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Changes in spring and autumn phenology and thus growing season length (GSL) pose

great challenges in accurately predicting terrestrial primary productivity. However, how

spring and autumn phenology in response to land-use change and nitrogen deposition

and underlying mechanisms remain unclear. This study was conducted to explore the

GSL and its components [i.e., the beginning of growing season and ending of growing

season (EGS)] in response to mowing and nitrogen addition in a temperate steppe on

the Mongolia Plateau during 2 years with hydrologically contrasting condition [dry (2014)

vs. wet (2015)]. Our results demonstrated that mowing advanced the BGS only by 3.83

days, while nitrogen addition advanced and delayed the BGS and EGS by 2.85 and

3.31 days, respectively, and thus prolonged the GSL by 6.16 days across the two

growing seasons from 2014 to 2015. When analyzed by each year, nitrogen addition

lengthened the GSL in the dry year (2014), whereas it shortened the GSL in the wet

year (2015). Further analyses revealed that the contrasting impacts of nitrogen on the

GSL were attributed to monthly precipitation regimes and plant growth rate indicated by

the maximum of normalized difference vegetation index (NDVmax). Moreover, changes in

the GSL and its two components had divergent impacts on community productivity. The

findings highlight the critical role of precipitation regimes in regulating the responses of

spring and autumn phenology to nutrient enrichment and suggest that the relationships of

ecosystem productivity with spring and autumn phenology largely depend on interannual

precipitation fluctuations under future increased nitrogen deposition scenarios.

Keywords: grasslands, growing season, nitrogen, precipitation, phenology

INTRODUCTION

Changes in the growing season timing and growing season length (GSL) can regulate biosphere-
atmosphere interactions, with consequent carbon (Piao et al., 2007, 2008; Xia et al., 2015) and water
cycling (White et al., 1999; Lian et al., 2020; Cheng et al., 2021). The lengthened growing season
resulting from advanced beginning of growing season (BGS) and delayed ending of growing season
(EGS) has increased primary productivity of terrestrial ecosystems (Piao et al., 2007; Dragoni et al.,
2011; Cheng et al., 2021). In addition, carbon loss induced by earlier autumn phenology could
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counteract the carbon uptake associated with earlier spring
phenology, leading to a net carbon loss from terrestrial
ecosystems (Piao et al., 2008). Therefore, quantifying the changes
in the spring and autumn phenology is critical for the accurate
prediction of terrestrial ecosystem carbon balance.

It has been revealed that plant growth could balance
from multiple resources (such as nutrient availability) and
change allocation to maximize acquisition of the most limiting
resources (Bloom et al., 1985; Chapin et al., 1990). This
may suggest that elevated anthropogenic nitrogen deposition
(Peñuelas et al., 2013; Yu et al., 2019) can alter vegetation
activity and thus phenology (Piao et al., 2019, 2020; Vitasse
et al., 2021) by providing nitrogen availability. Recent studies
have demonstrated that variations in nitrogen or phosphorus
availability could change the spring and autumn phenology (Yang
et al., 2016; Yin et al., 2016; Fu et al., 2019; Vitasse et al., 2021), as
well as the GSL (Wang and Tang, 2019). For example, increased
soil nitrogen availability could supplement nutrient deficiencies
and thus stimulate plant growth under low temperature in early
autumn (McCormack et al., 2014; Delpierre et al., 2016; Yin et al.,
2016), which can delay the EGS. In addition, nitrogen addition
could also decrease the cellular maturation rate (Kalliokoski et al.,
2013; Cuny et al., 2015), and consequently postpone the autumn
phenology (Wingler et al., 2006). In nitrogen-limited ecosystems,
species usually allocate more resources to growth (LeBauer and
Treseder, 2008) under increased nitrogen availability (Xiang
et al., 2016), which can delay the reproductive stages (Cleland
et al., 2006), thus delaying the senescence date (Wang and Tang,
2019). Nevertheless, whether the effect of nitrogen enrichment on
plant phenology regulated by other factors under land-use and
climate change scenarios remains largely unknown.

As a widespread land-use practice, mowing has been applied
in managed ecosystems (e.g., grasslands; Liu et al., 2017; Zhang
et al., 2017) to maintain plant diversity and production. Mowing
could affect the microenvironment (such as light, temperature,
and moisture) and thus plant growth by removing aboveground
litter (Collins et al., 1998; Huhta et al., 2001; Liu et al., 2017). In
the early growing season, mowing can elevate soil temperature by
increasing light availability and thus accumulated temperature,
which is critical for driving plant phenology (Fu et al., 2015;
Piao et al., 2019), and consequently advance the BGS. In the late
growing season, mowed grasslands may have lower soil water
availability due to increased evaporation associated with less litter
cover, which can accelerate the EGS (Liu et al., 2016a,b). In
addition, it has been proved that mowing may affect reproductive
phenology of early flowering species on the Tibetan Plateau
(Liu et al., 2017). Therefore, mowing could have the potential
to regulate the responses of spring and autumn phenology to
nutrient enrichment. However, the direct field experimental
evidence and underlying mechanisms remain limited. Given the
critical role of soil water availability in mediating plant growth
and phenology in grasslands (Körner, 2015; Quan et al., 2019;
Zhou et al., 2019, 2022), precipitation also can have the potential
regulation on the response of spring and autumn phenology to
mowing, nutrient enrichment, and their interactions.

Considering the above knowledge gaps, this study was
conducted to explore the effects of nitrogen addition andmowing

(annually) on the GSL and its two components (i.e., BGS and
EGS) over two contrasting hydrologically growing seasons from
2014 (dry) to 2015 (wet) in a temperate grassland on the
Mongolian Plateau. The specific questions we addressed in this
study included: (1) How do nitrogen addition and mowing affect
the GSL and its two components? (2) How do environmental
factors mediate the responses of GSL and its two components to
nitrogen addition and mowing?

MATERIALS AND METHODS

Study Site
This study was located in a semiarid steppe in Duolun
Restoration Ecology Research Station, Duolun County (42◦02’
N, 116◦07’ E, 1324m a.s.l.), Inner Mongolia, China. Long-term
(1961–2018) mean annual temperature and precipitation were
2.1◦C and 385.5mm, respectively (China Meteorological Data
Sharing Service System). The long-term mean annual potential
evaporation at this experimental site is 1,748mm (Wang et al.,
2021). The sandy soil is classified as Haplic Calcisol (Food and
Agriculture Organization of the United Nations), with 62.75 ±

0.04% sand, 20.30 ± 0.01% silt, and 16.95 ± 0.01% clay. The
study site has been fenced since 2001 to exclude cattle and sheep
grazing. The dominant plant species in this temperate steppe
were Stipa krylovii, Artemisia frigida, and Agropyron cristatum
(Miao et al., 2020; Liu et al., 2021b).

Experimental Design
A factorial design with four treatments (control, mowing,
nitrogen addition, and mowing plus nitrogen addition) and five
replications for each treatment was employed in this experiment
(Liu et al., 2018; Wang et al., 2020, 2021). There were 20 plots
(each was 4× 4 m2) arranged by four rows and five columns, and
the buffer zone was 1m between any two plots. To reduce the
edge effect, a 0.5m buffer zone to the edge of each plot was also
designed, thus all the measurements were conducted in the 3× 3
m2 core zone. The mowing treatment was conducted in the late
August of each year since 2012. All the plants were mowed 5 cm
aboveground to simulated hay harvesting, a widely land-use type
in many grasslands (Luo et al., 2001; Niu et al., 2010; Liu et al.,
2017; Du et al., 2018). The nitrogen treatment (10 g m−2 year−1)
followed the range of airborne nutrient deposition observed in
Northern China (Liu et al., 2021a). Nitrogen (N) was added in
each nitrogen addition plot using the form of NH4NO3 at a rate
of 100 kg N ha−1 in early May of each year since 2013.

Soil Temperature Measurement
To investigate the effects of temperature on spring and autumn
phenology, we measured soil temperature at a depth of 10 cm
that was recorded every 2 h using DS 1923 iButton (Maxim
Integrated, San Jose, CA, USA) during the growing season (from
May to October in each year). Due to not being waterproof, the
sensors were sealed with balloons, which had been demonstrated
to be an effective way in other systems to avoid direct exposure
to precipitation (Lutterschmidt et al., 2006; Kearney et al., 2011).
Then, the wrapped sensors were put into soil at a depth of 10 cm.

Frontiers in Plant Science | www.frontiersin.org 2 April 2022 | Volume 13 | Article 861794

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhou et al. Plant Phenology Under Changing Precipitation

Normalized Difference Vegetation Index
Measurement and Data Fitting
We calculated normalized difference vegetation index (NDVI)
to understand the community development under different
treatments and also obtain the spring (BGS) and autumn
phenology (EGS), and thus, the GSL (the difference in day of
year of the BGS and EGS). Spectral reflectance of a 1m × 1m
permanent subplot in each plot was measured at 5- to 7-day
intervals with a Tetracam Agricultural Digital Camera (ADC,
Tetracam Inc., Chatsworth, CA, USA) at cloud-free noon during
each growing season from May to October. The camera was
held 1m above each subplot with an iron shelf during each
measurement. NDVI was calculated as

NDVI =
Reflectance at 775 nm − Reflectance at 675 nm

Reflectance at 775 nm + Reflectance at 675 nm

Then, we fitted NDVI data with a 5-parameter Weibull function
using Sigmaplot 14.0 software (Systat Software, Inc., San Jose,
CA, USA). BGS, EGS, GSL, as well as the maximum value
of NDVI, were extracted using the methods described by
Xia et al. (2015).

Plant Sampling
To examine whether the changes in spring and autumn
phenology affect the community productivity, we measured the
aboveground net primary productivity (ANPP). One 0.5m ×

0.5m quadrat was established in each experimental plot in each
of the late growing season (May–October) of 2014 and 2015.
Then, we clipped living aboveground biomass in each quadrat
and separated into species level. Living aboveground biomass of
each species was oven-dried at 65◦C for 48 h and weighted to
determine the dry mass (Guo et al., 2021).

Data Analysis
First, we calculated the monthly mean value of soil temperature
and then averaged them from May to October as growing season
mean values. Then, two-way ANOVAs were used to examine the
effects of mowing and nitrogen addition and their interactions
on the soil temperature, BGS, EGS, GSL, and the maximum
of NDVImax, as well as the ANPP. The growing season mean
values were used to calculate mowing and nitrogen effects on
the above variables. Mowing effects were calculated as [(mowing
– control)/control] in the unfertilized plots and [(mowing plus
nitrogen addition – nitrogen addition)/nitrogen addition] in the
fertilized plots. Nitrogen effects were calculated as [(nitrogen
addition – control)/control] in the unmowed plots and [(mowing
plus nitrogen addition – mowing)/mowing] in the mowed plots.
Mowing and nitrogen effects were calculated in each year.
The correlations among variables were explored by Pearson’s
correlation method. Significant differences were evaluated at the
0.05 probability level. Linear regressions were used to explore the
relationships of the BGS, EGS, and GSL with soil temperature,
precipitation, and ANPP. All analyses were conducted using
SAS 8.0 (SAS Institute Inc., Cary, NC, USA). GraphPad Prism
9.0 (GraphPad Inc., San Diego, CA, USA) was used to plot
the graphs.

RESULTS

Precipitation Patterns and Variations of
Soil Temperature Under Different
Treatments
Growing season (May–October) precipitation in 2014 (305mm)
was 12% lower than the long-term mean (346mm), whereas
the precipitation of growing season in 2015 (359mm) was 3%
above the long-term mean. In addition, monthly precipitation
fluctuated greater in 2015 than those in 2014 (Figures 1A,B),
especially in August. Similarly, precipitation from June to
September in 2014 (236mm) was 21% lower than the long-term
mean (299mm), whereas precipitation from June to September
in 2015 (307mm) was 3% higher than the long-term mean
(Figures 1A,B).

No interannual variation of soil temperature was observed
over 2 years from 2014 to 2015.Mowing elevated soil temperature
by 0.68◦C (p = 0.04), whereas nitrogen addition had no
impact on it over 2 years (Table 1). The effects of mowing
on soil temperature did not change with year. There were
no interactions between mowing and nitrogen addition on
soil temperature (p > 0.05, Table 1). When analyzed by each
year, both mowing and nitrogen addition had no impact on
soil temperature in 2014 or 2015. When analyzed by different
stages of growing season, mowing marginally increased soil
temperature of the early growing season (May–June) by 1.31◦C
and 1.33◦C (both p = 0.08, Supplementary Table S1) in 2014
and 2015, respectively, whereas it had no effects on that of the
middle or late growing season in any of 2 years. When analyzed
by each month during each growing season, mowing marginally
elevated soil temperature only in May by 1.42◦C (p = 0.08)
and 1.38◦C (Figures 1C,D, p = 0.07, Supplementary Table S2)
in 2014 and 2015, respectively. Nitrogen addition had no
impact on soil temperature in any of the months in 2 years
(Supplementary Table S2).

Effects of Mowing and Nitrogen Addition
on the BGS, EGS, and GSL, as Well as the
Maximum of NDVI
Significant interannual variations of BGS, EGS, and GSL, and the
maximum of NDVI were found (all p < 0.001, Table 1). BGS
and EGS of 2014 were 4.74 and 29.87 days earlier than those of
2015, respectively, leading to a shorter growing season in 2014
than that of 2015 (Figure 2A). In addition, the maximum of
NDVI in 2014 (0.22 ± 0.00) was also lower than that of 2015
(0.52 ± 0.01, Figure 2B). Over 2 years, mowing advanced the
BGS by 2.43 days (p = 0.04, Table 2), whereas it had no effects
on the EGS or GSL. Nitrogen addition advanced the BGS and
delayed the EGS by 2.26 days (p = 0.05) and 4.07 days (p <

0.001), and thus lengthened the growing season by 6.33 days (p
< 0.001, Figure 2A). Mowing had no impact on the maximum
of NDVI, whereas nitrogen addition increased it by 0.06 (p <

0.001, Table 1) over 2 years from 2014 to 2015. Moreover, the
effects of nitrogen addition on the BGS, EGS, and GSL, as well
as the maximum of NDVI significantly changed with year (all
p < 0.001).
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FIGURE 1 | Precipitation (mm) in each month (triangles) and in the early (E), middle (M), late of each month [L, smooth lines (A,B)], and effects [Mean ± 1 SE (C,D)] of

mowing and nitrogen addition on monthly soil temperature during each growing season from 2014 to 2015. C, control; M, mowing; N, nitrogen addition; MN, mowing

plus nitrogen addition.

TABLE 1 | Results (p-value) of three-way ANOVA on the effects of year, mowing,

and nitrogen addition and their interactions on the soil temperature (Soil T),

beginning (BGS), ending (EGS), and length of growing season (GSL), as well as

the maximum of normalized difference vegetation index (NDVImax).

Source of variation Soil T BGS EGS GSL NDVImax

Year 0.822 <0.001 <0.001 <0.001 <0.001

Mowing 0.043 0.036 0.273 0.387 0.928

Nitrogen 0.105 0.051 <0.001 <0.001 <0.001

Year * Mowing 0.975 0.208 0.370 0.200 0.013

Year * Nitrogen 0.971 <0.001 <0.001 <0.001 <0.001

Mowing * Nitrogen 0.416 <0.001 <0.001 <0.001 0.529

Year * Mowing * Nitrogen 0.988 <0.001 <0.001 <0.001 0.132

The bold numbers indicate the significance at p < 0.05.

When analyzed by each year, mowingmarginally advanced the
BGS by 3.85 days (p = 0.06, Table 2), whereas it had no impact
on the EGS or GSL, whereas nitrogen addition advanced the
BGS and delayed the EGS by 16.54 and 10.20 days, respectively,
and thus extended the growing season by 26.73 days in 2014
(Figure 2A, all p < 0.001, Table 2). Mowing only advanced the

EGS by 1.73 days in 2015 (p< 0.01). In contrast to 2014, nitrogen
addition delayed the BGS and advanced the EGS by 12.02 and
2.05 days, respectively, leading to a shortened growing season
(Figure 2A, all p < 0.001, Table 2). Mowing decreased, whereas
nitrogen addition elevated the maximum of NDVI by 0.02 (p =

0.04) and 0.01 (p < 0.01, Table 2), respectively, in 2014. Mowing
had no impact on the maximum of NDVI (p > 0.05), while
nitrogen addition increased it by 0.11 (p < 0.001) in 2015.

Relationships of the BGS, EGS, and GSL,
as Well as the Maximum of NDVI With Soil
Temperature and Precipitation in Different
Stages of Growing Season
Our results showed that there were no relationships of the
beginning, ending, and length of growing season, and the
maximum of normalized difference index with soil temperature
in any stages of growing season across the 2 years (Figure 3).
When analyzed by each month, the results revealed positive
relationships of EGS and the maximum of NDVI with soil
temperature in August (Supplementary Figure S1). In contrast,
negative dependences of ending and length of growing season, as
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FIGURE 2 | Effects (Mean ± 1 SE) of mowing and nitrogen addition on the beginning (day of year, DOY), ending (DOY), and length of growing season [days (A)], as

well as the maximum of normalized difference vegetation index (B) in 2014 and 2015, respectively. Refer to abbreviations in Table 1 and Figure 1.

TABLE 2 | Results (p-value) of two-way ANOVA on the effects of mowing,

nitrogen addition, and their interactions on the BGS, EGS, GSL, and NDVImax in

2014 and 2015.

Year Source of variation BGS EGS GSL NDVImax

2014 Mowing 0.055 0.916 0.249 0.009

Nitrogen <0.001 <0.001 <0.001 0.045

Mowing*Nitrogen <0.001 <0.001 <0.001 0.337

2015 Mowing 0.421 0.003 0.602 0.171

Nitrogen <0.001 <0.001 <0.001 <0.001

Mowing*Nitrogen 0.505 0.396 0.371 0.237

Refer to abbreviations in Table 1.

The bold numbers indicate the significance at p < 0.05.

well as the maximum of NDVI on soil temperature in October
were observed (Supplementary Figure S1).

In addition, EGS showed negative dependence on early
growing season precipitation, whereas positive dependence
on middle and late growing season precipitation. Similar
relationships of GSL and themaximum of NDVI withmiddle and
late growing season precipitation were also found, respectively,
over the 2 years from 2014 to 2015 (Figure 3). When analyzed
by each month, there were no relationships of BGS with
precipitation of any month (Supplementary Figure S2). EGS
showed negative relationships with precipitation in May, June,
and October, whereas positive relationships with precipitation
in July, August, and September (Supplementary Figure S2).
Similar patterns were also found in GSL and the maximum
of NDVI.

Impacts of Changes in the BGS, EGS, and
GSL, as Well as the Maximum of NDVI on
Aboveground Net Primary Productivity
Positive dependences of ANPP on BGS (R2 = 0.10, p =

0.01), EGS (R2 = 0.65, P < 0.001), GSL (R2 = 0.24, p <

0.01), and the maximum of NDVI (R2 = 0.79, p < 0.001)
were found over 2 years from 2014 to 2015 (Figures 4A–D).
When analyzed by each year, there were no dependences of
ANPP on the BGS, EGS, or GSL, or the maximum of NDVI
in 2014 (Supplementary Figures S4a–d). In contrast, positive
relationships of ANPP with the BGS (R2 = 0.41, p < 0.01)
and the maximum of NDVI (R2 = 0.27, p = 0.02) were found
in 2015 (Supplementary Figures S5a,d). Surprisingly, ANPP
showed negative dependence on the GSL in 2015 (R2 = 0.31,
p= 0.01, Supplementary Figure S5c).

DISCUSSION

Effects of Mowing on GSL and Its Two
Components
It has been well-documented that temperature plays a critical
role in regulating spring and autumn phenology, and thus GSL
in terrestrial ecosystems (Cleland et al., 2007; Peñuelas et al.,
2009; Chuine et al., 2010). For example, spring temperature
drives the onset of spring phenology in the northern hemisphere
(Piao et al., 2007, 2015). In addition, higher temperatures could
delay autumn phenology in temperate China (Piao et al., 2007;
Liu et al., 2016a). As a result, increased temperature could
lengthen the growing season by advancing the spring phenology
and delaying the autumn phenology. In this study, although
mowing increased soil temperature and advanced the BGS over
the two growing seasons, no robust relationships of BGS with
temperature were found (Figure 3, Supplementary Figure S1).
In fact, recent studies have shown that the control role of
temperature inmediating spring phenology is declining (Fu et al.,
2015), which can partly support the weak relationships of GSL
and its two components with soil temperature in this study.
This observation also indicates that other factors (except for
temperature) can mediate spring phenology under mowing.

Photoperiod has been demonstrated to affect plant phenology
in terrestrial ecosystems (Körner and Basler, 2010; Flynn and
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FIGURE 3 | Relationships of beginning, ending, and length of growing season, as well as the maximum of normalized difference vegetation index with soil

temperature and precipitation in the early (E, May–June), middle (M, July–August), and late (L, September–October) of growing season, respectively, over 2 years from

2014 to 2015. Refer to abbreviations in Table 1.

Wolkovich, 2018). Longer photoperiod can advance the spring
phenology of tree species (Chuine et al., 2010). In this study, by
removing the standing litter, mowing could also increase the light
availability for the short species (especially for Potentilla acaulis
L., an early species in the study site) in the early growing season,
during which the short species can have the potential to accelerate
growth and thus advance the BGS across 2 years. In addition, leaf
unfolding could be also regulated by the height-time hypothesis
that short individuals can advance their leaf unfolding date (Sun
and Frelich, 2011; Liu et al., 2021a). In this study, mowing indeed
decreased plant height in the early growing season (unpublished
data), which can consequently advance the spring phenology.
Nevertheless, when analyzed by each year, the advancement
effects of mowing were not significant, especially in 2015, which

may be attributed to the insufficient soil water availability due to
increased light availability and thus evaporation under mowing.
Given the important role of soil water availability in regulating
spring phenology in temperate steppes (Shen et al., 2015; Luo
et al., 2021), the deficient available water in the soil may weaken
the stimulated temperature and light availability associated with
mowing in this study. In addition, the findings of mowing did
not affect the EGS, suggesting that autumn phenology might not
be sensitive to changes in microclimate factors associated with
mowing in temperate grasslands. Moreover, given that changes
in photoperiod could affect the response of plant phenology to
temperature (Basler and Körner, 2014; Way and Montgomery,
2015), the increased light availability under mowing in the
early growing season may also interact with temperature to
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FIGURE 4 | Relationships of aboveground net primary productivity (ANPP) with beginning (A), ending (B), and length of growing season (C), as well as the maximum

of normalized difference vegetation index (D) over the two years from 2014 to 2015. Refer to abbreviations in Table 1.

affect spring phenology in the temperate grassland. Further
manipulative evidence is still needed to support the assertions.

Effects of Nitrogen Addition on GSL and Its
Two Components Depend on Precipitation
Nitrogen is one of the most important factors affecting plant
growth and phenology (Jing et al., 2017; Liu et al., 2018; Vitasse
et al., 2021), especially in nitrogen-limited ecosystems (such
as grasslands). Nitrogen addition could stimulate plant growth
and thus phenology (Fu et al., 2019; Wang and Tang, 2019). A
meta-analysis has shown that nitrogen addition advances leaf
senescence across all the biomes, including forest, grassland,
cropland, and desert (Wang and Tang, 2019). Surprisingly, the
effects of nitrogen addition on the GSL and its two components
were opposite in the two hydrologically contrasting growing
seasons in this study. In the dry growing season (2014), nitrogen
addition advanced the BGS and delayed the EGS, leading to a
lengthened growing season (Figure 2A). In contrast, nitrogen
addition delayed the BGS and advanced the EGS, resulting in
a shortened growing season (Figure 2A) in the wet growing
season (2015). The contrasting findings are similar to those
found in a previous study, which demonstrates the opposite

phenological response in dry vs. wet years (Bao et al., 2021).
Normalized difference vegetation index can be used an index
of photosynthesis in ecosystems with low leaf area index or
vegetation cover (Wohlfahrt et al., 2010; Del Grosso et al.,
2018). In the dry growing season, plants had a lower growth
rate indexed as the maximum of NDVI compared with those
in the wet growing season (Figure 2B). The low growth rate of
plants could reduce nitrogen use, which can result in retaining
more nitrogen in the soil and subsequently used by plants when
small precipitation events occur. In addition, precipitation in the
early growing season is critical for driving the spring phenology
(Shen et al., 2015; Ganjurjav et al., 2020; Wang et al., 2022).
In this study, precipitation in May of 2014 was 40% greater
than that of long-term mean (Supplementary Figure S3), which
provides water requirement for plants to begin to grow in
the early growing season (Shen et al., 2015; Luo et al., 2021).
Along with the favorable precipitation condition, addition of
nitrogen could further accelerate plant growth and consequently
advance the BGS in 2014. In addition, relatively low values of
the maximum of NDVI associated with lack of precipitation in
the middle of the growing season could decrease the nitrogen
use. Lower precipitation could also be favorable for retaining
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nitrogen into soil without being leached, which allows plants to
use nitrogen more efficiently when precipitation events occur.
In fact, small but steady precipitation indeed occurs in the late
growing season of 2014, which stimulates the nitrogen effects on
maintaining plant growth in the late growing season and thus
delays the EGS, consequently lengthening the growing season
in 2014. The relationships of the EGS and GSL with monthly
precipitation (Figure 3, Supplementary Figure S2) support the
above arguments.

In contrast, most of the precipitation in May occurred in the
early stage of 2015 (Figure 1B, Supplementary Figure S3) and
could not supply steady and consecutive water conditions in the
middle and late May for plants to begin to grow. Therefore,
the less precipitation in the early growing season might weaken
the nitrogen effects on plant growth, which led to the delayed
BGS in 2015 (Shen et al., 2015; Ganjurjav et al., 2020; Wang
et al., 2022). In addition, although precipitation of 2015 was
greater than that of the long-termmean, most of the precipitation
occurred in June, July, and September (Figure 1B). On the one
hand, high precipitation in the middle growing season (except
for precipitation in August) significantly stimulated plant growth
(indicated by the maximum of NDVI, Figure 2B) and thus for
nitrogen use. On the other hand, high precipitation in the middle
growing season could also increase nitrogen leaching (Brandt
et al., 2010), which can lead to decreased soil-available nitrogen
in the late growing season. Moreover, precipitation in the late
growing season, especially in October, was low compared with
that in 2014 (Figures 2A,B). The low soil-available nitrogen
combined with low precipitation was not favorable for plant
growth and resulted in accelerated leaf senescence in the late
growing season (Liu et al., 2016a,b; Ren and Peichl, 2021). Thus,
the delayed BGS and advanced EGS under nitrogen addition
shortened the growing season in the wet growing season in 2015.
Our findings indicate that precipitation plays a considerable
role in regulating the nutrient effects on spring and autumn
phenology in temperate grasslands. Given the diverse driving
factors for plant phenology (Piao et al., 2019), the effects of
other factors (except for precipitation) on spring and autumn
phenology are still needed to be investigated in the future (Zhou
et al., 2022).

Interactive Effects of Mowing and Nitrogen
Addition on GSL and Its Two Components
To the best of our knowledge, our observations of interaction
between mowing and nitrogen addition on spring and autumn
phenology, as well as GSL, provide the first experimental evidence
on the phenological responses under mowing and nitrogen
enrichment in temperate steppes. However, the interactions
between mowing and nitrogen addition were different in the
two hydrologically contrasting years. The interactive effects of
mowing and nitrogen addition on GSL and its two components
observed in this study could be largely ascribed to those in
2014 (Tables 1, 2). We found that nitrogen addition had no
impact on GSL and its two components without mowing,
whereas advanced and delayed spring and autumn phenology
with mowing, respectively, and thus extended GSL in 2014.

Given that grassland in this study site is nitrogen limitation,
nitrogen addition can stimulate plant growth and standing
litter accumulation (Liu et al., 2018), which may decrease light
availability and temperature accumulation and thus have negative
effects on leaf unfolding of short species in the next growing
season (Piao et al., 2015; Beil et al., 2021). Mowing can weaken
the above negative effects by removing standing litter and thus
providing light availability and temperature requirements for
driving plant phenology (Flynn and Wolkovich, 2018; Piao et al.,
2019), and consequently have substantial impacts on spring and
autumn phenology, as well as GSL. Because of low precipitation
in 2014, the accumulation of standing litter is less than that in
2013, which cannot be enough to cause the light and temperature
limitation in 2015. As a consequence, no interactive effects of
mowing and nitrogen addition on GSL and its two components
were observed in 2015. These findings suggest that interactions
between mowing and nutrient addition could also be mediated
by precipitation regimes in different years. Given the changing
precipitation regimes, including amount, frequency, intensity,
and temporal distributions (IPCC, 2018), it is needed to conduct
multifactor manipulative experiments to better understand the
realistic response of vegetative phenology to global change.

Implications for Community Productivity in
the Temperate Steppe
GSL and its components have critical roles in affecting ecosystem
productivity and its interannual variation (Piao et al., 2007,
2008; Xia et al., 2015); however, their roles remain unclear in
the grassland ecosystems, especially under land-use change and
nitrogen deposition scenarios. In this study, ANPP in 2015 is
greater than that in 2014; precipitation could be one of the
limiting factors for the lower ANPP in 2014. In addition to
precipitation, our observations of the relationships of ANPP with
BGS, EGS, and GSL, as well as the maximum of NDVI (Figure 4),
suggest that GSL and growth rate are also considerable factors
in mediating ANPP in the temperate steppe. Nevertheless, the
negative dependence of ANPP with GSL is not consistent with
that reported by previous studies (White et al., 1999; Wu et al.,
2012; Michaletz et al., 2014), which have shown that longer GSL
generally increase ecosystem productivity. In fact, the negative
relationship between ANPP and GSL can be affected by the
nitrogen addition. The shortened growing season resulting from
delaying the BGS and advancing the EGS combined by increasing
maximum of NDVI in 2015 under nitrogen addition could
explain the above findings. The positive effects of increasing the
maximum of NDVI on ANPP (Supplementary Figure S5) under
nitrogen addition can offset the negative effects of shortened
growing season and consequently enhance ANPP in 2015. This
indicates that the maximum of growth rate could determine the
ecosystem productivity irrespective of shortened GSL. However,
we did not observe the relationships of ANPP with GSL and
its components in 2014, which indicate that low precipitation
amount may affect the relationships among them. The findings
highlight the jointly control roles of GSL and growth rate in
mediating ecosystem productivity in temperate steppes under
land-use change and increased nitrogen deposition scenarios.
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Conclusion
Using a 2-year field manipulative experiment with mowing
and nitrogen addition, we demonstrated that nitrogen
addition showed divergent impacts on GSL and its two
components (i.e., BGS and EGS), that is, nitrogen addition
advanced the BGS and delayed the EGS in the dry year,
whereas it delayed the BGS and advanced the EGS in the
wet year. In addition, the effect of nitrogen addition on the
maximum of NDVI was larger in the wet year than that
in the dry year, indicating that the impacts of nitrogen on
vegetation activity were dependent on precipitation regimes.
The changes in the GSL and the maximum of NDVI had
also diverse impacts on ANPP in years with different
precipitation, suggesting that precipitation can enhance
the dependences of ecosystem productivity on spring and
autumn phenology under nitrogen deposition scenarios in the
temperate steppe. The findings promote our understanding
on the effects of land-use change and nitrogen deposition on
vegetation activity and productivity among years with different
precipitation regimes.
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