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Melatonin widely mediates multiple developmental dynamics in plants as a vital growth 
stimulator, stress protector, and developmental regulator. N-acetylserotonin methyltransferase 
(ASMT) is the key enzyme that catalyzes the final step of melatonin biosynthesis in plants and 
plays an essential role in the plant melatonin regulatory network. Studies of ASMT have 
contributed to understanding the mechanism of melatonin biosynthesis in plants. However, 
AMST gene is currently uncharacterized in most plants. In this study, we characterized the 
JrASMT gene family using bioinformatics in a melatonin-rich plant, walnut. Phylogenetic, gene 
structure, conserved motifs, promoter elements, interacting proteins and miRNA analyses 
were also performed. The expansion and differentiation of the ASMT family occurred before 
the onset of the plant terrestrialization. ASMT genes were more differentiated in dicotyledonous 
plants. Forty-six ASMT genes were distributed in clusters on 10 chromosomes of walnut. 
Four JrASMT genes had homologous relationships both within walnut and between species. 
Cis-regulatory elements showed that JrASMT was mainly induced by light and hormones, 
and targeted cleavage of miRNA172 and miR399 may be an important pathway to suppress 
JrASMT expression. Transcriptome data showed that 13 JrASMT were differentially expressed 
at different periods of walnut bud development. WGCNA showed that JrASMT1/10/13/23 
were coexpressed with genes regulating cell fate and epigenetic modifications during early 
physiological differentiation of walnut female flower buds. JrASMT12/28/37/40 were highly 
expressed during morphological differentiation of flower buds, associated with altered stress 
capacity of walnut flower buds, and predicted to be involved in the regulatory network of 
abscisic acid, salicylic acid, and cytokinin in walnut. The qRT-PCR validated the results of 
differential expression analysis and further provided three JrASMT genes with different 
expression profiles in walnut flower bud development. Our study explored the evolutionary 
relationships of the plant ASMT gene family and the functional characteristics of walnut 
JrASMT. It provides a valuable perspective for further understanding the complex melatonin 
mechanisms in plant developmental regulation.
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INTRODUCTION

Melatonin (N-acetyl-5-methoxytryptamine), a widely known 
tryptophan derivative that regulates reproductive physiology 
and circadian rhythms, was initially identified in bovine pineal 
tissue and subsequently demonstrated to be common in various 
plant tissues (Dubbels et  al., 1995; Hattori et  al., 1995; Lerner 
et  al., 2002). Melatonin participates in the growth and 
development of plants in different tissues and periods (Wang 
et  al., 2016; Zhang et  al., 2017), especially as an antioxidant 
regulating the resistance of plants to various adverse environments 
(Zhang et  al., 2014; Wang et  al., 2015), and is considered a 
potential phytohormone (Arnao and Hernández-Ruiz, 2019). 
Similar to that in animals, melatonin synthesis in higher plants 
requires four enzymatic reactions catalyzed by at least six 
enzymes, including tryptophan decarboxylase (TDC), tryptophan 
hydroxylase (TPH), tryptamine 5-hydroxylase (T5H), serotonin 
N-acetyltransferase (SNAT), and N-acetylserotonin 
methyltransferase (ASMT; Back et al., 2016). ASMT is involved 
in the O-methylation of N-acetylserotonin in the last melatonin 
biosynthesis step and is regarded as the vital terminal enzyme 
for melatonin production (Tan and Reiter, 2020).

ASMT genes have been identified in more than 10 species, 
including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), 
tomato (Solanum lycopersicum), pepper (Capsicum annuum), 
apple (Malus domestica), and wheat (Triticum aestivum; Liu 
et  al., 2017; Pan et  al., 2019; Zhan et  al., 2019; Bhowal et  al., 
2021; Wang et  al., 2022). Functions of ASMT in plant biotic 
and abiotic stress responses have been extensively characterized. 
Rice OsASMT1 was the first ASMT gene analyzed and cloned 
from recombinant Escherichia coli, and its expression level was 
induced by the aging process and highly correlated with 
melatonin content (Kang et  al., 2011). Further studies 
demonstrated the presence of multiple ASMT genes in rice, 
and independent overexpression of OsASMT1, OsASMT2, and 
OsASMT3 increased rice ASMT enzyme activity and drought 
stress tolerance (Park et al., 2013a). Increased AtASMT expression 
and enzyme sulfhydryl modification promoted stomatal closure 
and osmotic stress tolerance in Arabidopsis under exogenous 
H2S treatment (Wang et al., 2021). Cadmium infiltration enhanced 
ATASMT1 transcript expression levels and melatonin biosynthesis 
in mature Arabidopsis leaves (Byeon et al., 2016). Four SlASMTs 
in tomato were thought to respond to multiple pathogens (Liu 
et  al., 2017). The expression of SlASMTs was induced by 
selenium and can alleviate cadmium stress (Li et  al., 2016). 
The apple genome contains at least 37 MdASMT genes. Elevated 
expression of MdASMT1 increased apple stomatal performance 
and water content under drought stress. MdASMT11 and 
MdASMT14 are assumed to play essential roles in the response 
of apple rootstocks to abiotic stresses (Wang et  al., 2022). 
ASMT also participated in multiple growth and developmental 
dynamics in plants. The melatonin-deficient ASMT rice exhibited 
accelerated senescence in detached flag leaves and significantly 
reduced yield (Byeon and Back, 2016). Overexpression of 
AtASMT caused massive melatonin accumulation and synergized 
with the phytohormone abscisic acid (ABA) to inhibit seed 
germination in Arabidopsis (Lv et al., 2021). At least 16 CaASMT 

genes were identified in pepper. They were differentially expressed 
during pepper pericarp formation and development (Pan et al., 
2019). Exogenous melatonin induced the strawberry ASMT 
expression and accelerated the ripening of strawberry fruits 
through the ABA pathway (Mansouri et al., 2021). Overexpression 
of SlASMT genes increased the heat shock protein (HSP) profile 
and expression of autophagy-related genes in tomatoes (Xu 
et al., 2016). MeASMT2 and MeASMT3 in cassava simultaneously 
promote melatonin bioactivation and similarly interact with 
autophagy-related genes to positively stimulate dynamic changes 
in cassava autophagic activity (Wei et  al., 2020). Although 
decisive molecular genetic data are not yet available, the possible 
role of AMST in plant flower development has been implied 
by several researches. Melatonin levels and OsASMT expression 
were induced in parallel during rice flower development (Park 
et al., 2013b). Three SlASMT genes were tissue-specific expressed 
in flowers and buds in tomatoes (Liu et  al., 2017). Seasonal 
light signal repressed MdASMT9 expression in apple, thereby 
promoting flowering (Zhang et  al., 2019a).QTL analysis of 
cowpea [Vigna unguiculata (L.) Walp.] RIL population showed 
that five Arabidopsis ASMT orthologs were highly correlated 
with floral scent (Lo et  al., 2020).

Walnuts (Juglans regia) are an important nut crop that 
nutritionists and consumers generally favor due to the high 
nutritional value of their seeds and their effectiveness in 
preventing many diseases (Ros et al., 2018). Compared to other 
nuts, walnuts are richer in melatonin (Verde et  al., 2022). The 
available studies have mainly focused on pathological experiments 
or nutritional value evaluation of melatonin in walnuts (Bonomini 
et al., 2018; Cheng et al., 2021; Kamoun et  al., 2021; Steffen 
et  al., 2021). However, systematic reports on the mechanism 
of melatonin synthesis and inheritance in walnut are still lacking. 
The publication of the whole walnut genome has made it 
possible to investigate this important fruit crop using 
bioinformatics (Marrano et  al., 2020). Genome-wide isolation 
and identification of the walnut ASMT gene family have not 
been reported. In this study, 46 walnut ASMT gene family 
members were identified, and their physicochemical properties, 
gene characteristics, phylogeny, evolutionary status, promoter 
cis-regulatory elements (CRE), and potential interaction 
relationships were analyzed by bioinformatics methods. 
Transcriptome and qRT–PCR data were also used to screen 
the expression dynamics and differential coexpression network 
of JrASMTs during the development of walnut flower buds. 
This research provides a global reference for the functional 
study of the ASMT gene family in walnut and a theoretical 
basis for exploring the function and molecular mechanism of 
melatonin during walnut flower bud development.

MATERIALS AND METHODS

Plant Materials
Conventionally cultivated walnut (J. regia, “Xinxin 2”) was used 
as research material in this study. Walnuts were grown under 
natural conditions at Xinjiang Fruit Science Experiment Station 
of Ministry of Agriculture and Rural Affairs (Yecheng, China). 
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Female flower buds from the terminal buds’ lower 2–3 positions 
were collected on April 15 (qP1), May 15 (qP2), May 30 (qS1), 
June 15 (qS2), and July 15 (qS3) in 2021, respectively. All 
floral bud samples were collected after removing the outer 
skin and fixed by flavonoid acetic acid (FAA) for 
subsequent studies.

ASMT Gene Family Identification
Complete genomic data for all species used in this study 
were downloaded from the EnsemblPlants1 and Phytozome2 
public databases; Markov model files of the dimerization 
domain (PF16864) and O-methyltransferase domain (PF00891) 
were downloaded from the Pfam3 public database (El-Gebali 
et  al., 2019). The amino acid sequences of OsASMT1/2/3 
downloaded from the Rice Genome Annotation Project4 and 
AtASMT1 downloaded from The Arabidopsis Information 
Resource5 were used as query sequences for local BLAST 
(E-value: 1e−5); HMMER software was simultaneously used 
to search for walnut protein sequences (E-value: 1e−5; Wheeler 
and Eddy, 2013). Amino acid sequences of all subsequent 
genes were verified by SMART,6 Pfam,7 and CDD8 databases 
for complete conserved structural domains (Schultz et  al., 
2000; Marchler-Bauer et al., 2007). ASMT genes of Arabidopsis 
(A. thaliana), tomato (S. lycopersicum), rice (O. sativa), sorghum 
(Sorghum bicolor) and Apple (M. domestica) were collected 
from published studies (Zhan et al., 2019; Bhowal et al., 2021; 
Wang et  al., 2022). Confirmed walnut ASMT genes were 
submitted to the ExPASy9 and WoLF PSORT10 online sites 
to calculate physicochemical properties and predict 
subcellular localization.

Gene Structure, Conserved Motifs, and 
Phylogenetic Analysis
Annotation information of ASMT genes was extracted from 
walnut whole genome files using Perl scripts. MEME software 
was used to analyze the conserved motifs of JrASMTs (motif 
number: 20, min-width: 6; Bailey et  al., 2009). TBtools was 
used to visualize the gene structure and conserved motifs 
(Chen et  al., 2020). Multiplex sequence alignment was 
performed using Clustal X 2.1 (Larkin et  al., 2007). 
Phylogenetic trees were constructed by IQ-TREE software 
(automatic calculation of the optimal model, bootstrap ≥1,000; 
Minh et  al., 2020). The ASMT amino acid sequences of all 
species were used to construct species phylogenetic trees 
based on OrthoFinder (STAG algorithm; Emms and Kelly, 

1 https://plants.ensembl.org/
2 https://phytozome-next.jgi.doe.gov/
3 http://pfam.xfam.org/
4 http://rice.uga.edu/
5 https://www.arabidopsis.org/
6 http://smart.embl.de/
7 http://pfam.xfam.org/search
8 https://www.ncbi.nlm.nih.gov/cdd
9 https://web.expasy.org/protparam/
10 https://wolfpsort.hgc.jp/

2019). The evolutionary tree was embellished using the 
iTOL11 online website.

Homologous Genes, cis-Regulatory 
Elements, and Interaction Network 
Analysis
Inter- and intraspecies synteny and collinearity analysis was 
performed using MCScanX software (Wang et  al., 2012). 
Synonymous and nonsynonymous substitution rates between 
paralogous homologous pairs were calculated by KaKs Calculator 
2.0 (Wang et  al., 2010). The CREs in the ASMT promoter 
sequences (2,000 bp sequence upstream of each gene) were 
predicted with PlantCARE12 (Lescot et  al., 2002). Visualization 
of homologous relationships and CREs was also performed 
using TBtools. All JrASMT proteins were submitted to STRING13 
to predict interactions (Szklarczyk et  al., 2019). The miRNAs 
targeting ASMT were predicted through the PmiREN14 online 
website (Expectation: 5, Gaps: 0, Identity: 12; Guo et al., 2020). 
The interaction network was visualized by Cytoscape software 
(Su et  al., 2014).

Analysis of JrASMT Gene Expression 
Profiles in Flower Bud Development
RNA-seq data for early physiological differentiation (P1), late 
physiological differentiation (P2), critical morphological 
differentiation (PS), early morphological differentiation (S1), 
and late morphological differentiation (S2) of female walnut 
buds were obtained from published studies (PRJNA673588).

All transcriptome data were mapped to the walnut reference 
genome by HISAT2 (Kim et  al., 2019). Gene expression 
was normalized by fragments per kilobase of exon model 
per million mapped reads (FPKM). Differentially expressed 
genes were filtered using DESeq2 (Love et  al., 2014), with 
differential levels set to absolute values of the FoldChange 
greater than 2 and FDR values less than 0.01. The differentially 
expressed genes were plotted and hierarchically clustered 
based on TBtools.

Weighted Gene Coexpression Network 
Analysis
Weighted gene coexpression network analysis (WGCNA) of 
all differentially expressed genes was performed based on 
the publicly available R package (“WGCNA”) in the R language 
(v 4.1.2) environment (Langfelder and Horvath, 2008). Genes 
with a mean FPKM of less than 0.1 and those with more 
than 50% deletions in a set of replicates were removed. Soft 
thresholds were calculated by the scale-free topological fit 
index and mean connectivity. Hierarchical clustering of genes 
was performed based on the topological overlap measure 
(TOM). The minimum number of genes in the module was 

11 https://itol.embl.de/
12 http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
13 https://string-db.org/
14 https://www.pmiren.com/
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60, and high similarity modules were merged based on a 
threshold of 0.2.

Gene Function Annotation and Core 
Network Extraction
De novo annotation of transcriptome data was completed via 
eggNOG-Mapper (v 5.0; Huerta-Cepas et al., 2017). Enrichment 
analysis (p-value < 0.01) and visualization of annotation results 
from Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) were performed using R. The cytoHubba 
plugin in Cytoscape was used to extract specific modules with 
JrASMTs with high connectivity (Chin et  al., 2014). Cytoscape 
was used to visualize core coexpression networks.

Paraffin Sectioning and Real-Time 
Fluorescence Quantification
Walnut female bud samples fixed in FAA for 24 h and softened 
by glycerol immersion were treated with a continuous gradient 
of ethanol (70, 85, 95, and 100%) and a mixture of anhydrous 
ethanol and xylene (v:v = 1:1) for dehydration, and then were 
immersed in 60°C liquid paraffin. Slicing was done using a 
Leica Microtome (Leica, Weztlar, Germany) with a thickness 
of 8 μM, sections were stained using Fast Green FCF (Sangon 
Biotech, Shanghai, China), Nikon Eclipse Ts2 microscope (Nikon, 
Shanghai, China) was used for observation of the sections, 
and images were processed using NIS-Elements.

Total RNA was extracted from different tissues by RNA 
extraction kits (Tiangen, DP441, Beijing, China). First-strand 
cDNA was synthesized using Vazyme HiScript II 1st Strand 
cDNA Synthesis Kit (Vazyme Biotech Co., Ltd., China). Specific 
primers were designed based on 18 selected coding sequences 
of JrASMTs (Supplementary Table  1), and Sangon Biotech 
Co., Ltd. (Shanghai, China) synthesized the primers. The Actin 
gene was used as an internal reference and real-time fluorescence 
quantification by Maxima SYBR Green/ROX qPCR Master Mix. 
Three biological replicates were included in this experiment, 
and gene expression was calculated by 2−ΔΔCt (Livak and 
Schmittgen, 2001). qP1 period samples were set as the control.

RESULTS

Genome-Wide Identification of the Walnut 
ASMT Family
The whole-genome sequence of walnut was used to identify 
ASMT proteins. Candidate genes were initially screened by a 
local BLAST search of query sequences and an hmmsearch 
of Markov model files. A total of 46 genes were finally identified 
as members of the walnut ASMT family by validation of their 
conserved structural domains and were named in order of 
their position on the walnut genome (JrASMT1-46). The physical 
and chemical properties showed that most of the walnut ASMT 
proteins (71.74%) had amino acid lengths ranging from 335 
aa to 385 aa (Supplementary Table  2). Forty-one (89.13%) 
JrASMTs were acidic proteins, and the isoelectric points (pI) 
of all JrASMT proteins ranged from 4.91 to 8.91, with an 

aliphatic index of 71.7 to 105.02. Nineteen (41.30%) JrASMTs 
were hydrophobic proteins, with GRAVY values ranging from 
0 to 0.175. Twenty-six (56.52%) JrASMTs were hydrophilic 
proteins, with GRAVY values ranging from −0.017 to −0.247. 
The prediction of subcellular localization indicated that most 
of the JrASMT proteins were distributed in the cytoplasm (29), 
and the remaining JrASMT proteins were distributed in the 
cytoskeleton (12), nucleus (2), chloroplast (2), and peroxisome (1).

Phylogeny, Gene Structure, and Conserved 
Motif Analysis of JrASMTs
The phylogenetic tree was constructed with the amino acid 
sequences of all JrASMTs to explore the relationships among 
walnut ASMTs. Forty-six JrASMTs were distributed in five 
evolutionary distinct groups (Figure  1A). Group I  contained 
only two members, JrASMT40 and JrASMT37. Group II contained 
14 JrASMTs. Group III, Group IV, and Group V were located 
in a common internal node. Among them, Group III contained 
only one JrASMT38, which was considered to be  an outgroup. 
Group IV contained 12 JrASMTs. Group V contained the largest 
number of JrASMTs at 17. Gene structure analysis showed 
that JrASMT genes contained 1–4 exons and 1–3 introns, and 
only 11 JrASMT genes contained complete 3′ and 5’ UTRs. 
JrASMT13 and JrASMT41 contained only one exon and one 
intron (Figure 1B). Conserved motif analysis showed that some 
JrASMT genes have more conserved motif sequences than 
others (Figure  1C), four JrASMT (JrASMT28, JrASMT20, 
JrASMT46, JrASMT19) genes had only partial motifs due to 
their short protein length. The different groups of JrASMT 
proteins contained different motifs, mainly at the 5′ terminus 
(motif13, motif26) or 3′ terminus (motif14, motif17).

Evolutionary Relationship and 
Phylogenetic Analysis of JrASMTs in 
Multiple Plants
To assess the evolutionary status of JrASMT in major plant 
species, 584 ASMT proteins were identified from 27 plant 
species by multiple methods (Supplementary File 1). These 
plants included four algae, two mosses, one pteridophyte, 
one gymnosperm, four monocotyledons, and 15 dicotyledons. 
All protein sequences were manually validated for structural 
domains by the CDD, Pfam, and SMART databases to ensure 
accurate identification. The species tree constructed base on 
OrthoFinder showed that ASMT genes were present in all 
selected species (Figure 2A). Only a single copy of the ASMT 
gene was present in the cyanobacteria D. salina and C. stagnale. 
Two green algae, C. reinhardtii and C. zofingiensis, contained 
3 ASMT genes each. All selected embryophytes contained 
at least nine ASMT genes, with A. thaliana containing 19 
ASMT genes and J. regia containing the most ASMT genes 
at 46. A clear differentiation among ASMT genes occurred 
at different taxonomic levels. Dicotyledonous and 
monocotyledonous plants were strictly assigned to different 
branches on the species tree. The number of ASMT genes 
was not strongly correlated with species genome size. The 
larger genomes of H. vulgare, Z. mays, and G. hirsutum 
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contained only 24, 18, and 22 ASMT genes. Woody plants 
seemed to possess more ASMT genes. In addition to walnuts, 
P. persica, Morella rubra, M. alba, and M. domestica contained 
44, 34, 37, and 37 ASMT genes, respectively. However, 
A. chinensis contained only nine ASMTs.

The 237 protein sequences from 14 species, which contained 
one cyanobacteria, two green algae, three monocotyledons, and 
eight dicotyledons, were used to construct a phylogenetic tree 
with the D. salina ASMT protein as the midpoint root 
(Figure  2B). All ASMT proteins were distributed within five 
main different subgroups (I–V), the subgroup V were further 
elaborated into Va, Vb, Vc, and Vd. With subgroup I containing 
only algae distributed in four clades. Subgroup V(d) contained 
only monocotyledonous plants, and the ASMT genes in this 
subgroup shared similar branch lengths and close evolutionary 
distances. Interestingly, a general divergence of the ASMT 
family in eudicot occurred, as they were distributed in subgroups 
II-V. Subgroups IV and V(c) contained 46 and 63 ASMT genes, 
respectively, which are relatively high numbers. Subgroup II 
contained the fewest genes, with only three ASMTs from 
A. thaliana, Cucumis melo, and A. chinensis. Subgroup V(a) 
contained genes from five species: C. melo, Vitis vinifera, 
M. rubra, J. regia and C. illinoinensis. Specifically, Arabidopsis 
ASMTs were absent from this group. Walnut ASMT genes were 
distributed in five of the four subgroups of Dictyostelium, but 
each subgroup member did not match the grouping results 

of the previous phylogenetic tree (Figure 1A). The introduction 
of many outgroups allowed for a more precise delineation of 
the JrASMT divergence relationships.

Analysis of Paralogous and Direct 
Homologous Genes
Gene doubling and duplication are important pathways for 
the adaptive evolution of organisms and the acquisition of 
diverse phenotypes. The 46 putative JrASMT genes were unevenly 
distributed on the 10 chromosomes of walnut (Figure  3A). 
Twelve (26.09%) of these JrASMT genes were concentrated on 
walnut chromosome 4 (Chr4), which had the highest number. 
In contrast, only 1 (2.17%) JrASMT was found on chromosome 
12 (Chr12). The results of the walnut ASMT collinearity gene 
analysis showed that only 7 (15.22%) JrASMTs were found to 
have four pairs of paralogous homologs (JrASMT3/JrASMT31, 
JrASMT4/JrASMT18, JrASMT21/JrASMT37 and 
JrASMT37/JrASMT40). JrASMT3/JrASMT31 was classified in 
subgroup V(a) of the phylogenetic tree (Figure  2B). 
JrASMT4/JrASMT18 was classified in subgroup V(c). 
JrASMT21/JrASMT37 and JrASMT37/JrASMT40 were both 
classified in subgroup IV. All paralogous homologous genes 
were derived from segmental duplication, and no tandem 
duplication events occurred. Synonymous and nonsynonymous 
mutation rates were calculated for all paralogous homologous 

A B C

FIGURE 1 | Phylogenetic, gene structure, and motif analysis of walnut JrASMT genes. (A) The phylogenetic tree was constructed by IQ-TREE. Forty-six ASMT 
genes were divided into five subgroups (I–V). (B) TBtools were used to show the gene structure, with UTRs in blue, exons in yellow, and introns in black solid lines. 
(C) The motifs of JrASMT. Rectangles with different colors and numbers represented different motifs.
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genes (Supplementary Table  3). The Ka/Ks values for both 
homologous pairs JrASMT37/JrASMT21 and JrASMT4/JrASMT18 
were close to 1, and these genes were almost free from 

environmental selection and showed neutral evolution, while 
gene pairs JrASMT3/JrASMT31 and JrASMT37/JrASMT40 had 
Ka/Ks values of 0.296 and 0.092, respectively, suggesting that 

A B

FIGURE 2 | Numerical statistics and taxonomic status analysis of the ASMT family in multiple plants. (A) The species tree of the ASMT family was constructed 
based on OrthoFinder. All selected plants were divided into four subgroups, distinguished by different colored branches. The statistics of the respective genome size 
and number of ASMT family members for each species were shown on the right. (B) The phylogenetic tree was constructed with IQ-TREE. The ASMT of algae was 
used as the midpoint root. Different colored branches represented different taxonomic levels, purple for algae, red for dicotyledons and green for monocotyledons. 
The length of the branches represented the evolutionary distance. Two hundred and thirty-seven ASMT genes were divided into five subgroups (I–V) and displayed 
in different background colors. The black axes inside the evolutionary tree displayed the tree scale. The numbers at the internal nodes represented the level of 
clades. The classification results of JrASMT in Figure 1 were displayed in the outer circle of the evolutionary tree as identical gradient color rectangles.

A B

FIGURE 3 | Synteny and collinearity analysis of the ASMT family. (A) Distribution of JrASMTs on walnut chromosomes and analyzed of paralogous genes. The 
outer circle indicated the 16 chromosomes of walnut, and the inner circle showed the density of genes on the chromosomes. The gray lines represented genes and 
blocks with paralogous relationship, the red lines represented paralogous JrASMT genes, and the corresponding JrASMTs name were marked in red. (B) Collinearity 
analysis of ASMT in multiple species. Latin names of species were labeled on the left. The ranking order was according to the proximity of the relatives in the species 
tree. Chromosomes of different species were shown in different colors. The gray lines represented genes or blocks with collinearity, and the red lines were ASMT 
genes with collinearity. Four JrASMTs name were labeled below.
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these two gene pairs were subject to strong purifying selection 
and were functionally stable.

The ASMT genes from eight plant species were chosen 
for collinearity analysis according to their distant relationships 
on the species phylogenetic tree (Figure  2A), including one 
monocotyledon (O. sativa) and seven dicotyledons 
(S. lycopersicum, V. vinifera L., C. melo, A. thaliana, 
M. domestica, M. rubra, J. regia; Figure  3B). Rice contained 
only one gene that has orthologous relationship with two 
genes in the dicotyledonous tomato plant, while the number 
of orthologous genes increased significantly inside the 
dicotyledonous clade. There were five pairs of orthologous 
relationships formed by four ASMT genes, with two each 
between tomato and grape, grape and melon, although the 
origin of these orthologous relationships was not the same. 
Only two ASMT gene pairs had four orthologous relationship 
between melon and Arabidopsis. In direct contrast, there 
were eight direct orthologous gene pairs between the nine 
apple ASMT genes and the four poppy ASMT genes. Three 
poplar ASMT genes were orthology to JrASMT1, JrASMT4, 
JrASMT18, and JrASMT21, and these same JrASMTs were 
located in subgroups IV, V(a), and V(c). JrASMT4 and 
JrASMT18 shared the same orthologous ASMT gene with 
poplar. Collectively, there are four conserved direct homologous 
relationships within the ASMT gene family among 
dicotyledonous plants.

Analysis of cis-Regulatory Elements in 
JrASMTs
Transcription factors regulate gene expression by binding 
to CRE sites in promoter regions. To explore the possible 
biological functions and expression patterns of walnut ASMT 
genes, the 2,000 bp upstream sequences of all JrASMT genes 
were subjected to CRE analysis (Figure  4A). Except for 
core response elements and functionally unknown elements, 
a total of 1,076 CREs were characterized in all JrASMT 
promoter regions. These CREs could be  broadly classified 
into four categories: light-response elements (34.94%), growth- 
and development-related elements (21.84%), stress-response 
elements (10.41%) and hormone-response elements (32.81%). 
Among them, there were 21 types of light-response elements, 
mainly G-boxes (13.38%), GATA motifs (3.07%), GT1 motifs 
(3.25%), JrASMT expression was widely regulated by multiple 
modes of light-mediated. There were 11 types of growth- 
and development-related elements, including hyphal tissue-
specific expression element CAT-box (2.23%) and circadian 
rhythm element circadian (1.49%). There were six types of 
stress-response elements, mainly the LTR (3.25%) and MBS 
(2.70%). It suggested that JrASMT was sensitive to low 
temperature and drought environment. JrASMT was extensively 
involved in walnut hormonal regulatory networks, 11 
hormone-response elements were observed, including the 
ABA response element ABRE (12.17%); growth hormone 
response elements AuxRR-core (1.30%); jasmonic acid (JA) 
response elements CGTCA-motif (6.13%) and TGACG-motif 
(6.13%); gibberellin response elements P-box (1.30%); and 

salicylic acid (SA) response elements TCA-element (2.23%). 
More than 30 CREs were found in the promoter regions 
of JrASMT8, JrASMT43, JrASMT45, JrASMT7, JrASMT32, 
and JrASMT20, and multiple pathways may widely regulate 
these genes in walnut. JrASMT13, JrASMT5, and JrASMT22 
each had fewer than 15 CREs in the promoter region, 
implying that these genes expression may be  mediated in 
fewer ways. The promoter regions shared a similar distribution 
of CREs among the more closely related JrASMT genes. 
The JrASMT8, JrASMT43, JrASMT45, and JrASMT7 genes 
in subgroup IV, which were distributed in the same clade, 
all contained a large number of G-box elements and hormone-
related elements. The promoter regions of the JrASMT31 
and JrASMT34 genes in subgroup V(a) contained only O2-site 
elements. JrASMT23, JrASMT24, JrASMT25, and JrASMT26 
in subgroup II also showed similar transcription factor 
binding sites, and they all contained high amounts of AREs, 
G-boxes, and ABREs. Overall, these results provided evidence 
for the expression patterns of walnut ASMT genes.

Network Analysis of JrASMT Proteins and 
miRNAs
Plants possess complex and indirect gene expression networks. 
Molecular interactions are an important component of plant 
complicated expression patterns. The interrelationship between 
miRNA and mRNA or between proteins is essential for plants 
to display different expression patterns. Based on online databases, 
potential miRNAs and proteins that target or interact with 
JrASMT were predicted (Supplementary Table  4). Only six 
JrASMT proteins (JrASMT27/28/30 and JrASMT37/39/40) were 
predicted to exhibit nine pairs of direct interactions with each 
other (Supplementary Figure 1). A total of 27 JrASMT proteins 
were predicted to directly or indirectly interact with 31 proteins 
(Figure  4B), the main ones being CAFFEOYL SHIKIMATE 
ESTERASE (CSE), cytochrome P450 84A1, cinnamoyl-CoA 
reductase (CCR), peroxidase (POD) and cinnamyl alcohol 
dehydrogenase (CAD), which interacted with 40, 37, 34, 31, 
and 30 proteins, respectively. Forty-two JrASMT genes were 
predicted to have potential targeting relationships with 132 
miRNAs from 75 families (Supplementary Table  3). miR2118, 
miR482, miRN2785, miRN1729, and miR5505 interacted with 
the most genes, targeting 9, 9, 7, 6, and 5 JrASMTs, respectively. 
The miR172 and miR399 families were the most abundant, 
with 23 types miR172 and 13 types miR399 targeting the 
JrASMT1/2/3/17 and JrASMT32/33/42 genes, respectively. 
JrASMTs distributed in the same clade on the phylogenetic 
tree had similar protein interaction relationships. The 
JrASMT27/28/30/37/38/39/40 genes classified in subgroup IV 
had an almost identical number of interactions (mean 
degree = 87), and the other six genes (JrASMT21/22/23/25/26/46) 
in this subgroup had a degree of 59. Five genes 
(JrASMT2/3/16/17/34) in subgroup V(a) all had a degree equal 
to 18, while the degrees for two genes (JrASMT35/36) in 
subgroup V(b) and the seven genes (JrASMT4/5/6/18/32/41/42) 
in subgroup V(c) were all equal to 2. There may be  complex 
synergistic expression or functional redundancy of these genes.
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Expression Dynamics of JrASMTs During 
Walnut Bud Development
We retrieved the expression patterns of all JrASMT family 
genes during physiological differentiation (P1, P2), the 
physiological differentiation and morphological differentiation 
critical period (PS), and morphological differentiation (S1, S2) 
of walnut buds from published transcriptome data. Significant 
differential expression occurred in 13 of 46 JrASMT genes 
during walnut flower bud development. The heatmap shows 
that differentially expressed ASMT genes were hierarchically 
clustered into two groups based on their expression during 
the P and S periods (Figure  5A). JrASMT1, JrASMT10-14, 
JrASMT23, and JrASMT24 showed similar expression patterns; 
all eight genes had the highest expression in the P1 and P2 
periods and decreased expression in the PS-S2 period. The 
expression of JrASMT28/29/30, JrASMT37, and JrASMT40 
increased during later floral bud development: JrASMT28/29/30 
were highly expressed during S2, and both JrASMT37 and 
JrASMT40 were highly expressed during PS-S2. Among all the 
differentially expressed JrASMTs, only JrASMT40 was relatively 
highly expressed in all periods, reaching a significant difference 
only under the P1 vs. S1 comparison, indicating that this gene 
may play an essential role in walnut flower bud development.

To further determine the underlying functions of JrASMT 
genes in walnut bud development, all differentially expressed 
genes (DEGs) were used to conduct weighted gene coexpression 

network analysis after data filtering. The soft threshold for 
constructing the adjacency matrix was 27 (correlation over 78%). 
Except for those at PS and S1, walnut buds at different developmental 
stages showed significant differences in their expression patterns 
(Supplementary Figure  2). Total of 12,664 DEGs were assigned 
in 11 merged modules (Supplementary Figure 3). The connectivity 
of eigengenes was analyzed for differences between modules and 
the magnitude of association between module genes and traits, 
and the results showed significant differences between modules 
(Figure 5B, Supplementary Figure 4). The black module containing 
4,316 genes was highly correlated with the P1 period (p = 8e−4, 
R = 0.77). The light-yellow module containing 263 genes (p = 2e−4, 
R = 0.83) and the midnight-blue module containing 334 genes 
(p = 1e−5, R = 0.88) were highly correlated with the PS period. 
The dark-gray module containing 220 genes (p = 2e−4, R = 0.81) 
and the gray module containing 1,181 genes (p = 6e−5, R = 0.85) 
were highly correlated with the S1 period, and the brown module 
containing 4,528 genes was highly correlated with the S2 period 
(p = 7e−7, R = 0.93).

Association Module and Functional 
Prediction of JrASMTs
JrASMT1/10/13/23 were specifically classified in the black module, 
JrASMT40 was specifically classified in the dark-gray module, 
and JrASMT12/28/37 were specifically classified in the brown 
module. GO, and KEGG annotation and enrichment analysis were 

A B

FIGURE 4 | CRE analysis of the promoter region of JrASMT, and interacting proteins and miRNAs prediction. (A) The CRE statistics of JrASMT promoter regions. 
CREs were classified into four categories: stress-response, growth and development, light-response and phytohormone-response. JrASMT was arranged in the 
order of phylogenetic tree. The names of CREs were marked on the top. The heat map showed the number of 15 main CREs corresponding to each JrASMT. The 
bar chart on the right side counted all the number of four types of CREs in each JrASMT, and different types of CREs were indicated by different colors. (B) Network 
diagram of proteins and miRNAs interacted with JrASMT. Gray connecting lines indicated the presence of interactions. JrASMT was represented by red circles, and 
interacting proteins were represented by light green circles, with the size of the circles represented the number of interaction relationships. miRNAs were represented 
by V-shaped rectangles, where miRNA172 and miRNA399 were shown in purple.
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performed for genes in these three modules (Figure  6). In the 
black module, 182 (8.90%) genes were enriched in the cell cycle 
term, 115 (5.62%) genes were enriched in the mitotic cell cycle 
term, 206 (12.96%) genes were enriched in the chromosome and 
associated protein pathway, and 187 (11.76%) genes were enriched 
in the carbohydrate metabolism pathway. These results suggested 
that genes in the black module played roles in cell cycle regulation, 
DNA replication and repair, and nuclear chromosome segregation. 
In the dark-gray module, 44 (12.61%) genes were enriched in 
the catalytic activity term, 17 (4.87%) genes in the endomembrane 
system term, 17 (4.87%) genes in the cell wall organization or 
biogenesis term, and 18 (1.48%) genes in protein families: 
metabolism pathway. A large number of DEGs were also enriched 
in functions related to cell wall synthesis and metabolism, glycolic 
acid, lignin, cellulose, and other metabolic processes in plants. 
This result indicated that genes in the dark-gray module were 
involved in cell wall formation during morphological differentiation 
of walnut flower buds and mediated various secondary metabolic 
pathways. In the brown module, 485 (23.00%) genes were enriched 
in response to chemical terms, 292 (13.85%) genes in response 
to oxygen-containing compound terms, 206 (9.77%) genes in 
transcription regulator activity terms, 92 (13.53%) genes in 
environmental information processing pathways, and 51 (7.50%) 
genes in plant hormone signals. The genes of the brown module 
were significantly associated with the response of walnut buds 
to various environmental factors and extensively involved in 
multiple signaling and hormone regulatory networks in the late 
stage of walnut bud morphological differentiation.

The Coexpression Network of JrASMTs in 
Walnut Flower Bud Development
Genes coexpressed with JrASMTs in the three modules were 
screened. The black, dark-gray and brown modules contained 
500 (11.58%), 91 (41.36%) and 582 (12.85%) genes coexpressed 

with JrASMT genes, respectively. The core subnetworks of the 
three modules were extracted by cytoHubba. The interactions 
and expressions were visualized (Figure  7). Except for genes 
with unknown functions, in the black module, JrASMT1/10/13/23 
were coexpressed with several cell process-related genes, such 
as the mitotic checkpoint protein coding gene Budding 
uninhibited by benzimidazole (BUB), which is involved in the 
cell cycle; Protein arginine methyltransferase (PRMT); Cyclin 
B2 (CYCB2), which belongs to the cyclin family; and NPK1-
activating kinesin (NACK), which belongs to the TRAFAC class 
of myosins. In addition, the JrASMT genes in the black module 
were also associated with the Fasciclin I  family protein coding 
gene (FAS1), glutamyl-tRNA (Gln) amidotransferase subunit 
coding gene (Amidase), Casparian strip membrane domain 
protein (CASP), and other coexpressed genes. Almost all 
functionally known coexpressed genes were highly expressed 
during P1 and P2, except for LRR receptor-like serine threonine-
protein kinase (LRR-RLKs), PRMT, and CASP, which had 
elevated expression during morphological differentiation. In 
contrast, the genes coexpressed with JrASMT40 in the dark-
gray module were more functionally diverse, containing Lonely 
guy (LOG), which activates the cytokinin-activating enzyme 
Constitutive disease resistance (CDR) and Responsive to 
desiccation 22 (RD22). Two transporter protein family members 
ATP-binding cassette (ABCG) and Hypothetical protein (HHP) 
involved in the AMPK signaling pathway; Adenosine-5′-
phosphosulfate (APS) involved in the purine metabolism pathway; 
and Glycerol-3-phosphate acyltransferase (GPAT) involved in 
the glycerolipid metabolism pathway, were found in the 
coexpression network that also included Chitinase-like protein 
(CTL), Trichome birefringence-like (TBL), and 
Glycosyltransferase 2 (GT2) involved in cellulose synthase, 
encoding Isochorismatase family protein (ICS). All genes 
expression levels in the dark-gray module increased during 

A B

FIGURE 5 | The expression analysis of JrASMTs in walnut flower bud development. (A) The DEG heat map of JrASMT. Genes were hierarchically clustered based 
on expressions. The normalized expressions were shown on the left, and the fold change under each difference grouping were shown on the right, in log2FC. The 
colors of the heat map represent the magnitude of expressions and fold change. (B) Correlation of each module with the developmental period. The module names 
were on the left and the different periods were on top. The color of the heat map represented the magnitude and properties of the correlation. The numbers in the 
heat map were the correlation values and the numbers in parentheses were the p-values.
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the PS period; most reached maximum expression at the S1 
period and remained unchanged or decreased at the S2 period. 
In the brown module, JrASMT12/28/37 was coexpressed with 
the gene encoding DNA-directed RNA polymerase III subunit 
(RNAPIII), protein translation factor SUI1 homolog coding 
gene (SUI1), Poly(A) binding protein (PABP), and other genes. 
These genes are involved in transcriptional regulation or 
translational modifications. The network likewise contained 
multiple Receptor-like serine–threonine protein kinases (SRKs) 
and LRR-RLKs. JrASMT12/28/37 was also coexpressed with 
Beta carbonic anhydrase (BCA), Proline/serine-rich protein 
(PRP), and a Tetratricopeptide repeat protein coding gene 
(TPR). All coexpressed genes were most highly expressed during 
the S2 period. However, JrASMT12 was more highly expressed 
during the P1 and P2 periods.

Tissue Sectioning and Real-Time 
Fluorescence Quantification
To verify the expression pattern of JrASMT during the 
development of walnut buds, flower bud tissues from walnuts 
at different periods were collected. The Paraffin section results 
showed that the walnut buds in the qP1 and qP2 periods 
were undergoing physiological differentiation (Figure 8A), and 

those in qS1, qS2, and qS3 were undergoing bud morphological 
differentiation. Eighteen JrASMTs, including 11 DEGs in the 
transcriptome and seven non-DEGs, were used for real-time 
fluorescence quantification in these samples (Figure 8B). Similar 
to several previous results, multiple JrASMTs were significantly 
differentially expressed and clustered at different periods of 
walnut bud development. JrASMT1/10/12/13/14 were 
significantly higher in qP1 and qP2 but barely expressed during 
morphological differentiation. JrASMT23 had no significant 
differential expression in the qP1, qP2, and qS1 periods but 
was slightly decreased during the qS2 and qS3 periods. 
JrASMT3/28/29/30/37/40 were commonly expressed at different 
stages. However, they were only highly and specifically expressed 
at the later stages of flower bud development. The expression 
profiles of JrASMT7/9/18/31/34/45 were also relatively similar, 
with all of these genes being significantly highly expressed 
at qS2 and weakly expressed at qS1 and qS3. Most of the 
differentially expressed JrASMT genes except for JrASMT23 
showed similar expression trends with RNA-seq data. JrASMT7, 
JrASMT9, and JrASMT45 were highly expressed at qS2; these 
genes, which were not considered DEGs in the transcriptome, 
apparently played important roles during the morphological 
differentiation of the walnut bud.

A

B

FIGURE 6 | Functional annotation of black, dark-gray, and brown modules genes. (A) Bar chart of GO enrichment for the three modular genes. GO enrichment 
terms were shown on the left. Module names were labeled above the bar graph. (B) Bubble plots of KEGG enrichment for the three modular genes. KEGG 
enrichment pathway were shown on the left. The RichFactor represented the level of enrichment. The size of dots represented the number of genes. The color of the 
dots represented the q-value of the enrichment. The module names were labeled above the bubble diagram.
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DISCUSSION

Identification of ASMT Gene Family 
Members in Walnut
As an indole-like molecular substance, melatonin is most well 
known for its ubiquitous regulation of circadian rhythms, 
immune systems, and antioxidant activities in living organisms 
(Zhao et  al., 2019). With the study of melatonin synthesis, 
metabolism, and catabolism in higher plants, melatonin is 
considered a potentially pleiotropic phytohormone that regulates 
plant growth and development, life processes, redox dynamics, 
biotic and abiotic stresses, and fruit preservation (Back, 2021). 
Several studies have demonstrated that many melatonin synthases 
in plants interact directly with various proteins, including 
transcription factors (Wei et  al., 2018). The formation of these 
protein complexes implies that melatonin synthases play an 
essential role in plant melatonin-mediated physiological and 
biochemical processes. ASMT is considered to be  the key 
enzyme for melatonin synthesis.

This study identified 46 possible ASMT genes from walnuts 
based on published genomic data. Even though the selection 
criteria of hmmsearch and local BLAST were stringent and 
all genes were similarly validated for structural domains, the 

numbers of ASMTs in walnuts were still obviously higher than 
those in all currently identified species, including rice (19), 
Arabidopsis (19), tomato (13), pepper (16), wild mulberry (20), 
and apple (37). Some of the JrASMTs may have lost their 
functions. SlASMT13, which encodes only 103 amino acids in 
tomatoes, was determined to be a pseudogene (Liu et al., 2017). 
We  observed the same presence of JrASMT20 (103 aa) and 
JrASMT46 (112 aa) genes encoding short peptides in walnuts. 
Despite our retention of these two members, whether they 
were pseudogenes similar to SlASMT13 needs further 
confirmation. Another possible reason for such a large number 
of JrASMTs is the high degree of redundancy within the family; 
for example, JrASMT31 on chromosome 10 and JrASMT34 on 
chromosome 12 encode proteins with identical sequences, and 
JrASMT8 and JrASMT43 likewise share identical amino acid 
sequences. These functionally redundant genes increased the 
number of ASMT family members identified.

JrASMT genes contained relatively few exons; the simple 
gene structure confers a faster expression response of ASMT 
to ensure the realization of dynamic changes in melatonin 
content in plants. Most JrASMTs shared similar conserved 
motifs, except for members limited by the encoded protein 
length. The ASMT enzymes were more conserved among plants 

A

B

FIGURE 7 | Construction and expression analysis of core coexpression networks. (A) The core coexpression networks with JrASMT in the three modules. JrASMT 
was represented by red circles, known-function genes were represented by light blue circles, and unknown-function genes were represented by gray circles. Gray 
connecting lines indicated the presence of coexpression relationships, the thickness of the line indicated the confidence level of coexpression. The names of the 
modules were labeled above the network diagram. (B) Heat map of gene expression in the three coexpression networks. The horizontal axis was samples from 
different periods. The vertical axis was the genes name. The different colors represent the high or low expression levels. All genes were clustered hierarchically based 
on expression patterns. JrASMT was labeled in red.
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and localized in the cytoplasm, cytoskeleton, and chloroplast. 
Overall, these results were consistent with previous reports 
(Wang et  al., 2022). Interestingly, an X-ray crystal structure 
analysis showed that the Homo sapiens ASMT enzyme only 
had a helical domain at the N-terminal end that interacted 
with multiple monomers (Botros et  al., 2013). However, in 
terms of conserved motifs only, both the N-terminal and 

C-terminal motifs of JrASMT were significantly different, which 
provided a possibility for differences in the three-dimensional 
structure and substrate affinity between plant and animal ASMT 
enzymes. Although the crystal structure of the rice melatonin 
synthase OsTDC has been studied (Zhou et  al., 2020), data 
from high-resolution X-ray or Cryo-transmission electron 
microscopy of plant ASMT enzymes are still lacking. CREs is 

A

B

FIGURE 8 | Paraffin sectioning and Real-time quantitative PCR. (A) Results of paraffin sections of female flower buds of walnut at different periods, corresponding 
sample numbers were marked in the upper left corner. (B) Bar chart of the 18 JrASMTs Real-time quantitative PCR. The horizontal axis showed the names of 
samples from different periods. The vertical axis showed the real-time quantitative result. The corresponding JrASMTs name was labeled above the bar chart. The 
standard deviations were shown with error bars. Letters indicated the significance of differences between expressions. The expression at qP1 was used for 
normalization.
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an important regulator of gene expression, identification of 
CREs in the promoter region of JrASMT revealed that many 
elements are associated with light-response and hormone-
response, consistent with the manner in which melatonin is 
predominantly induced in plants (Arnao and Hernández-Ruiz, 
2021; Li et  al., 2021; Tiwari et  al., 2021; Yao et  al., 2021). 
The promoter of JrASMT20 was distributed with many ABA 
response elements ABRE, melatonin and ABA are both essential 
components of the phytohormone-mediated network (Zhang 
et  al., 2014, 2017; Hu et  al., 2021), JrASMT20 was probably 
involved in the synergistic response of melatonin and ABA 
in walnuts. JA response elements were enriched in the promoter 
region of JrASMT11 and JrASMT12. Melatonin and JA were 
considered to regulate together important plant physiological 
changes in biotic and abiotic stresses (Imran et al., 2021; Tiwari 
et  al., 2021), these two genes may mediate the interaction 
between melatonin and JA. Two groups of JrASMTs were 
predicted to be separately targeted by a large number of miR172 
and miR399 family members. miR172 regulation of meristem 
size, trichome initiation, stem elongation, branch meristem, 
and flowering capacity has been extensively characterized (Lian 
et al., 2021). miR399 plays an important role in plant resistance 
to various abiotic stresses (Li et  al., 2020; Pegler et  al., 2021). 
These results implied that miRNA172 and miR399 may antagonize 
the melatonin biosynthesis in walnuts under certain 
developmental stages or growth environments. This regulation 
is not mentioned in other studies (Liu et  al., 2017; 
Wang et  al., 2022).

Expansion and Differentiation of ASMT 
Genes During the Evolution of Land Plants
Evolution is the source of all biological functions. Exploring 
the evolutionary trajectories of species at the molecular (DNA, 
RNA, protein) scale is a common approach in modern 
evolutionary biology. Previous research on the evolution of 62 
ASMT genes in 13 species during plant terrestrialization showed 
that ASMT genes first appeared in primitive bacteria and 
expanded to embryophytes (Zhao et  al., 2021). Our study 
increased the number of species and ASMT proteins identified. 
ASMT genes were found in both cyanobacteria and green algae 
at early evolutionary stages, with the difference that only one 
single-copy ASMT gene was found in cyanobacteria, whereas 
this number was apparently increased in green algae. Considering 
the more complex life system and significantly greater 
photosynthetic capacity of green algae (Khan et  al., 2020), 
we  infer that the ASMT gene family had already expanded 
before plants began terrestrialization to better regulate melatonin 
biosynthesis and better accommodate new environmental and 
biological functional requirements.

The number of ASMT gene copies in higher plants does 
not appear to be  strongly correlated with evolutionary status 
or genome size, and the evolution of ASMT genes may have 
been influenced by a variety of complex factors, thereby 
perpetuating events such as gene duplication, loss, or mutation.

Significant divergence of ASMT genes has occurred within 
higher plants. A phylogenetic tree of 237 ASMT proteins 

provides direct evidence. Monocotyledonous and dicotyledonous 
clades are distributed on completely different evolutionary 
branches. All monocotyledonous phyla are in the same clade 
V(d), and dicotyledonous phyla are distributed in II–V(c) 
six different clades. This coincides with previous results for 
rice, Arabidopsis, tomato, and sorghum (Bhowal et  al., 2021). 
The difference is that the introduction of a large number of 
ASMT proteins in our study classified dicotyledonous plant 
ASMTs into four subgroups more reliably, which was not 
suggested by other phylogenetic analyses of ASMT families. 
Considering that the functions of most ASMT proteins, 
including those in Arabidopsis, have not been characterized 
in detail, these ASMT proteins were crudely classified into 
subgroups II-V(c) based on their distant relationship with 
algal ASMTs. There are obvious evolutionary distance differences 
between different subgroup clades. Subgroups II–IV share the 
same internal node, and they maintain a very close relationship 
with algal ASMTs. Subgroup V(a) contains only perennial 
woody plant ASMT members. Taken together, these results 
undoubtedly show a high degree of sequence and functional 
differentiation of ASMT genes in Dictyostelium. Three algal 
ASMT proteins are in separate clades and at different 
evolutionary distances, further demonstrating that the 
differentiation of ASMT genes occurred early in 
biological evolution.

Plant evolution is usually accompanied by mutations and 
the loss of large segments of genes. Molecular evolution 
encounters immense background noises; identifying the 
evolutionary trajectory of genes among species is difficult 
(Williams et  al., 2021). The orthology of ASMTs between 
different species was searched according to the distances 
between ASMTs. Although more or fewer orthologous genes 
existed between some species depending on the degree of 
species differentiation, in general, there were roughly four 
pairs orthologous ASMTs among dicots. The results of walnut 
collinearity analysis showed that these genes were also 
paralogous homologs, suggesting that these genes have 
maintained a high degree of collinearity among and within 
species in the evolution of the ASMT family. In contrast, 
only one ASMT gene is orthologous to these other genes 
in rice. Considering that the number of ASMT genes in 
both primitive bacteria and cyanobacteria was one, we believed 
that there was a single copy of ASMT genes in the ancient 
ancestor, which began to replicate and diverge in late algal 
evolution. Multiple whole-genome duplication events in higher 
plants caused chromosome duplication, rearrangements, and 
losses that expanded the number of ASMT genes, and the 
ancestral ASMT gene finally reached four copies in dicotyledons. 
These genes may represent the most conserved and typical 
functions of ASMTs. Both evolutionary trees and homology 
relationships suggest that monocot ASMT genes had fewer 
copies and were more conserved. This may be  related to 
the evolution of the ASMT toward caffeic acid 
O-methyltransferase (COMT) during plant terrestrialization 
(Zhao et  al., 2021). The reasons for this evolutionary drive 
playing a prominent role in monocotyledonous plants still 
need further investigation.
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Diversified Functions of JrASMTs in 
Walnut Flower Bud Development
Flowering in plants requires a complex series of physiological 
and biochemical processes, and several flowering pathways, such 
as photoperiod, vernalization, autonomous, and gibberellin, have 
been identified in Arabidopsis. The floral regulator gene Flowering 
locus T (FT) and the repressor of FT, Flowering locus C (FLC), 
are vital genes (Izawa, 2021). It has been demonstrated that 
melatonin participates in the flowering process in plants. High 
melatonin concentrations can inhibit flower opening in 
Chenopodium rubrum through the Photoinductive cycle (Kolář 
et  al., 2003). The differential expression of TDC in herbaceous 
peony (Paeonia lactiflora) flowers during different developmental 
periods caused significant changes in melatonin accumulation 
(Zhao et al., 2018). TDC, T5H, and COMT were highly expressed 
in rice before and after flowering, and the melatonin content 
was significantly higher than that in other tissues (Park et  al., 
2013b). Exogenous melatonin administration (500 μM) delayed 
flowering time and increased the stability of two flowering repressors 
of the DELLA protein in Arabidopsis (Shi et al., 2016). Nevertheless, 
the mechanisms involved in melatonin regulation of floral 
developmental processes and flowering time are still poorly 
understood. On the one hand, melatonin plays multiple roles in 
plant floral organs, often responding to stress and pressure (Sharif 
et  al., 2018). On the other hand, melatonin exhibits clear dose-
dependent and interspecies differences during flower development. 
Different amounts and concentrations of exogenous hormones 
may lead to conflicting effects (Arnao and Hernández-Ruiz, 2020).

Similar to the results of other melatonin synthases in plant 
flowers (Zhao et  al., 2018; Lee et  al., 2019; Pan et  al., 2021; 
Tsunoda et  al., 2021), JrASMT genes were also participated in 
walnut flower development in this study. Coexpression analysis 
divided these genes into three modules. Four ASMT genes in 
the black module participated in early physiological differentiation. 
Among their coexpressed genes, BUB3 is a core protein forming 
the spindle assembly checkpoint (SAC), which is associated with 
chromosome segregation in mitosis and meiosis (Komaki and 
Schnittger, 2017). Some components of the SAC promote flowering 
in Arabidopsis and have indirect interactions with FLC (Bao 
et al., 2014). CYCB2 is highly expressed during the floral transition 
of the shoot apical meristem (SAM) in Arabidopsis (Klepikova 
et  al., 2015). NACK regulates and controls cytoplasmic division 
within the mitogen-activated protein kinase (MAPK) pathway 
(Liang and Yang, 2019). These genes are evidently involved in 
floral developmental processes and cell fate, which coincides 
with melatonin-regulated rhythms. In addition, epistatic 
modifications may also be  important for the involvement of 
ASMT in flower bud differentiation in walnut. ADT acts as a 
possible methylation target induced by vernalization to promote 
beet priming and flowering (Hébrard et al., 2013). PRMT promotes 
growth and flowering in cauliflower through asymmetric arginine 
methylation (Niu et  al., 2007). Recent studies have revealed that 
Arabidopsis PRTM promotes FT by positively regulating flowering 
nuclear factor Ycs via physical interactions to promote FT 
transcript levels (Zhang et  al., 2021).

The four ASMT genes in the dark-gray and brown modules 
are mainly engaged in the morphological differentiation of walnut 

flower buds. Among the coexpressed genes, RD22 is a molecular 
marker of ABA signaling that is mediated by drought, salt, and 
other abiotic stresses (Harshavardhan et  al., 2014; Matus et  al., 
2014). HHP1 acts as a negative regulator of ABA in the crosstalk 
between cold stress and osmoregulation (Chen et  al., 2010). 
CDR plays a role in mediating the expression of plant defense 
genes and enhancing disease resistance through salicylic acid 
(Ying et  al., 2020). LOG converts nucleotide precursors of 
cytokinins into biologically active forms through the direct 
activation pathway. The content and location of cytokinins (CK) 
significantly impact plant flower development and sex 
differentiation (Kuroha et  al., 2009; Ming et  al., 2020). These 
results indicate that melatonin synergizes multiple hormonal 
regulatory networks during walnut flower development to influence 
and alter late developmental processes and resistance to multiple 
biotic-abiotic stresses in walnut flowers. The coexpression of 
several Receptor-like kinases (RLKs), generally considered receptor 
proteins for phytohormones and related to multiple stresses (Cui 
et  al., 2022), provides further evidence for this. Some research 
have suggested interaction between melatonin and NO, GA, 
and SL (Mukherjee, 2019; Zhang et  al., 2019b; Jahan et  al., 
2021). However, there is no similar direct evidence in our study. 
TBL is a component of plant cell wall polysaccharide acetylation 
(Gao et  al., 2017). A recent genetic map identified a JrTBL13 
gene on chromosome 4 associated with the flowering date in 
male walnut flowers (Bernard et  al., 2020). Interestingly, TBL33 
was coexpressed with JrASMT40 in our study. Most of the genes 
coexpressed with JrASMTs still lack precise functional annotation, 
and no reliable homologs exist in Arabidopsis.

qRT–PCR results verified the expression of the core network 
of JrASMT genes during the development of walnut flower 
buds. Moreover, some JrASMT genes, which were found to 
not be  differentially expressed, exhibited significantly high 
expression at specific floral developmental stages, JrASMT18 
and JrASMT33 were, respectively, homologous with SlASMT2 
and SlASMT12, which were specifically expressed in tomato 
buds and flowers. In our results, JrASMT18 was significantly 
highly expressed in qS2 period. In addition, Vigun11g097000 
was significantly associated with secondary metabolism changes 
during the V. unguiculata flowering period, and this gene was 
orthologs with JrASMT42. All these results certainly implying 
once again the complexity of the mechanisms involved in the 
regulation of plant flowering by melatonin. Overall, our study 
on the changes in melatonin synthase expression during 
germination and differentiation in a long-day flowering plant, 
walnut, provides a new perspective on the involvement of 
melatonin in plant flowering.

CONCLUSION

In this study, 46 members of the ASMT family were identified 
in walnut. The genes were distributed heterogeneously and in 
clusters on 10 chromosomes of walnut and were named sequentially. 
The gene structure, conserved motifs, and phylogeny of all JrASMT 
proteins were analyzed. The evolution of the ASMT family was 
examined among different lineages of plants, and ASMT divergence 
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began before the terrestrialization of plants. The presence of four 
homologous pairs of genes derived from a single copy of the 
ASMT gene in a distant ancestor is conserved within and among 
plants of the Dictyostelium phylum. A large number of light- and 
hormone-responsive elements are present in the promoter region 
of the JrASMT genes. Members with similar taxonomic status 
share a similar composition of CREs. RNA-seq data were also 
used in this study to explore the role of JrASMT in female flower 
bud development in walnut, and 13 JrASMT showed differential 
expression. WGCNA further suggested that JrASMT1/10/13/23 
were expressed in concert with cell cycle and epistatic modification 
genes at the stage of physiological differentiation of female flower 
buds. Similarly, JrASMT12/28/37/40 were involved in phytohormone 
regulatory networks such as ABA, SA, and CK during flower 
bud morphological differentiation, regulating flower development 
and providing stress tolerance in walnut. Paraffin sections and 
qRT-PCR verified the expression of core network genes and 
provided other JrASMT members that may have potential functions. 
In conclusion, this analysis of the ASMT family, a key enzyme 
for melatonin synthesis, and its study in walnut flowering provides 
a theoretical basis for further understanding the mechanism of 
melatonin synthesis and action in higher plants.
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