largest number of
occurrences, then one is randomly selected to replace the current
label. Finally, if the label of node j no longer changes after this
round of relabeling or the pre-set number of rounds is reached,
then the iteration is stopped. Otherwise; step 2 is repeated.

Prediction Model Multi-Source Information-Based
Linear Neighborhood Propagation
The sequence and interaction profiles of lncRNAs and miRNAs
are captured to develop our model. The workflow of MINLP is
shown in Figure 2. The specific steps are as follows:

Step 1: the sequence feature similarity S_lncS and S_miS are
calculated using the ILNS algorithm.

Step 2: the interaction profiles of all lncRNAs and all
miRNAs are exported according to the interaction matrix of
lncRNAs and miRNAs.

Step 3: the interaction profile similarity S_lncP and S_miP are
calculated using the ILNS algorithm.

Step 4: S_lncS and S_lncP are combined to obtain lncRNA
integrated similarity, and S_miS and S_miP are combined to
obtain miRNA integrated similarity.

Step 5: for the two integration similarities, the linear
neighborhood propagation method is used to generate the
prediction of lncRNA and the prediction of miRNA.

Step 6: the weighted sum of the two prediction matrices
is calculated, and the final interaction prediction matrix is
determined.

EXPERIMENTS AND RESULTS

Evaluation Criteria
The criteria for measuring prediction models are area under
curve (AUC), area under precision–recall (AUPR), REC, SPE,
and ACC. AUC is the area under the receiver operating curve
(ROC) coordinated by true positive rate–false positive rate, which
is suitable for observing model performance in the case of a
balanced positive and negative sample size. The formulae of REC,
SPE, and ACC are as follows.

REC = TP
TP+FN

SPE = TN
FP+TN

ACC = TP+TN
TP+FN+FP+TN

(15)

The performance is evaluated via fivefold cross-validation. To
achieve more accurate outcomes, each fivefold cross-validation
is repeated for 20 rounds to ensure that a sufficient number
of learnings are reached. K-fold cross-validation is frequently
used to upgrade model performance, where data is divided into
K equal parts, one of which acts as test data and the other
acts as training data. A distinct test set is selected each time,
and the rest serves as a training set. Finally, the results of K
experiments are averaged.

Parameter Settings
A total of four relevant parameters are obtained in this work.

In the computation of ILNS, Cosine distance-based neighbors
(With the ratio of K1) and Euclidean distance-based neighbors
(With the ratio of K2) are computed. K1 is set to {0.1, 0.2,..., 0.9},
whereas K2 is set to {0.1, 0.2,..., 1}, and their step size is 0.1. The
purpose of this arrangement is to ensure that K2 considers all
neighbors generated by K1, regardless of the size of n1. During
label propagation, the parameter α is set as the probability of label
absorption, i.e., for node xj the probability of absorbing the label
of its nearest neighbor node xi is α. The value of α is set within the
range {0.1, 0.2,..., 0.9}, and the step size is 0.1. After the lncRNA
prediction matrix SL and the miRNA prediction matrix SM are
figured out, β is the trade-off parameter, i.e., the final prediction
matrix will be measured as β × SL + (1 – β) × SM. The value of
β is within {0.0, 0.05,..., 1.0}, and the step size is 0.05.

The settings of the parameters are shown in Table 2.
Subsequent experiments are conducted with the most optimal
parameter combinations.

Results
Optimal Parameters
The effects of the different parameters are visualized in Figure 3.
First, α and β are fixed. Theoretically, the neighbors are set twice
to find a more accurate batch faster. However, serious analysis
reveals that a change in K2 is logical within a certain range
of K1; otherwise, even when K2 is 100%, it will not be very
helpful. Let K2 = 1.0, as K1 changes from 0.1 to 0.9, we find that
K2 = 0.9 is the optimal value, as shown in Figure 3A. AUC initially
decreases and then increases with K1 and reaches its lowest point
at 0.4. The AUC values are always above 0.975. K1 = 0.9 is then
fixed, and K2 is changed. As K2 becomes larger, AUC tends to
increase globally and reaches the maximum at 0.9 (Figure 3B).
The most pronounced increase is evident from 0.7 to 0.8, clearly
demonstrating that 0.8 is a cut-off point. Finally, the impact of
α and β is investigated. The contour and concentration plots in
Figures 3C,D, respectively, demonstrate the variations in AUC
with α and β. The gradient from blue to yellow is set to indicate
the increase in AUC values. Herein, the scenario with β = 0 is
dropped to detect subtle variations in the other cases owing to our
prior observation that the AUC value is as low as 0.4 in the case of
β = 0, thereby forming a cliff-like change from others. Both plots
show that the best results are achieved at α of 0.2–0.8 and β of
0.15–0.9, which are extremely close to 0.98. The yellowest areas
appear locally as a result of drawing tool error, but it does not
affect the fact that the results are roughly consistent. Figures 3E,F
present the grid plots of AUC with respect to variations in α and
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FIGURE 3 | Impact of parameters on AUC scores of MILNP. (A) Effect of K1 when fixing K2, α and β. (B) Effect of K2 when fixing K1, α and β. (C–F) Effect of α and β

when fixing K1 and K2.

TABLE 3 | Performance of models with combinations of different algorithms and information.

Model Algorithm Information AUC REC SPE ACC AUPR

SLNPM-I LNS Sequences similarity 0.8596 0.2883 0.9962 0.9932 0.1856

SLNPM-II LNS IP similarity 0.8756 0.5993 0.9990 0.9973 0.5981

SLNPM LNS Sequence similarity and IP similarity 0.9768 0.9613 0.9993 0.9993 0.5132

MILNP-I ILNS Sequence similarity 0.8561 0.4620 0.9902 0.9916 0.1249

MILNP-II ILNS IP similarity 0.9804 0.9600 0.9994 0.9994 0.5235

MILNP ILNS Sequence similarity and IP similarity 0.9797 0.9629 0.9994 0.9994 0.5297

TABLE 4 | Performances of different methods.

Methods AUC REC SPE ACC AUPR

Pmlipred 0.8386 0.9493 0.9087 0.9290 0.4304

CIRNN - 0.9413 - 0.9604 -

CNNRF1 0.8562 0.9531 0.9083 0.9307 0.4321

CNNRF2 0.8284 0.9597 0.9047 0.9322 0.4340

SLNPM 0.9768 0.9613 0.9993 0.9993 0.5132

MILNP 0.9797 0.9629 0.9994 0.9994 0.5297

β, respectively. Figure 3E is the case with β = 0 removed from the
corresponding plots in 3(C) and 3(D). Figure 3F includes all cases
and validates the previous interpretation that the inclusion makes
distinguishing the changes from the others difficult. The models
of all ranges show that the best parameters are K1 = 0.9, K2 = 1.0,
α = 0.7, and β = 0.35 when AUC at this point is 0.9797. This
tells that the performance of our model is attributed to Cosine
distance, determining a more accurate neighborhood which is
preferable to applying Euclidean distance only.

Control Information Sources and Similarity
Measurement Algorithm
To demonstrate the superiority of our model, we calculate
a similarity network with a single information source and
build linear neighborhood propagation models to compare with
MILNP. The results are presented in Table 3. The optimal values
obtained are set in bold typeface. We construct these models
based on the optimal combination of parameters. Except for
the difference in information sources, all the other processes
are guaranteed to be the same. The model using only sequence
similarity with ILNS as the core algorithm is named MILNP-I.
The model using only interaction profile similarity with ILNS as
the core algorithm is named MILNP-II. Overall, both of them
are inferior to MILNP with integrated information. MILNP-
II is generally very close to our model, indicating that the
interaction information is a key contributor throughout the
prediction. Thus, with specific optimization, MILNP-II could
be credible for predicting isolated lncRNAs or miRNAs. The
performance of MILNP-I is not as good as that of MILNP-II, but
its AUC is barely satisfactory. We also tried another method for
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FIGURE 4 | Performance of MILNP’s top-rank predictions, where the X-axis refers to the top 200 to top 2,000 predictions and the Y-axis refers to the recall
generated by MILNP.

TABLE 5 | Top 10 predictions for miRNA “gma-miR395a” and lncRNA “lcl| Gmax_Glyma.18G279100.1” by MILNP.

NO gma-miR395a Confirmation lcl| Gmax_Glyma.18G279100.1 Confirmation

lncRNAs miRNAs

1 lcl| Gmax_Glyma.19G246900.1 NO gma-miR319a YES

2 lcl| Gmax_Glyma.15G199100.1 NO gma-miR319h YES

3 lcl| Gmax_Glyma.14G142000.1 YES gma-miR319g YES

4 lcl| Gmax_Glyma.08G153500.1 YES gma-miR319i NO

5 lcl| Mtruncatula_Medtr1g017330.1 NO gma-miR319p NO

6 lcl| Gmax_Glyma.16G164700.2 NO gma-miR319c YES

7 lcl| Gmax_Glyma.07G234600.1 YES gma-miR319q NO

8 lcl| Mtruncatula_Medtr8g099205.1 NO gma-miR159a-3p YES

9 lcl| Gmax_Glyma.12G192900.2 YES gma-miR319f NO

10 lcl| Gmax_Glyma.02G080100.1 NO gma-miR5676 NO

calculating similarity, LNS (Zhang et al., 2018b), to obtain new
models, named the SLNPM-series, as shown in Table 3. With the
information source controlled, a comparison of SLNPM-II and
MILNP-II reveals that ILNS is more accurate. All these results
clearly validate the superiority of MILNP in terms of information
integration and similarity calculation.

Comparison With Existing Methods
As far as we know, very few studies have investigated lncRNA–
miRNA interactions in plants. We select Pmlipred (Kang et al.,
2020) and CIRNN (Zhang et al., 2020) as reference methods. Both
methods predict plant lncRNA–miRNA interactions. PmliPred
(Kang et al., 2020) builds a prediction model by using a machine
learning approach combined with a deep learning approach, and

the final prediction results are made from fuzzy decisions of
the two components. We use the publicly available source code
on GitHub to implement Pmlipred (Kang et al., 2020). CIRNN
(Zhang et al., 2020) builds integrated deep learning models with
both a CNN and an IndRNN, where the former is used to
automatically extract gene sequence functional features, whereas
the latter is utilized to obtain sequence feature representations
and dependencies. We replicate it in the detailed description
of CIRNN (Zhang et al., 2020). The results of the comparison
are summarized in Table 4. The optimal values obtained are
set in bold typeface. The performance of the two methods
is clearly good, but not as good as that of our model. In
particular, the AUC and ACC values have a relatively large
gap. We notice that both methods stretch to deep learning.
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Thus, we implement similar models on their basis to measure
their effectiveness. We construct a CNN–Gate Recurrent Unit
(GRU) combinatorial model. Sequential features are extracted
from the original data by CNN and compressed into a one-
dimensional vector in the flattened layer to input into GRU.
This process is well-suited for processing sequential information.
We consider GRU instead of others because GRU has fewer
parameters and reduces overfitting. We first use a three-layer
CNN and a single-layer GRU mixed with RF to obtain CNNRF1.
We then add another layer of CNN on top of that to obtain
CNNRF2. Gladly, although our MILNP is simple and built
by deriving mathematical formulas via a top–down approach
and layer by layer, the results are satisfactory. For the baseline
SLNSM (Zhang et al., 2018b) that is originally created for animal
prediction, we run our dataset and observe that our method
is slightly better. That is because we focus on improving the
computational procedure for linear neighborhood similarity by
adding the spatial direction restriction. The optimal parameter
combination shows that such performance is attributed to Cosine
distance, determining a more accurate neighborhood, which is
preferable to the approach of the baseline.

Case Study and Discussion
Top-rank prediction is an important way of visualizing the
performance of the models. We examine the top-rank predictions
from 200 to 2,000 and identify the percentage of interactions
that are truly correct. As shown in Figure 4, an average of
186 positive interactions per prediction is reached in the top
200 predictions, whereas 1,380 real interactions are determined
in the top 2,000 predictions. The results demonstrate the good
performance of our model.

Furthermore, we predict the interactions of isolated lncRNAs
and miRNAs with MILNP. For the isolated lncRNA or
miRNA, only sequence-dependent information can be used. In
separate cases gma-miR395a and lcl| Gmax_Glyma.18G279100.1
are taken as examples. We validate the prediction of the
selected miRNA and lncRNA with respect to RNAhybrid2.1.2
(Rehmsmeier, 2004). All predictions are sorted in descending
order of probability. For miRNA gma-miR395a, 4 of the top 10
are correctly predicted, as shown in Table 5, thereby confirming
the predictive power of MILNP. However, the list reveals that the
fifth and eighth detected lncRNAs in the prediction of miRNA
“gma-miR395a” belong to Medicage truncatula, as evidenced by
their nomenclature. The situation is worth contemplating. On
the one hand, this indicates that the selected samples may affect
the performance of MILNP. On the other hand, it inspires us
to further explore cross-species linkages and assume that the
remaining uncertified interactions are possible. Likewise, we
make predictions for lncRNA lcl| Gmax_Glyma.18G279100.1.
To our surprise, five of the results happen to be identified
by the tool as having interactions, a result that is very
encouraging. We conjecture that the remaining ones predicted
by our model can be possible. As demonstrated by the results
of the comparison of the two sets of predictions, the fact
that sample selection has a great influence on the prediction
results should not be ignored. The association between the
selected sample and other samples also affects the results. For

those that have a similarity with many samples, the prediction
results may be more accurate. If a sample has little similarity
with other samples, then predicting its potential interactions
will be difficult.

The different results also prompt us to reconsider the results
of previous experiments. We find that, although MILNP achieves
good AUC and ACC, its PRE is relatively low, which may
be attributed to the model itself and the distribution of the
dataset. Some very similar samples may have confused the
model and that induces it to arrive at a wrong judgment.
Nevertheless, it could also be a new revelation that suggests
these possible associations. This assumption warrants further
biological laboratory validation.

CONCLUSION

lncRNA–miRNA interactions are important because they
influence various biological activity processes. Most studies on
these interactions focused on animals. Although experimental
results derived from studies of plants are not as easy to verify
as those obtained from animals, current research is not merely
a conjecture. Great improvements have been made by scientists
after proposing bold assumptions and providing carefully
evaluated proofs. Herein, we attempt to study plant interactions
and propose a linear neighborhood propagation model based
on combinatorial information. We validated it on datasets of
three plants. We have obtained relatively good results. More
importantly, we proposed a novel method for measuring
similarity from mathematical fundamentals. We used the
combined information of molecular sequences and interactions
to construct a similarity network with a guarantee of being nearer
in both spatial location and direction. We achieved the final
prediction by label propagation. A series of experiments showed
the outstanding performance of our model, demonstrating
the superiority of the combinatorial information. We also
attempted to predict isolated lncRNAs and miRNAs without any
interaction yet and validated the predictions with existing tools.
Our model possesses good generalization properties and can be
used to discover new interaction relationships. Our multisource
information-based linear neighborhood propagation method is a
novel and unique method for predicting plant lncRNA–miRNA
interactions. However, the entire study requires a large time
investment of about 3 months. Hence, in a follow-up study,
we will tune the parameters to make the model more efficient.
We will also consider deep learning methods on this basis and
combine the results that we may obtain.
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