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Cherry tomato (Solanum lycopersicum) is popular with consumers over the world

due to its special flavor. Soluble solids content (SSC) and firmness are two key

metrics for evaluating the product qualities. In this work, we develop non-destructive

testing techniques for SSC and fruit firmness based on hyperspectral images and the

corresponding deep learning regression model. Hyperspectral reflectance images of over

200 tomato fruits are derived with the spectrum ranging from 400 to 1,000 nm. The

acquired hyperspectral images are corrected and the spectral information are extracted.

A novel one-dimensional (1D) convolutional ResNet (Con1dResNet) based regression

model is proposed and compared with the state of art techniques. Experimental results

show that, with a relatively large number of samples our technique is 26.4% better than

state of art technique for SSC and 33.7% for firmness. The results of this study indicate

the application potential of hyperspectral imaging technique in the SSC and firmness

detection, which provides a new option for non-destructive testing of cherry tomato fruit

quality in the future.

Keywords: hyperspectral imaging, deep learning, cherry tomato, soluble solids content, firmness, one-

dimensional convolutional neural networks

1. INTRODUCTION

Tomato is a very popular fruit globally and its annual production reaches 186.82 million tons in
2020 (FAO, 2021). Tomatoes contain rich nutrients such as lycopene, β-carotene and vitamins
(Sainju et al., 2003; Gao et al., 2020) etc. To facilitate the tomato production, processing, and
marketing, its grade and maturity needs to be evaluated. In general, soluble solids and firmness are
two key indicators (Beckles, 2012). SSC can be used to grade tomato quality and the firmness can be
used to determine fruit maturity (Peng and Lu, 2008). The existing measuring techniques relying
upon chemistry reactions can derive the SSC value accurately. However, the destructive methods
can not be applied in high volume measurements. Moreover, there are significant variations so that
sampling can be inefficient and inaccurate (Li et al., 2013). Therefore, in this work, we propose
a hyperspectral imaging and deep learning based technique to measure tomato SSC and firmness
nondestructively, accurately, and in high volume.

Spectroscopy is a widely used nondestructive testing method for fruit inspection. It includes
various imaging techniques including visible, near infrared, terahertz spectroscopy, raman
spectroscopy, and hyperspectral imaging etc. Visible and near infrared spectroscopy are rapid,
convenient, and low cost. However, they are contrained by limited spectral band (Yin et al., 2019).
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Terahertz (THz) radiation hasmicrowave and infrared properties
and is able to penetrate and interact with many common
materials, its equipments are very expensive (Afsah-Hejri et al.,
2019). Raman spectroscopy is easy to operate, quick to measure,
and contains rich information. However, its performance
is inferior in terms of stability and sensitivity (Weng et al.,
2019). Hyperspectral imaging technology can simultaneously
detect the two-dimensional spatial information and 1D
spectral information, therefore combine image and spectral
characteristics (Adão et al., 2017). It can derive the overall spatial
spectral information of cherry tomato and thus, is selected as the
imaging method.

Hyperspectral imaging has been widely used for non-
destructive testing in various fields, such as detection of plant
disease stress (Lowe et al., 2017), industrial food packaging
(Medus et al., 2021), medical image classification (Jeyaraj and
Nadar, 2019), and horticultural products (Huang et al., 2017).
Hyperspectral images are also effective for quality analysis of
fruits. Rahman et al. (2017) use hyperspectral imaging to estimate
metrics such as water content and PH readings. Zhou et al.
(2020) use it to classify the maize seeds. Fan et al. (2015)
use it to predict SSC and firmness in pears. They combine
the competitive adaptive reweighted sampling and successive
projection algorithm to select the variables as in partial least
squares regression (PLSR). Rahman et al. (2018) fit sweetness
and firmness of tomato. Lu et al. (2017) gives a review of
the application of recent hyperspectral techniques. Therefore,
hyperspectral imaging techniques can effectively measure or
classify fruit and vegetable products.

The existing spectral analysis techniques typically require
a regression model to fit the spectral data (Jiang and Chen,
2015), which have been widely used in areas such as food,
petrochemical, and pharmaceutical fields (Chen et al., 2018). In
general, variousmachine learning based algorithms are employed
to build classification and regression models for hyperspectral
images. Li et al. (2016) use PLSR to build a hyperspectral
regression model to predict the water status of grapevines. Guo
C. et al. (2016) develop an SVM model to assess the maturity
of strawberries. Abdulridha et al. (2019) combine hyperspectral
imaging and KNN algorithm to differentiate ulcer-infected fruits.
Ji et al. (2019) use the AdaBoost algorithm to recognize the rate
of potato damage. The machine learning algorithms typically
perform a filtering process on the spectral bands.

Deep learning models, e.g., convolutional neural network
(CNN), can learn features automatically from a large amount of
data (Guo Y. et al., 2016). It is widely used in medics (Esteva
et al., 2019), industry (Hossain et al., 2018), agriculture (Kamilaris
and Prenafeta-Boldú, 2018), object detection (Zou et al., 2019),
and signal processing (Yu and Deng, 2010) etc. This technique
is also used in building hyperspectral correction models for
classification and prediction. Paoletti et al. (2019) summarize the
application of deep learning for hyperspectral image classification
and conclude that CNNbasedmodels are generallymore effective
due to their capacity to extract highly discriminatory features and
leverage the spatial and spectral information. Qiu et al. (2018)
demonstrate that CNN outperforms other machine learning
methods for rice variety identification application. Kong et al.

(2014) track activity of peroxidase in tomato hyperspectral
images using genetic algorithm and extreme learning machine.
Rahman et al. (2018) develop a regression model in 1,000–
1,550 nm hyperspectral images using PLSR method to estimate
sweetness and firmness with R2 of 0.672 and 0.548, respectively.

In this work, we propose a deep learning and hyperspectral
imaging based technique to estimate the metrics inside cherry
tomato. Specifically, we havemade the following contributions.

1. We demonstrate the effectiveness of deep learning based
techniques and propose such amodel to estimate fruit SSC and
firmness.

2. We explore the tradeoff between sample number and model
accuracy.

3. We collect real-world field data and evaluate the performance
of our technique.

The experimental results show that our technique is 26.4% better
than the state of art technique in SSC estimation and 33.4% in
firmness estimation.

2. MATERIALS AND METHODS

In this section, we describe the sample preparation, hyperspectral
image acquisition and calibration, and the ground truth
measurements for SSC and firmness methods. Specifically, we
develop Con1dResNet, a deep learning and hyperspectral image
based SSC and firmness estimation technique. Meanwhile, four
comparing baseline techniques are also introduced.

2.1. Sample Preparation
The sample plant is a local mainstream cherry tomato (cultivar:
Zheyingfen-1), which is dominating in the local market more
with 70% share. The seeds first grow in the lab with tight
environment control for one month. Then the seedlings are
transplanted to the greenhouse of the Zhejiang academy of
agricultural sciences, Hangzhou, China (east longitude 120◦2’,
north latitude 30◦27’) on April 2nd (early spring), 2021. Field
management is implemented following the standard commercial
procedures. Cherry tomato fruits are harvested in June 2021.
Two-hundred fully mature fruits are collected from 50 different
plants for hyperspectral image acquisition. Firmness and soluble
solids content of each fruit is measured using portable firmness
tester and hand-held refractometer after image acquisition,
respectively. The fruits of “Zheyingfen-1” were ideal for our study
due to its highly soluble solid content limit, which would help
extending the modeling range in this study.

2.1.1. Hyperspectral Image Acquisition
A hyperspectral imaging system is used to derive the clear
and unblurred hyperspectral images as shown in Figure 1. We
use a push-broom hyperspectral camera (PIKA XC, Resonon
Inc., Bozeman, MT, USA) mounted 20 cm above the tomato
samples. The hyperspectral images are acquired with the spatial
resolution of 50 pixels per mm2 under artificial lighting (four
15 W 12 V light bulbs with two on either side of the lens). The
main specifications of the hyperspectral camera were: interface,
Firewire (IEEE 1394b), digital output (14 bit), and angular field
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FIGURE 1 | Schematic of the hyperspectral imaging system for acquiring spectral scattering images from cherry tomatoes.

FIGURE 2 | (A) ENVI original hyperspectral image. (B) Area map of ROI

acquired by ENVI.

of view of 7◦. The objective lens had a 17 mm focal length
(maximum aperture of F1.4), optimized for the hyperspectral.
We acquire reflectance data in 462 spectral bands from 386 to
1,004 nm with a spectral resolution of 1.3 nm. Due to the convex
surface of the samples, the uneven reflection creates a highlighted
region near the vertical axial as shown in Figure 2A. Thus, we
use ENVI5.3 (ITT, Visual Information Solutions, Boulder, CO,
USA) (Su et al., 2021) to avoid the highlight region and extract the
reflection value for each band from the region of interest (Xue,
2010; Fu et al., 2021; Figure 2B). The processed cherry tomato
samples and the corresponding hyperspectral images are divided
into training set, validation set, and test set with ratio of 7:1:2,
respectively. We use varying dataset size, with a small set if 50
samples and a large set of 200 samples.

2.1.2. Hyperspectral Image Calibration
In reflectance calibration, the acquired hyperspectral image needs
to be calibrated for the background spectral response of the
instrument and the thermal dark current of the camera. The
spectral data collected from the CCD device contains only the
detector signal intensity value (Elmasry et al., 2012). Therefore, it
is required to convert the raw data to reflectance or absorptivity
values by comparing to the spectra of standard reference

substances (Burger and Geladi, 2005) as shown in Figure 3. The
reflectance can be derived using the following equation.

Rc =
Rori − Rdark

Rwhite − Rdark
,

where Rc is the corrected hyperspectral reflectance, Rori is the
original reflection value extracted from ENVI5.3, Rdark is the
dark environment hyperspectral image reflection value, which
is acquired using an opaque lens cap covering the hyperspectral
lens, and Rwhite is the reflection value of a piece of white Teflon
(100% reflectance, K-Mac Plastics, MI, USA).

2.1.3. Baseline Measurement
The baseline firmness and SSC of cherry tomatoes are measured
in the lab. For the firmness measurement, the cherry tomatoes
are fixed on a portable firmness measurement equipment (GY-
4, Zhejiang Top Cloud-Agri Technology Co., Ltd, China). The
equipment is zero-calibrated. Starting from the contact of the
probe with the cherry tomato surface, the 10 mm downward
pressure is considered as the firmness value.

SSCmeasurements follow the firmness measurements. Cherry
tomatoes are cut along the vertical axis and wrapped using a
gauze. Then they are squeezed manually to force out the solution.
About one milliliter tomato solution is placed on the prism
of a portable digital refractometer (PAL-1, ATAGO CHINA
Guangzhou Co., Ltd, China) to derive the baseline SSC readings.
Each cherry tomato sample solution is measured for three times
and the results are averaged to reduce the effect of random
environment events.

2.2. Hyperspectral Pre-processing
2.2.1. Multiple Scattering Correction
Multiple scattering correction (MSC) is a commonly used
algorithm for hyperspectral data pre-processing (Zhang et al.,
2012). MSC can effectively eliminate the spectral differences
due to varying scattering levels, thus enhance the correlation
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FIGURE 3 | Schematic diagram of the structure and data of the corrected hyperspectral image: spatial axis x, y, and wavebands.

between the spectrum and the data. This method can correct the
baseline shifting and skewing using ideal spectra. The specific
implementation is as follows:

1. assign the average of all hyperspectral data as “ideal spectrum;”
2. use one-dimensional linear regression and least square

method to derive the baseline shifting and skewing values for
each sample;

3. subtract the baseline shifting value and the divide the result
using the skewing value to generate the corrected spectrum.

2.2.2. Spectral Differential Techniques
The spectral differentiation technique involves mathematical
simulation of the reflectance spectrum and calculation of
differential values of different orders to determine the spectral
bending point and the wavelength for the maximum and
minimum reflectance. The data processed using second-order
differentiation can reflect the spectrum variation caused by the
absorption of biochemical elements such as plant chlorophyll,
water, and nitrogen (Liu, 2020).

2.3. Image Processing Models
2.3.1. Deep Learning Model
Deep learning models are widely used in medical image
processings (Kiranyaz et al., 2015). However, in this work, it is
required to build appropriate regression models. In general, we
propose the Con1dResNet model to estimate the tomato SSC
and firmness.

ResNet (He et al., 2016), a popular model for image
classification, can solve the degradation problem of deep
networks. Thus, ResNet34 is implemented as the baseline
network structure, and the original convolutional layer is
reconstructed to be one-dimensional, accordingly. We use the
Adam optimizer and mean squared error loss function. We
change the number of categories output by the last fully
connected layer to one so that the network directly outputs the
estimated values of SSC and firmness.

The specific network structure is shown in Figure 4. In the
figure, the input is the reflectance values of the processed 462

spectral bands. There are fivemain blocks. The first block consists
of a 1D convolution layer and a maximum pool layer, and
then continues through a dropout layer with parameter 0.5. The
second blockX contains three residuals module. The third blockX
contains one downsampled module and three residuals module.
The fourth blockX goes through one downsampled module and
five residuals module before a dropout layer with parameter 0.5,
and then continues through three residuals module. The fifth
block consists of a mean pool layer and linear output layer. The
number of convolution filters doubles as the block goes deeper
(starting with 32 and ending with 128). All convolutional layers
have a kernel size of 3 and a step size of 3. By connecting the
convolutional layers together, deeper layers can be connected to
a larger portion of the original input. Thus, different layers see
the original input and learning ability at different levels. The
last deeper layer outputs the SSC estimation, which converge
to the ground truth value under the approximation of the MSE
loss function.

2.3.2. Machine Learning Models
In this work, we select four widely-used machine learning models
as references to our deep learning based technique.As described
in Table 1, they are Support Vactor Regression (SVR) (Castro-
Neto et al., 2009), K-Nearest Neighbors Regression (KNNR) (Yao
and Ruzzo, 2006), Adaptive Boosting Regression (AdaBoostR)
(Freund et al., 1999), and Partial Least Squares Regression(PLSR)
(Wold et al., 2001).

2.3.3. Experimental Setup
The algorithms are trained and run on a platform with an
I7-8750H CPU and a 1,060 GPU. They are programmed
using python and tensorflow etc. The datasets are divided as
described in Table 2. The processed spectral data are used in
the machine learning models while the raw spectral data are
used in the Con1dResNet network. Since our deep learning
model Con1dResNet can extract low to high dimensional features
automatically, we use the original spectral data instead. We set
Relu as the activation function, Adam as the optimizer, MSE as
the loss function, the number of iterations to 50, and the batch
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FIGURE 4 | Con1dResNet network structure schematic.

TABLE 1 | Advantages, disadvantages, and applications of machine learning models in hyperspectrum.

Machine learning models Advantages Disadvantages Quality parameters

SVR Fast data fitting Prone to overfitting phenomenon Rice moisture (Sun et al., 2017)

KNNR Low training time complexity Computationally intensive biomass (Tian et al., 2021)

Adaboost Weak learners can be constantly updated Vulnerable to noise interference Soil organic matter (Wei et al., 2020)

PLSR Suitable for data with multiple features Not suitable for data with few features SSC (Li et al., 2016)

size t o 16. After 50 iterations of training, the loss decreases
from 72.86 at the beginning to 0.01, indicating a convergence for
the algorithm.

3. RESULTS

In this section, we evaluate our techniques in SSC and firmness
estimation.

3.1. Hyperspectral Waveform
Characteristics
Figure 5A shows the reflectance spectra of 200 cherry tomato
samples at 386–1,004 nm. The spectral trends are similar for each
sample since the reflection substances are the same. The cherry
tomatoes have a strong absorption band at 400–550 nmdue to the
presence of carotenoids in ripe tomatoes (Ecarnot et al., 2013).
The reflectance data are then processed using MSC. As shown in
Figure 5B, it can effectively reduce the noise and hence, smooth
the curve. Finally, we use second order differentiation method
(Ichige et al., 2006) to process the smoothed reflectance data and

discover clear peaks at locations of 580–590, 680–690, and 970–
980 nm, as shown in Figure 5C. The three peaks are likely to
be attributed to the combined effect of the second overtone of
OH key, water, and tomato surface color (Li et al., 2013; Qiu
et al., 2018). Therefore, by proper processing, the variations in
the spectral curves can reveal certain hidden information, such
as SSC and water.

3.2. Analysis
Table 2 summarizes the distribution characteristics of SSC and
firmness in different stages. The SSC and firmness measurements
for the 50 and 200 samples are close to normally distributed
around the mean values of 9.11◦ Brix, 9.04 N/cm2 and 8.72◦

Brix, 8.85 N/cm2, standard deviations (SD) of 0.76, 1.35 and 0.66,
1.23, respectively.

3.3. SSC Estimation Result
Four machine learning models are implemented and compared
with our proposed Con1dResNet network. We use R2 and
MSE as the evaluation metrics. They are calculated using the
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TABLE 2 | Cherry tomato SSC and firmness dataset partitioning.

Sample

size
Dataset

SSC (◦ Brix) Firmness (N/cm2)

Max Min Mean STD Max Min Mean STD

Small

Total (50) 10.800 8.000 9.114 0.726 12.642 5.978 9.038 1.351

Train set (35) 10.800 8.000 9.129 0.760 12.642 5.978 8.747 1.324

Val set (5) 10.400 8.700 9.320 0.779 9.800 8.624 9.153 0.488

Test set (10) 9.200 7.900 8.600 0.380 12.054 8.134 9.996 1.359

Large

Total(200) 11.100 7.200 8.719 0.662 12.936 5.978 8.853 1.229

Train set (140) 11.100 7.200 8.790 0.726 12.936 5.978 9.140 1.266

Val set (20) 9.200 7.800 8.500 0.407 9.996 7.305 8.345 0.708

Test set (40) 9.000 7.200 8.455 0.478 10.192 7.056 8.102 0.858

FIGURE 5 | (A) Corrected spectral reflectance map. (B) MSC preprocessing. (C) Second-order differential preprocessing.

following equations.

R2 = 1−

∑
i

(
ŷi − yi

)2
∑

i

(
yi − yi

)2

MSE =

1

m

m∑

i=1

(
yi − ŷi

)2

where ŷi is the estimated value, yi is the ground true value, and yi
is the ground true mean value. The optimal R2 and MSE values
are 1 and 0, respectively.

The experimental results are shown in Figure 6 and Table 3.
In general, the second-order differential processing outperforms

MSC. However, since the SVR and KNNR models lack the
ability of data dimensionality reduction, the noise caused by
unwanted reflectance cannot be removed. When the data size
increases, the amount of interference also rises. Thus, the R2

value decreases as the data size increases. As expected, they
have the worst performance with R2 < 0.4. For AdaBoostR,
PLSR, and Con1dResNet models, R2 values increase with
increasing datasets size. For a relatively smaller data size,
the PLSR model achieves the best performance, with R2

of 0.577 and MSE of 0.055. As the data size increases,
the performance of the Con1dResNet model is improved
significantly, with R2 increasing from 0.498 to 0.901 (26.4%
better than the second best) and MSE decreasing from 0.065
to 0.018.

Frontiers in Plant Science | www.frontiersin.org 6 May 2022 | Volume 13 | Article 860656

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Xiang et al. Hyperspectral Imaging for Cherry Tomato

FIGURE 6 | SSC estimation results for each model. (A) SVR estimation results on small sample data. (B) SVR estimation results on large sample data. (C) KNNR

estimation results on small sample data. (D) KNNR estimation results on large sample data. (E) AdaBoostR estimation results on small sample data. (F) AdaBoostR

estimation results on large sample data. (G) PLSR estimation results on small sample data. (H) PLSR estimation results on large sample data. (I) Con1dResNet

estimation results on small sample data. (J) Con1dResNet estimation results on large sample data.
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TABLE 3 | R2 and MSE of estimated SSC for each model.

Sample size Model Preprocessed
Second-order differential MSC

R2 MSE R2 MSE

Small (50)

SVR X 0.104 0.116 0.089 0.123

KNNR X 0.362 0.083 0.289 0.096

AdaBoost X 0.536 0.060 0.502 0.068

PLSR X 0.557 0.055 0.528 0.062

Con1dResNet ✗ R2 0.498 MSE 0.065

Large (200)

SVR X 0.078 0.205 0.075 0.207

KNNR X 0.337 0.147 0.316 0.152

AdaBoost X 0.609 0.089 0.581 0.096

PLSR X 0.713 0.064 0.710 0.067

Con1dResNet ✗ R2 0.901 MSE 0.018

FIGURE 7 | Estimation results of firmness for each model on a large sample dataset. (A) SVR estimation results on large sample data. (B) KNNR estimation results on

large sample data. (C) AdaBoostR estimation results on large sample data. (D) PLSR estimation results on large sample data. (E) Con1dResNet estimation results on

large sample data.

3.4. Firmness Estimation Result
The same experimental setup is employed for firmness
detection. As shown in Figure 7 and Table 4, when MSC is
employed for AdaBoost and PLSR, their R2 values can be
significantly improved (Wang et al., 2014). Therefore, we
choose MSC as the preprocessing method for AdaBoost and
PLSR, and second-order difference as the preprocessing
method for SVR and KNNR. Although the method
developed in this study has some advantages in data
feature extraction compared with other methods, R2 is still
only 0.53, which does not achieve the accurate estimation
standard. The R2 of SVR and KNNR models is negative,

which indicates the estimation accuracy is lower than the
mean value.

4. DISCUSSION

The tomato flavor is important. SSC, which mainly consists
of soluble sugars, can reflect the sweetness of cherry tomato.
Hyperspectral imaging has been considered an effective
technique for fruit SSC and firmness evaluation (Lu, 2004; Fan
et al., 2015). In this work, we discover a great estimation result
for SSC estimation, while an inferior result for firmness.
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TABLE 4 | R2 and MSE of estimated SSC for each model with all sample.

Model Preprocessed
Second-order differential MSC

R2 MSE R2 MSE

SVR X −0.037 1.108 −0.054 1.116

KNNR X −0.329 1.251 −0.456 1.318

AdaBoost X 0.217 0.694 0.261 0.675

PLSR X 0.384 0.552 0.398 0.548

Con1dResNet ✗ R2 0.532 MSE 0.416

As shown in Table 3, our proposed method does not fit as well
as PLSR and AdaBoost on small sample datasets. This is because
Con1dResNet requires a large amount of data for training. When
the amount of data is small, many models, especially for the
deep learning based models, tends to become overfitting, which
can significantly reduce the performance. However, for the PLSR
model, it includes a principal component analysis component,
which screen the band contribution first, and then selects 5–
20 feature bands with relatively large contribution rates for
regression. In that case, it can have a relatively good fit for small
dataset samples. Moreover, AdaBoost constantly corrects the data
with large fitting errors, and thus, achieve self-evolution. Thus,
AdaBoost can also derive decent results in small dataset samples.

The extracted spectral (Guo C. et al., 2016) features can
derive excellent estimation results for large sample size. The
experimental results show that SVR and KNNR does not fit well
on both the small and large sample data set. The performance
of SVR and KNNR decrease when the data increase since few
new “learning material” is generated for these two models when
the data increases. In that case, the learning ability of the
models can be more easily affected by the interference bands,
which demonstrates that these two models are not suitable for
SSC estimation.

As the number of sample size increases, our Con1dResNet
model gradually outperforms other models due to the improved
feature extraction ability of deep learning models (Dara and
Tumma, 2018). Our model includes 34 layers of neurons, which
can effectively extract rich data features. The residual learning
structure can also help increasing the overall performance.
Therefore, the accuracy of our method outperforms all the other
methods for large-scale data samples. For applications with less
samples, it is demonstrated that the accuracy of our technique
is still relatively high. Moreover, our model is insensitive to
anomalous data. It can be trained using pre-trained models
and thus, reducing the training cost. The experimental results
demonstrate that Con1dResNet can significantly outperform the
existing machine learning based techniques, with R2 of 0.901 and
MSE of 0.018. We believe that the experimental results of this
work are also indicative for other horticultural crops.

For the hyperspectral images based tomato firmness, although
it is reported that hyperspectral images can estimate fruit

firmness (Lu, 2004; Fan et al., 2015), our experimental results
suggest otherwise. Rahman et al. (2018) use PLSR to estimate
tomato firmness using hyperspectral images in the 1,000–1,550
nm wavebands, and derive R2 value of 0.6724. It is a little
higher than our experiment due to the differences in the used
hyperspectral wavebands and the experimental environments.
Therefore, in future work, for the estimation of firmness, we
should explore a wider range of hyperspectral image wavebands,
optimize the parameters for the firmness experiments, and
improve the overall estimation accuracy.

5. CONCLUSION

In this work, we propose Con1dResNet, a deep learning based
technique, to estimate the SSC and firmness of cherry tomatoes
using hyperspectral images. With sufficient sample size, it
can achieve better results than traditional machine learning
methods. For SSC estimation, its R2 value is 0.901, which is
26.4% higher than PLSR, while its MSE is 0.018, which is
0.046 lower than PLSR. For Firmness estimation, its R2 value
is 0.532, which is still 33.7% better than PLSR. The results
indicate that hyperspectral imaging combined with deep learning
can significantly improve the cherry tomato SSC and firmness
estimation accuracies.
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