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Although growing evidence shows that microRNA (miRNA) regulates plant growth
and development, miRNA regulatory networks in plants are not well understood.
Current experimental studies cannot characterize miRNA regulatory networks on a large
scale. This information gap provides an excellent opportunity to employ computational
methods for global analysis and generate valuable models and hypotheses. To address
this opportunity, we collected miRNA–target interactions (MTIs) and used MTIs from
Arabidopsis thaliana and Medicago truncatula to predict homologous MTIs in soybeans,
resulting in 80,235 soybean MTIs in total. A multi-level iterative bi-clustering method
was developed to identify 483 soybean miRNA–target regulatory modules (MTRMs).
Furthermore, we collected soybean miRNA expression data and corresponding gene
expression data in response to abiotic stresses. By clustering these data, 37 MTRMs
related to abiotic stresses were identified, including stress-specific MTRMs and shared
MTRMs. These MTRMs have gene ontology (GO) enrichment in resistance response,
iron transport, positive growth regulation, etc. Our study predicts soybean MTRMs
and miRNA-GO networks under different stresses, and provides miRNA targeting
hypotheses for experimental analyses. The method can be applied to other biological
processes and other plants to elucidate miRNA co-regulation mechanisms.

Keywords: miRNA co-regulation, abiotic stress tolerance in soybeans, homology expansion, bi-clustering,
miRNA–target

INTRODUCTION

The growth and development of crops are often restricted due to various environmental
stresses, leading to poor harvests and yields below their genetic potential (Ku et al., 2015;
Li et al., 2017). In the past decade, microRNAs (miRNAs) have been identified as important
gene expression regulatory factors that play an essential role in plant growth and development
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(Ruiz-Ferrer and Voinnet, 2009). miRNA can target multiple
genes, and multiple miRNAs can also target the same gene.
miRNAs are involved in the expression of stress-responsive genes
and the plant’s ability to adapt to environmental change (Sunkar
et al., 2007). Different stresses can induce differential expressions
of corresponding miRNAs in plants, while some miRNAs can
simultaneously respond to several abiotic stresses (Shukla et al.,
2008; Song et al., 2019; Sun et al., 2019). Therefore, studying
the cooperative relationship among miRNAs and the interactions
with their target genes is essential for understanding the role of
miRNAs in controlling plant growth and development.

MicroRNAs may respond to adverse effects on plant growth
and development, such as drought, salinity, temperature, and
other abiotic environmental factors. It was shown that willow
leaves exposed to drought or high temperature induce differential
expressions of some miRNAs (Hivrale et al., 2016). For example,
miR169c plays a negative regulatory role under drought stress
by inhibiting the expression of its target gene nuclear factor
Y-A (NF-YA) (Yu Y. et al., 2019). miR172a (Pan et al., 2016)
and miR172c (Li et al., 2016) endow plants with a tolerance
to salt stress and water deficiency. Meanwhile, miRNAs also
indirectly respond to abiotic stress by regulating other biological
macromolecules. For example, miR398c can negatively regulate
multiple peroxisome-related genes (GmCSD1a/b, GmCSD2a/b/c,
and GmCCS) and affect the drought tolerance of the soybean
(Zhou et al., 2020). miR166k/o, miR390g, and miR396c/k mediate
BX10 (Al-tolerant genotype) root elongation, and miR169r
triggers the BD2 (Al-sensitive B genotype) oxidative stress, which
in turn triggers a different type of plant aluminum tolerance
between BX10 and BD2 (Huang et al., 2018). This indicates that
miRNA may regulate plant growth under abiotic stress through a
complex network. However, current studies typically explore the
role of few miRNA in response to abiotic stresses. From a global
view, how miRNAs work together as a co-regulatory mechanism
has not been significantly explored.

Several studies have uncovered interesting miRNA
interactions. For example, miR160 and miR167 are involved in
the adventitious root program of Arabidopsis (Xu et al., 2014c).
miR156 and miR172 play a role in the transition of soybean
nutrition (Yoshikawa et al., 2013). Transgenic studies of miR482,
miR1512, and miR1515 showed that their over-expression
may lead to a substantial increase in the number of soybean
nodules (Li et al., 2010). Another study verified networks of
365 tissue-specific miRNA–target interactions (MTIs) (Wang
et al., 2019). In addition, Ismalia et al. (2019) used SVR to study
the interaction between miRNA and lncRNA, constructed a
network of miRNA–mRNA, miRNA–lncRNA, and miRNA–
mRNA–lncRNA, and recognized their regulatory roles in stress
response of Arabidopsis thaliana. Tu et al. (2022) mined the
miRNA–lncRNA–TF regulatory network related to leaf and
flower development of Liriodendron chinense, and pointed out
that lch-lnc7374-miR156h-SPL3 and lch-lnc7374-miR156j-SPL9
are potential regulators of stamen and pistil development,
respectively. And the miR157a-SPL and miR160a-ARF modules
were validated using RLM-RACE, both of which are involved
in leaf and flower development (Tu et al., 2022).The synergistic
effects of miRNAs provide a new systematic perspective for the

entire microRNome (Xu et al., 2014c), which calls for a global
analysis of MTIs. Yang et al. (2021) found that the differential
expression of key miRNA–target modules in plants may promote
their root growth and development and enhance their tolerance
to various stresses. Fu et al. (2019) revealed the response
mechanism of potato miRNA–mRNA under alkali stress. It is of
great significance to explore the biological mechanism of plants
under abiotic stress from the perspective of miRNA–target.

Several methods have been developed and applied to explore
this field with the growing miRNA-target data. Shalgi et al.
(2007) first constructed a miRNA network from the target genes
predicted by PicTar and TargetScan. Xu et al. (2011) constructed
a human miRNA–miRNA functional synergy network through
co-regulation functional modules. Meanwhile, biclustering was
also applied for two different types of objects (gene and miRNA
in this case) belonging to the same cluster. Various bi-clustering
methods have been developed (Huang and Brutlag, 2001; Yoon
and De Micheli, 2005; Caldas and Kaski, 2011; Xie et al., 2019).
SAMBA (Tanay et al., 2002), ISA (Bergmann et al., 2003),
BIMAX (Prelic et al., 2006), QUBIC (Li et al., 2009), and
FABIA (Hochreiter et al., 2010) are some commonly used general
algorithms. Contiguous column coherent (CCC) biclustering
(Goncalves et al., 2009; Madeira et al., 2010; Medina et al.,
2010; Goncalves and Madeira, 2014; Henriques and Madeira,
2014; Henriques et al., 2017) and LateBiccluster (Goncalves
and Madeira, 2014) are designed for temporal data analysis.
BicPAM (Henriques and Madeira, 2014; Henriques et al.,
2017), BicNET (Henriques and Madeira, 2016) and MCbiclust
(Bentham et al., 2017) are the latest tools. Pio et al. (2013)
applied the biclustering algorithm to predict human miRNA–
mRNA modules. The application of biclustering algorithms and
miRNA–target regulation module (MTRM) mining is feasible
and important for analyzing miRNA regulation mechanisms.
Compared with traditional clustering methods, such as Bimax
(Prelic et al., 2006) and BiBit (Rodriguez-Baena et al., 2011),
CUBiBit (Gonzalez-Dominguez and Exposito, 2019) shortened
the computing time and provided an optimized method for
finding modules in larger data. However, the result obtained by
CUBiBit was mostly a fully-connected bipartite graph, and the
relationship between miRNA and the target gene is complex
and interactive.

In this study, we proposed a method to obtain the miRNA
regulatory modules and analyze their relationship in response
to abiotic stresses in the soybean as a means for extending our
understanding of soybean resistance mechanisms. Previously,
Xu et al. (2014d) provided a soybean miRNA-gene network,
SoyFN, based on predicted miRNA targets. However, this work
was based only on sequence comparisons, which may result
in a high false discovery rate. In contrast, in our work, we
collected experimentally proven miRNA–target relationships
based on degradome sequencing in the soybean and the
stringent homologs of miRNA–target pairs in A. thaliana and
M. truncatula. Based on these reliable miRNA–target data,
we performed a biclustering analysis. We iteratively fused the
overlapping biclusters based on the SoyNet network to obtain the
soybean miRNA–target regulatory modules in response to abiotic
stresses. We provide soybean MTRMs with high confidence
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relevant to various stresses, verified by REVIGO analysis to have
the concentration of GO functions, and present the miRNA–
GO regulatory networks of these modules. Capturing these
miRNA–target modules with biological significance expands
our understanding of the complex regulatory mechanisms of
miRNA. The methods used should be readily applicable to
other plant and animal systems where sufficient data exists to
perform the analyses.

MATERIALS AND METHODS

We collected soybean MTIs from A. thaliana and M. truncatula
databases and publications on miRNAs and genes of soybean
response to several abiotic stresses. Subsequently, we used
homology prediction on the collected MTIs to expand the
soybean MTIs. Next, we used the biclustering method to
mine the soybean MTRMs to perform overlap analysis to
remove the redundancy. Then, based on the soybean gene
interaction network, biclustering was applied through multi-
level iteration. Finally, based on soybean abiotic stress-related
miRNAs and genes, the fusion regulatory module was screened
to obtain soybean abiotic stress-related MTRMs. Figure 1 shows
a flowchart of our tasks and results.

Data Collection
We collected miRNA–target data of A. thaliana, soybean and
M. truncatula based on experimentally verified degradome
sequencing results from databases [DPMIND, Tarbase,
mirTarbase, and Starbase (Sethupathy et al., 2006; Hsu et al.,
2011; Yang et al., 2011; Li et al., 2014; Vlachos et al., 2015; Fei
et al., 2018)] and publications (Supplementary Table 1). In
addition, we collected the miRNA information of the three
species from the miRbase (Griffiths-Jones et al., 2008), the
gene annotation of the species in the NCBI, EnsemblPlants,
and the Phytozome (Goodstein et al., 2012; Howe et al., 2020).
We also downloaded the homologous genes of A. thaliana and
M. truncatula in Orthologous MAtrix (OMA) (Altenhoff et al.,
2011). Besides, we downloaded the soybean cDNA sequence
and soybean gene GO annotations from SoyBase (Grant et al.,
2010), and obtained soybean gene network data from SoyNet
(Kim et al., 2017).

We unified the miRNA and gene formats in the data in various
databases and publications, then put the data of the same species
together. Next, we annotated the miRNA–target data based on the
collected and processed miRNA details and the gene annotations
derived from the data of three species, including miRNA target
data, related notes, and data sources. Finally, after processing
the duplicated data, we obtained the miRNA–target data of
the three species.

Homologous Extension
We chose A. thaliana and M. truncatula to explore the potential
targets. A. thaliana as a model plant has rich high-quality
data. M. truncatula and soybean are closely related and have
many similar biological characteristics. We extracted the miRNA
sequence and removed redundant miRNAs with the same

sequence in the soybean and A. thaliana. Subsequently, we
extracted the target gene corresponding to the miRNA ID. Based
on these targeted genes, we obtained soybean genes homologous
to these genes from the A. thaliana-soybean homologous genes
downloaded by OMA. We assumed that targeting relationships
may exist if the sequences coexist and the genes are homologous.
Therefore, these homologous genes may be targeted by these
miRNAs in soybeans.

Targets obtained only based on homology information may
not exist; so, we extracted these miRNA sequences and the
cDNA sequence of target genes (SoyBase) and used miRNA-
target prediction tools to predict potential relationships. We
chose psRNAtarget (Dai and Zhao, 2011), TAPIR (Bonnet et al.,
2010), and Targetfinder (Bo and Wang, 2005), whose results were
better in non-Arabidopsis plants to predict potential soybean
miRNA–target relationships (Srivastava et al., 2014). The three
prediction software tools have different scoring methods. We
analyzed their respective scores and merged them. The homology
extension method forM. truncatula-soybean is the same as above.

Clustering Method
The current research on miRNA targeting relationships is mainly
based on one-to-one relative targeting. However, the miRNA
targeting relationship is a complex interaction. The traditional
clustering method is to cluster the same type of data, such as
k-means, whose mining results in the miRNA-target regulatory
module are poor because the targeting of miRNAs is sparse.
The relationship between miRNA and the target gene is a
bipartite graph structure; thus, the miRNA–target regulatory
group can be found by analyzing the bipartite graph. CUBiBit
(Gonzalez-Dominguez and Exposito, 2019) was proposed based
on Bimax(Prelic et al., 2006) and BiBit (Rodriguez-Baena et al.,
2011), which shortened the computing time and provided an
optimized method for finding modules in larger data. We
added the miRNA-target data based on the homology expansion
predictions from A. thaliana and M. truncatula into the collected
soybean miRNA-target data. Then, we extracted the miRNA-
Target data with GO annotations and glyma2ID based on the
soybean gene annotations of SoyBase. Finally, we used the
CUBiBit to perform bi-clustering to obtain the results.

Overlap and Iterative Fusion
The result obtained by CUBiBit was mostly a fully-connected
bipartite graph. However, the relationship between miRNA and
target gene is complex and interactive. Therefore, we proposed a
method of iterative fusion for MTRM modules based on a gene
interaction network (Figure 2).

We detected the completely included classes in the clustering
results and removed the included classes as the initial level
result. First, for each class of this level containing miRNAs
and genes, we judged the degree of overlap with other classes
of miRNA and genes to form alpha and beta matrices, both
of which are upper triangular matrices. After that, we set two
thresholds of miRNA and genes that can be potentially merged
for the two classes. We then recorded the two classes that
met the potential fusion class-class table requirements to form
a Boolean matrix. The initial alpha threshold was 0.3, and
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FIGURE 1 | Flowchart of the authors’ research method.

FIGURE 2 | miRNA-target regulatory modules (MTRM) iterative merge algorithm flowchart used to derive a gene interaction network.
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each iteration increased at a pace of 0.05 to conservatively
determine the fusionable module and keep this value unchanged
after rising to 0.8. It was sufficient if the beta threshold was
greater than 0. Next, we extracted the union of two class genes
and the network blocks of this pair of genes with a depth
of 2 layers based on the SoyNet network for each pair of
classes in the potentially merged class-class table. Subsequently,
network blocks containing smaller classes were extracted from
the obtained block set. We assumed that the network block
with the most smaller class genes represented the function of
the genes in the smaller class. Therefore, judging the number
of genes in the major category of this network block can
determine whether the genes of the two categories are similar
in function. If the genes of the two classes were concentrated
on a network block, which means that their genes interact
closely and meet the conditions of potential fusion, the two
classes can be merged. We compared the number of genes in
the major category with the numbers of genes in all major
categories in the sub-category function module to obtain scores
and determine the correlation. Finally, we compared the number
of genes in the major category with the number in all major
categories in the sub-category function module to obtain scores
to determine the correlation. The threshold was recorded as
gamma. When gamma >0.3 was satisfied, the two classes were
merged; otherwise, they would not be merged. For the class pairs
that meet the fusion condition, we arranged them in descending
order of alpha value and performed top-down non-repetitive
fusion. Each class can only merge at most one class in one
iteration. A new class set was formed as the new level, and
the fusion result was the output. The next iteration would be
performed and then another iteration until no fusion class pair
could meet the two conditions.

Function Assessment
Although this study does not include any experimental validation
of our prediction, we assessed the distributions of gene functions
indirectly to evaluate whether the results are biologically
meaningful. For the results of the above iterative fusion, the
enrichment of the classes in each level were separately analyzed.
For a bicluster, we extracted its genes, used SoyBase’s GO BP and
GO MF for enrichment analysis, and took the corrected GO ID
with the smallest p-value as the best enrichment result for this
type of cluster. When evaluating each class, the smallest p-value
alone was not enough to assess the importance of the class.
Instead, we used the cluster score to evaluate the enrichment of
all the GO IDs enriched by the class. For all the enriched GO IDs
of this class, we screened all the results with a p-value of less than
0.05 and then used Eq. (1) to calculate the cluster score of the
class.

clusterscore =
∑n

1
(
xi − log (correctPi)

)∑n
1 xi

(1)

Among them, n is the number of gene ontologies enriched in the
module, xi is the number of genes enriched in the i-th GO, and
correct Pi is the adjusted p-value of the i-th enriched GO.

Abiotic Stress Response miRNA–Target
Regulatory Module
We collected the miRNAs of soybeans that respond to drought,
salt, acid, and low temperature based on our studies of
publications (Subramanian et al., 2008; Kulcheski et al., 2011; Li
et al., 2011; Sha et al., 2012; Subramanian, 2012; Sunkar et al.,
2012; Dong et al., 2013; Zhang et al., 2014, 2018; Balyan et al.,
2015; Xu et al., 2016; Zheng et al., 2016; Chen et al., 2018; Gupta
et al., 2019; Proust et al., 2019; Yu J.-Y. et al., 2019; Wang et al.,
2020). At the same time, we collected the differentially expressed
soybean genes under various stresses. We screened these genes
with foldchange ≥2 and t-test p-value less than 0.05 as related
genes under abiotic stress. Then we marked the genes in the
module and calculated the p-value related to abiotic stress based
on the hypergeometric distribution. Finally, we screened based on
the cluster score calculated by the module, the p-value related to
stress, and the proportion of miRNA related to stress. In addition,
the screening procedures related to drought and salt stress were
consistent with the screening steps of the abiotic stress module.

Construction of miRNA-Gene Ontology
Network Under Abiotic Stress
Based on the results of MTRM mining under stress, we first
screened the GO of the enrichment results in the screened
module by p-value to remove the GO with a p-value less than
10−5; then, we performed a REVIGO semantic relevance analysis
and extraction of concentrated representative GO channels.
Based on the MTI data, the miRNA–GO relationship data was
constructed through the gene pointed to by the miRNA in the
module and the enriched go pathway to which the gene belongs.
The relationship between GO is based on the results of REVIGO
and the GO similarity calculation. The relationship is presented
by setting a threshold to remove some weaker relationships. More
detailed parameters are provided here or in the location of the
specific figure (Figure 3D).

RESULTS

We obtained 90,064 confirmed soybean MTIs based on multiple
experimental data sources and 1,189 potential soybean MTIs
based on homology to experimental data from A. thaliana
and M. truncatula. A multi-level iterative bi-clustering analysis
resulted in 483 soybean miRNA-target regulatory modules and
was evaluated according to GO enrichment function. In addition,
we identified 37 abiotic stress-related modules and predicted the
underlying miRNA regulatory pathway networks.

Identification of miRNA-Target
Interactions
We collected soybean miRNA–target data based on databases
and related publications. First, we gathered all the soybean MTIs
verified by degradome sequencing and biological experiments
by mining published data. As a result, we obtained 111,650
pairs of soybean MTIs (Sethupathy et al., 2006; Song et al.,
2011; Yang et al., 2011; Shamimuzzaman and Vodkin, 2012;
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FIGURE 3 | Gene ontology (GO) term analysis of MTRM genes under various abiotic stresses (A–C). (A) GO semantic correlation analysis of abiotic stress, (B)
drought stress, and (C) salt stress, and (D) the GO BP regulatory network of cooperative miRNAs under abiotic stresses. Triangles represent different miRNAs and
circles represent different GOs. The size of the circle is determined by the number of genes contained in the GO in this article. The color of the circle depends on the
representative GO. The areas with different colors show the modules obtained by our method.

Turner et al., 2012; Fang et al., 2013; Xu et al., 2013, 2014a;
Ye et al., 2014; Yan et al., 2015, 2016; Chen et al., 2016, 2017;
Ding et al., 2016; Liu et al., 2016; Fei et al., 2018), as shown in
Supplementary Table 1. After removing 21,586 redundant pairs
of MTIs, 90,064 pairs remained.

To expand MTIs, we predicted the target relationship between
potential miRNAs and targeting genes from the MTIs of
A. thaliana and M. truncatula based on homology. We obtained
12,094 unique pairs of Arabidopsis MTIs (Addo-Quaye et al.,
2008; German et al., 2008; Ding et al., 2012; Xu et al., 2014b;
Ma et al., 2018) and 4,394 unique pairs of Medicago MTIs
(Devers et al., 2011; Lauressergues et al., 2012; Zhou et al., 2012;
Ma et al., 2018) after removing redundant MTIs. Removing
any redundant MTIs resulting from identical miRNA sequences,
we further validated homology-based MTIs using three miRNA
target prediction tools that performed well in general plants,
i.e., psRNAtarget, TAPIR, and Targetfinder. In the Arabidopsis

MTIs, a total of 961 unique pairs of MTIs were confirmed. In
the Medicago MTIs, a total of 986 unique pairs of MTIs were
confirmed, as shown in Supplementary Figure 1. There is a high
overlap between the two sets of MTIs (Supplementary Table 2).
After removing the redundant ones, a total of 1,189 pairs were
used to expand soybean MTIs.

miRNA-Target Regulatory Modules
We integrated the 90,064 soybean MTIs with the 1,189 MTIs
based on homology. We removed MTIs involving genes that do
not have the glyma2 ID. A total of 11,018 MTIs were removed,
and the remaining 80,235 MTIs were used for analysis in the
following tasks.

We applied CUBiBit for bi-clustering analysis, with the
smallest scale 2 × 2 or 6 × 2 for miRNA-target modules
(i.e., at least two or six target genes and at least two miRNAs
in each module), resulting in 15,380 (2 × 2) miRNA-target
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FIGURE 4 | Multi-level iterative biclustering results of soybean MTRMs. (A) Results under different iteration times at the 2 × 2 scale, (B) results under different
iteration times at the 6 × 2 scale, and (C) the boxplot of the cluster score is calculated based on the gene ontology (GO) under the two scales when converging to a
stable level, where based on the overall distribution, the results at the 6 × 2 scale are better; (D) shows the MTRM bicluster at level 1 before the 6 × 2 scale fusion,
and (E) shows the corresponding MTRM bicluster at level 7 after the 6 × 2 scale fusion.

modules or 2,461 (6× 2) miRNA-target modules. We contracted
the overlapping modules using a multi-level iterative fusion
method based on the soybean gene relationship network (see
section “Materials and Methods”), yielding 6,577 (2 × 2) and
812 (6 × 2) soybean miRNA-target regulatory modules after
removing the modules that were completely included in the
preliminary clustering module.

We next merged MTRMs according to the set threshold
until the level converged stably (level represents the number of
iterations). Each level’s iterative fusion is shown in Figures 4A,B.
We compared the iterative results at different scales. Soybean
MTRMs at the 2 × 2 scale showed better results at level
10, which contains 2,715 MTRMs. Soybean MTRMs at the
6 × 2 scale showed a better effect at level 7, which
contains 483 MTRMs. Comparing the cluster score based
on the GO calculation between the two scales of stable
convergence (Figure 4C) shows that the cluster score quality
at the 6 × 2 scale is higher than that at the 2 × 2 level
(Supplementary Table 3). Hence, we used the GO enrichment

analysis result on 483 soybean MTRMs obtained at the
6× 2 level 7.

To compare the MTRMs before and after fusion, we extracted
an MTRM bicluster, as shown in Figure 4E, from the level 7
clustering results of the 6 × 2 scale and plotted it with the
corresponding MTRMs under level 1 before the fusion, as shown
in Figure 4E and after Figure 4D, which is a level-7 fusion. The
module (1,534) is at level 1 before the fusion has 2 miRNAs and 22
targeted genes. At level 7, the module (1,534) fused an additional
three modules, 1,539, 622, and 1,537, and each contains miR396.
From the perspective of targeting, the module at level 7 has more
miRNA-target interactions than the one at level 1.

Gene Ontology Analysis and Evaluation
of miRNA–Target Regulatory Modules
We screened 254 GO pathways whose GO biological processes
(BP) satisfied the p-value <0.00001 for the GO enrichment
from 483 soybean MTRMs obtained at the 6 × 2 scale at
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FIGURE 5 | Gene ontology (GO) analysis of soybean MTRMs. (A) Semantic relevance of GO terms wherein the GO pathway has a certain concentration. (B) GO
annotation enriched with 483 soybean MTRMs with enrichment results, which mainly involve positive regulation of development, heterochronic, chalcone
biosynthesis, defense responses, and mitochondrial mRNA modification. (C) GO enrichment of the top five soybean MTRMs. The listed GO terms were enriched
with significant p-values <0.00001.

level 7. We analyzed the relationship among the enriched
GO terms through REVIGO (Supek et al., 2011) with a
parameter of 0.5. These GO pathways have a specific aggregation
(Figure 5A). MTRMs obtained from a global perspective have
several concentrated distributions of GO functions, such as
cellular processes, primary metabolism, cell adhesion, hormone
response, and negative regulation of biological processes. In
addition, there are metachronous positive growth regulations
and chalcone biosynthesis. Chalcone plays an important role
in soybeans and is involved in the multi-branch pathway of
flavonoids and isoflavone biosynthesis (Subramanian et al.,
2006). The enrichment results mainly involve positive regulation
of development, heterochronic, chalcone biosynthesis, defense
response, mitochondrial mRNA modification, sulfate transport,
plant-type primary cell wall biogenesis, and cofactor biosynthesis,
as shown in Figure 5B.

In addition, we extracted the enrichment results of the top
biclusters in terms of cluster score among the 483 MTRMs and
selected the top five GO terms of each module, as shown in
Figure 5C and Supplementary Table 4.

Abiotic Stress-Related Modules
To explore the biological significance of soybean MTRMs, we
collected related soybean miRNAs, which revealed five types of
abiotic stresses, involving (1) drought, (2) salt, (3) cold, (4) Pi,
(5) phosphorus deficiency based on publications (Subramanian
et al., 2008; Kulcheski et al., 2011; Li et al., 2011; Sha et al., 2012;

Subramanian, 2012; Sunkar et al., 2012; Dong et al., 2013; Zhang
et al., 2014, 2018; Balyan et al., 2015; Xu et al., 2016; Zheng et al.,
2016; Chen et al., 2018; Gupta et al., 2019; Proust et al., 2019; Yu
J.-Y. et al., 2019; Wang et al., 2020). The function annotations
of these miRNAs are shown in Supplementary Table 5. In
most processes, soybean miRNA responses are involved in
multiple abiotic responses, as shown in Figure 6A. Therefore,
mining these miRNAs’ potential cooperative regulatory modules
is important to understand their role in modulating soybean
stress responses.

We correlated the 483 soybean MTRMs obtained by clustering
with the functional annotations. We selected miRNAs that
responded to drought resistance, salt resistance, heat stress, cold
stress, and acid stress. And we performed a statistical analysis
on the miRNAs in each of the 483 biclusters. We collected
data on the differential expression of soybean genes in the
MTRMs under drought, salt, low temperature, cold, and acid
stress (Supplementary Table 6). The conditions for screening
differentially expressed genes are log2FC > 1, p < 0.05. We
obtained 2,145 differentially expressed genes under soybean
drought and 1,752 differentially expressed genes under salt
treatment. Figure 6B shows the genes in the module together
with an abiotic stress diagram. At the same time, we calculated
the p-values and FDR. We used the Benjamin Graham formula
to correct the p-value of the genes in each MTRM for the
differentially expressed genes under abiotic stress scenarios
through the hypergeometric distribution, as shown in Figure 6C.
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FIGURE 6 | Collected miRNA data on soybeans involved in various abiotic stress responses based on the data statistics from the literature. (A) The distribution of
stress types in miRNAs where each vertical line represents one miRNA, and red is marked as relevant, (B) UpSet diagram (Lex et al., 2014) of modular genes under
various abiotic stresses within the horizontal correspondence, where dots are used to refer to the corresponding cold stress, acid stress, heat stress, drought stress,
and salt stress on the left. The point-to-point connection is realized longitudinally to indicate the intersection between the corresponding data sets, and the upper bar
graph shows the number of genes in the intersection. In panel (C), the differentially expressed genes in each MTRM under abiotic stress are shown after screening.
We used three indicators to filter the candidate clusters. According to the p-value, the related miRNA purity and the cluster score of each MTRM gene are placed
under the corresponding stress. We selected the corresponding threshold, obtained the stress-related MTRMs with higher reliability, and marked them as red dots in
Panel (C). Supplementary Figure 2 shows MTRMs under other types of stress.

Subsequently, we screened MTRMs related to abiotic stress,
drought, and salt stress according to the p-value of differentially
expressed genes corresponding to the stress in the MTRMs
(p < 0.001, single adversity 0.01), the proportion of the
corresponding miRNA family function (miR function ratio),
and the cluster score (cluster score > median). The screening
results are shown in Supplementary Table 6. We obtained
37 MTRMs related to abiotic stress, including 34 MTRMs
related to drought stress, 27 MTRMs related to salt stress,
3 MTRMs related to cold stress, and 21 MTRMs related to
heat stress. Figure 7A shows the set relationship of MTRMs
involved in a variety of stresses. The data suggest that soybean
miRNAs have basic and universal functional modules in their
response mechanisms to drought, high salt, high temperature,
low temperature, and other abiotic stresses. There are two
shared modules (M31 and M493), involving 6 miRNAs and
11 miRNAs (Figure 7B), respectively. The six miRNAs of
module M31 belong to the miR156 family. The regulated

gene-enriched GO pathway is a transcription regulation, DNA-
dependent (p-value 4.24 e-10), and a vegetative phase change
regulation with a p-value of 9.24 e-07. The 11 miRNAs of
module M493 are mainly in the miR172 family, in addition to
miR156, miR1533, miR4374, miR5782, miR3939. The regulated
gene-enriched GO pathway involves an oxidation-reduction
process (p-value = 4.66 e-12) and a root hair elongation (p-
value = 1.63e-08). Among them, miR156 is up-regulated in
response to stress under drought conditions, in addition miR156d
and miR156c play an important role in the heat tolerance of
Arabidopsis (Zheng et al., 2016). miR172b, miR172h, miR172j-
5p are down-regulated under drought stress to cope with water
stress. miR156 is involved in the regulation of gene expression
and signal transduction in response to soybean stimulation
in a cold stress environment (Xu et al., 2016). miR156 and
miR172 have been confirmed to respond to salt stress in a
variety of plants (Sun et al., 2016). Moreover, we also found
stress-specific regulatory modules in our results, including 14
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FIGURE 7 | Soybean MTRMs under various abiotic stresses. (A) Venn diagram of 37 kinds of soybean MTRMs under various abiotic stresses, including 14
drought-specific MTRMs, seven salt-specific MTRMs, two heat-specific MTRMs, and two shared MTRMs, (B) the miRNAs in the two shared MTRMs 31 and 493,
and (C) a GO Treemap of 37 MTRMs under abiotic stress.

drought-specific MTRMs, seven salt-specific MTRMs, and two
heat-specific MTRMs (Supplementary Table 7).

The functions of related miRNA regulatory modules under
abiotic stress are mainly concentrated in positive regulation
of developmental heterochrony, defense responses, cell
wall organization, and other biological processes, as shown
in Figure 7C. In addition to plant positive regulation of
development and defense response, GO functions such as cell
wall organization also produce different response mechanisms
under abiotic stresses. For example, salt stress disrupts cell
walls integrity (Liu et al., 2021), and cell walls are adaptively

regulate under drought stress (Moore et al., 2008). Moreover,
plants reduce gibberellin production to reduce growth in
order to concentrate energy against stress (Colebrook et al.,
2014), sweet briar rose (Rosa rubiginosa L.) adapts to drought
conditions by regulating gibberellin (Gadzinowska et al., 2020),
and pea seeds adapt to heat stress by reducing gibberellin
production (Leitão and Enguita, 2016), Gibberellin in A. thaliana
is activated in a low-salt environment (Liu et al., 2013). Thus,
GOs enriched in MTRMs play an important role in various
stress responses. The data of the top five modules are shown in
Supplementary Table 8.
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miRNA Regulatory Pathway Network
Under Abiotic Stress
We explored the regulatory pathway network corresponding to
the miRNA of the miRNA–target regulatory module in soybean
abiotic stress and analyzed the GO terms of MTRM genes under
various abiotic stresses. Stringent screening conditions were used,
i.e., the p-value of MTRM stress is 0.001, and the GO BP pathway
was selected with a p-value of less than 10−5. The REVIGO-
based GO language correlation analysis is shown in Figure 3. GO
channels with similar functions are closer in the distance in the
figure. This is because the small RNAs targeting a certain cluster
of GO are functionally close, and the 37 MTRMs of soybeans
in abiotic stresses identified in this study mainly focus on
resistance response, iron transport, positive growth regulation,
and cell wall organization. Under abiotic stress, the cooperating
miRNA regulatory modules of the soybean mainly regulate these
pathways to respond to the stress environment. Figures 3B,C
show the correlation analysis between drought stress and salt
stress with specificity.

Subsequently, we constructed the GO BP regulatory network
of cooperative miRNAs under soybean abiotic stress for the
above main regulatory GO categories and miRNAs, as shown in
Figure 3D. Multi-component miRNA families mainly regulate
gene expressions related to abiotic stress responses. For example,
the miR167 family regulates the resistance response pathway; the
miR171 family regulates the gibberellin biosynthesis pathway,
while the miR395 family participates in regulating the iron
uptake. Moreover, some miRNAs have multiple GO functional
partitions, such as miR156b, which regulates developmental
growth, the timing of developmental events, the response to
hormones, and the response to heavy metal cadmium. The
miRNA families and regulatory pathways involved in MTRM are
detailed in Supplementary Table 9.

DISCUSSION

miRNAs are major regulators of plant growth and development.
They can also regulate environmental responses (Aukerman
and Sakai, 2003; Chen, 2004; Zhu and Helliwell, 2011;
Khraiwesh et al., 2012; Mao et al., 2013; Turner et al., 2013; Yan
et al., 2013; Wong et al., 2014; Wang et al., 2015; Kulcheski et al.,
2016). Hence, the study of the role of miRNAs is crucial—not only
to understand the basic events of plant biology but to improve
breeding for higher yields and more resilient crop plants. While
various papers have noted the role of one or a few miRNAs
in regulating plant stress responses, a global analysis of the
cooperative interactions is lacking. To study miRNA regulation
in response to abiotic response in the soybean, we collected
a large number of soybean MTIs. In addition, we proposed a
multi-level iterative fusion method of soybean MTRMs based on
soybean gene networks.

We mined 483 soybean MTRMs, which provide a data
reference for analyzing the cooperative miRNA mechanism of
the soybean. Some MTRMs are involved in the biosynthesis of
chalcone, which is derived from the general phenylpropanoid
pathway that plays a wide variety of roles in soybeans and

other plants. In most cases, gene regulation in each MTRMs
involved a multi-component miRNA gene family. In some cases,
these families were predicted to act cooperatively, which is
consistent with the conclusion of Wang et al. (2019). And in
the MTRMs we found under abiotic stress in soybean, such
as regulatory module M477, which contains miR396, miR172,
miR1507 and so on. Among them, soybean miRNA396 and
miRNA172 are expressed in soybean drought (Zheng et al., 2016),
and miR396s interact with growth-regulating factors (GRFs) to
regulate plant growth, development and stress resistance. Liu
et al. showed that 7 gma-miR396 (gma-miR396a/b/c/h/e/i/k)
and 20 GmGRFs (GmGRF1/2/6-11/13-24) in soybean represent
developed a many-to-many network interaction (Liu et al.,
2017). Sahito et al. (2017) found that the expression level of
soybean NNC1 (Nodule Number Control 1) affects its response
to salt stress, while miR172 targets NNC1 and is induced
by salt stress. In other plants, the expression of miR396 in
rice and Arabidopsis affected the tolerance of plants under
the saline-alkali stress (Ning et al., 2019), while another the
expression of miR396 in rice was up-regulated under cold
conditions (Sun et al., 2019). Sunflower HaWRKY6 (Helianthus
annuus) gene expression is related to high-temperature stress,
and miR396 has a regulatory effect on this gene (Giacomelli
et al., 2012). It can be seen that miR396 has an important
regulatory function under abiotic stress such as drought,
cold, heat, and salt. Moreover, in the target proteins of the
regulatory module M477, in addition to enzymes, transcription
factors, etc., we also found some disease resistance-related
proteins such as RPM1, RGA2, RGA, and some heat response-
related proteins, DnaJ, heat shock 70 kDa protein 14, etc.
Jiang et al. (2017) found that PWY-6842 was up-regulated in
Arabidopsis under both biotic and abiotic stress. This also
indicates that the regulatory mechanism of plants under abiotic
stress may have commonalities between the underlying and
biotic stress mechanisms. Recent studies have also shown that
under biotic and abiotic stress, plants will have a series of
signal regulatory networks, such as those mediated by Ca2+,
ABA, and G proteins (Ku et al., 2018). The same miRNAs
are differentially expressed in adversity (Kar and Raichaudhuri,
2021). It means that the MTRMs of soybean under abiotic
stress we excavated have important significance for the regulatory
mechanism of soybean under abiotic stress and the coordinated
regulation of miRNAs.

Interestingly, we found that miRNAs from different families
are also involved in the same regulatory gene clusters, which
indicates that different miRNA families may have cross-
family cooperative regulatory mechanisms in regulating certain
functions. In contrast, miRNAs in the same family can be in
different MTRMs; for example, the miR171 family (miR172b-
5p, miR172h-5p, miR172f, miR172g, miR172j, and miR172k) are
in multiple regulatory modules during drought and salt stress.
Such hub miRNAs may be useful research targets for exploring
soybean resistance mechanisms and resistance to breeding
research under different stresses. After further combining the
analysis of differentially expressed genes in soybeans under
various stresses, we obtained the miRNA-GO regulatory network
under abiotic stress. The GO BP contains a variety of important
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related pathways for understanding the common mechanisms
in stress response. The research covering the plant miRNA
regulation module can analyze the coordination mechanism of
miRNA from a global perspective and determine the regulation
relationship between modules, which may help explore the
regulation mechanism of soybean miRNAs.
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