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Malus sieversii grows on the slopes of the Tianshan Mountains in Xinjiang where
the difference in daily temperature is significant. In recent years, the rhizosphere soil
health of Malus sieversii has been severely impacted by anthropogenic disturbance
and pathogenic infestation. The soil nutrient content and soil microorganism diversity
are the main components of soil health. Low temperature has negative effects on soil
bacterial community structure by inhibiting the accumulation of carbon and nitrogen.
However, the effects of temperature and nitrogen application on soil carbon and
nitrogen accumulation and the bacterial community composition in the rhizosphere soil
of Malus sieversii are unclear. We set two temperature levels, i.e., low temperature (L)
and room temperature (R), combined with no nitrogen (N0) and nitrogen application
(N1) to explore the response of plant carbon and nitrogen uptake, rhizosphere soil
carbon and nitrogen accumulation and bacterial community composition to temperature
and nitrogen fertilization. At the same temperature level, plant 13C abundance (P-
Atom13C), plant 15N absolute abundance (P-Con15N), soil 15N abundance (S-Atom15N)
and soil urease, protease and glutaminase activities were significantly higher under
nitrogen application compared with the no-nitrogen application treatment. The bacterial
community diversity and richness indices of the apple rhizosphere soil in the N1

treatment were higher than those in the N0 treatment. The relative abundances of
Actinobacteria, Rhodopseudomonas, and Bradyrhizobium were higher in the LN1

treatment than in the LN0 treatment. Redundancy analysis (RDA) showed that plant
13C absolute abundance (P-Con13C) and plant 15N absolute abundance (P-Con15N)
were the main factors affecting the soil bacterial community composition. In summary,
Nitrogen application can alleviate the effects of low temperature stress on the soil
bacterial community and is of benefit for the uptakes of carbon and nitrogen in Malus
sieversii plants.

Keywords: temperature stress, rhizosphere soil, carbon and nitrogen isotope, bacterial community, Malus
sieversii
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INTRODUCTION

Carbon and nitrogen are important nutrients necessary for plant
growth, development, and metabolism and are also important
factors limiting soil productivity (Chen et al., 2016; Gu et al.,
2019). Carbon and nitrogen nutrition have a direct impact on the
formation of photosynthetic products, mineral element uptake,
and fruit development (Rodriguez-Lovelle and Gaudillère, 2002;
Huang et al., 2015; Sivanandhan et al., 2015). The plant carbon
pool will be shifted after nitrogen input (Zhou et al., 2021). Thus,
it is necessary to further understand the processes of carbon
and nitrogen fixation, allocation and transfer in the plant–soil
system (Wang et al., 2019; Wang F. et al., 2020). The capacity
of plant photosynthetic carbon fixation to nitrogen input varies
across ecosystems, and plant carbon and nitrogen contents and
photosynthetic carbon fixation capacity change accordingly
(Sheel et al., 2012; Yang et al., 2018). A previous study showed
that the δ13C values of the upper leaves of Lolium perenne L. and
Trifolium repens L. increased rapidly after 2 days of urea addition,
while after 12 days, the δ13C values decreased (Ambus et al.,
2007). Experiments conducted in Californian chaparral showed a
significant increase in aboveground carbon and nitrogen storage
rates after 4–5 years of nitrogen application (Vourlitis and Hentz,
2016). Furthermore, a study in a pure Larix principis-rupprechtii
plantation in northern China showed that nitrogen addition can
alter soil enzyme activities and further affect soil carbon turnover
through microbial regulation (Wu et al., 2019). Temperature
is the limiting factor affecting the growth and respiration of
soil microorganisms and enzyme dynamics (Steinweg et al.,
2012; Zhong et al., 2021). Different ambient temperatures have
different effects on the soil carbon and nitrogen cycles as well
as plant development and growth (Dierig et al., 2006; Hatfield
and Prueger, 2015; Tulina, 2019; Cruz-Paredes et al., 2021; Hasi
et al., 2021). Seasonal low temperature or diurnal variation can
significantly affect soil carbon and nitrogen nutrient turnover
efficiency (Kurihara et al., 2018). Zhang incubated plants for
16 weeks at four temperatures (10, 15, 20, and 25◦C) and
discovered that temperature can alter plant metabolism and
photosynthesis, as well as the compositions and concentrations
of carbon and nitrogen sources, thereby influencing plant δ13C
and δ15N signatures (Zhang P. et al., 2021).

The plant root zone is a soil microzone where plant and
microbial communication is highly active (Rzehak et al., 2022).
The root system of plants can secrete various microbially
beneficial vitamins, enzymes, plant growth regulators, and
amino acids (Mommer et al., 2016; Chamkhi et al., 2021),
which in turn have an impact on the species, number and
distribution of rhizosphere microorganisms (Vives-Peris et al.,
2020). The interrelationship of plants, soil, and microorganisms
maintains the function of the soil ecosystem (Nihorimbere
et al., 2011; Lozano et al., 2014; Purahong et al., 2018;
Sun et al., 2018). Soil microorganisms play an important
role in the agricultural response to changing ecological
environment due to their various nutrient cycles and soil
carbon sequestration (Basu et al., 2020; Chen et al., 2021b).
The study of the composition of soil microbial communities
not only contributes to a more in-depth understanding of

the ecological process, but it also has important implications
for the conservation of wild resources (Samuel, 2014; Rigg
et al., 2016; Shao et al., 2020). Changes in the abundance and
diversity of bacteria and in the structural and compositional
characteristics of the community can affect soil fertility and
the sustainable productivity of fruit forests (Brussaard et al.,
2007; Bhat, 2013). Bacteria are an important community of soil
microorganism, involved in processes such as nutrient cycling,
litter degradation, and soil fertility changes (Cao H. et al.,
2021). Nitrogen input has been shown to alter soil nitrogen
cycling processes, affecting soil nitrification and denitrification
(Li et al., 2010; Yang et al., 2020) and leading to changes
in the soil bacterial community structure (Fierer et al., 2021;
Xiao et al., 2021). Studies have shown that nitrogen application
can significantly increase bacterial abundance (Liu et al., 2020)
and alter fungal-to-bacterial ratios (Chinta et al., 2021; Li
et al., 2021c), thereby changing the soil microbial community
structure and affecting ecosystem biogeochemical cycles (Yu
et al., 2021). Nonetheless, numerous studies have found that
nitrogen application reduces soil bacterial abundance and
diversity (Wang C. et al., 2018; Castellano-Hinojosa et al.,
2020; Wang W. et al., 2020). Currently, the effect of nitrogen
input on soil bacterial diversity and community composition is
still controversial.

Malus sieversii (Ledeb.) M. Roem., also known as Tienshan
or Xinjiang wide apple, is an important wild fruit tree
resource in China (Sitpayeva et al., 2020). It is the original
ancestor of the world’s cultivated apples (Harris et al.,
2002; Chen et al., 2007) and is listed as a second-class
priority plant in China and a national biodiversity priority
species (Fu and Chin, 1992). The genetic resources of M.
sieversii are rich and diverse and are of great value in the
conservation and utilization of germplasm resources (Wiedow
et al., 2004; Wang N. et al., 2018). There are numerous
links between plant and soil microbial diversity, and plant
species and microbial diversity both play important roles
in maintaining ecosystem stability and health (Zak et al.,
2003; Gabriele et al., 2017; Rawat et al., 2020). Numerous
scholars have conducted systematic studies on the response
of diversity to environmental changes and investigated the
feedback mechanisms of plant species and microbial diversity
(Bouasria et al., 2012; Oliveira et al., 2012; Jia et al., 2021;
Li et al., 2021a). Currently, it is extremely difficult to
replace new populations of M. sieversii with live seedlings
under natural conditions (Liu and Dong, 2018). Therefore,
it is particularly important to study the response of soil
carbon and nitrogen allocation to temperature and nitrogen
fertilization and their microbial mechanisms. In this study,
13C and 15N isotope dual-labeling technology and Illumina
NovaSeq high-throughput sequencing technology were used
to explore differences in the rhizosphere soil carbon and
nitrogen distribution and bacterial community diversity. This
study provides fundamental information for the dynamic
balance of rhizosphere soil ecology in M. sieversii, thereby
providing new insights into plant–soil–microbe interactions
that can be harnessed for M. sieversii seedlings breeding and
germplasm conservation.
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MATERIALS AND METHODS

Experimental Design
Our experiment was conducted in the Key Laboratory of Special
Fruits and Vegetables Cultivation Physiology and Germplasm
Resources Utilization of Xinjiang Production and Construction
Corps of Shihezi University, Xinjiang Uygur Autonomous
Region, China. The M. sieversii seeds were treated with
low-temperature lamination at 4◦C for 90 days under dark
conditions. On November 11, 2019, 200 seeds with consistent
germination growth were selected and sown in 50-cell seedling
trays containing a mixed substrate with peat–vermiculite–apple
orchard soil (volume ratio 3:1:0.2, and the peat–vermiculite
mixture was autoclaved). One plant was grown per cell, and
each cell of the tray measured 4 cm in length, 4 cm in
width and 10 cm in height. M. sieversii seeds were incubated
in an artificial climate chamber (RXZ-300B, Ningbo Jiangnan
Instrument Co., Ningbo, China). The culture conditions were as
follows: temperature 25◦C, relative humidity 70–80%, darkness
during the germination period, light intensity 134 µmol m−2 s−1

during the seedling emergence period, and a 12-h:12-h light-
dark cycle. Individual, healthy and uniform seedlings (when they
had 7–8 true leaves) were selected for isotope labeling and low
temperature treatment. The seedlings were watered once every
3 days during planting period as needed (Nagakura et al., 2004;
Fernandez-Going et al., 2013).

A solution containing 320 mg CO(15NH4)2 (abundance of
10.16%) was dissolved in water and was applied to burrowing
trays on January 3, 2020. Nitrogen labeling was performed
7 days after 13C pulse labeling, and labeling was performed
in a transparent agricultural film labeling chamber (Figure 1).
The seal of the marker chamber was checked before marking.
A syringe was used to inject 1 mL of HCl solution at a
concentration of 1 mol/L into a test tube containing 0.6 g of
Ba13CO3 (abundance of 98%). Two nitrogen fertilizer treatments
were set up, i.e., the N1 treatment (urea applied at a fertilizer to
substrate ratio of 0.43 g kg−1; N1) and N0 treatment (0 g kg−1;
N0). The temperature was set at two levels, i.e., the L treatment
(5◦) and R treatment (25◦). The experiment was designed based
on a completely randomized design with four treatment groups
(LN0, LN1, RN0, and RN1) and three replications per treatment.

Sample Collection
Samples were collected on the 7th day of the low temperature
and nitrogen application treatments. Three M. sieversii seedlings
were randomly selected from each of the four treatments, the
aboveground parts were cut off, and the plants were destructively
removed. Large clods of soil around the root system were
removed, and the soil was gently shaken off the root surface of
the plants. A portion of the collected fresh samples was directly
packed into sterile plastic bags and stored at −80◦C in the
refrigerator for soil DNA extraction. The other part was mixed
well and dried naturally, ground through a 0.25 mm sieve and
placed in plastic bags for the determination of soil enzyme activity
and soil 13C and 15N abundance. Three additional M. sieversii
seedlings with essentially uniform growth were randomly selected

for destructive sampling in each treatment. The samples were
rinsed in the order of water, detergent, water, 1% hydrochloric
acid and then three times with deionized water, after which they
were dried at 105◦C for 30 min, followed by drying at 80◦C to
a constant weight (Zhang R. et al., 2021). The dried samples
were ground through a 0.25 mm sieve and stored in plastic bags
for determination of the 13C and 15N abundance of the plants
(Yan et al., 2020).

13C and 15N Abundance
The 13C and 15N abundances were measured using a DELTA V
advantage isotope ratio mass spectrometer and were analyzed
by the China Academy of Forestry Sciences Stable Isotope
Laboratory. The formulas were as follows: P-Atom13C (or
S-Atom13C) = (δ13C + 1,000) × RPDB/[(δ13C + 1,000) × RPDB
+ 1,000] × 100, P-Con13C (or S-Con13C) = P-Atom13C (or
S-Atom13C) × 0.01 × C% × 0.01 × 1,000, P-Atom15N (or
S-Atom15N) = (δ15N + 1,000) × RPDB/[(δ15N + 1,000) × RPDB
+ 1,000] × 100, P-Con15N (or S-Con15N) = P-Atom15N (or
S-Atom15N) × 0.01 × N% × 0.01 × 1,000, and δ13C (or
δ15N) = (Rs/RPDB − 1) × 1,000, where δ13C is the amount
of 13C assimilate that was fixed (h); δ15N is the amount of
15N assimilate that was fixed (h); RS is the ratio of 13C to
12C (or the ratio of 15N to 14N); RPDB is the standard ratio of
carbon isotopes, i.e., 0.0112372 (or the standard ratio of nitrogen
isotopes, i.e., 0.0036765); P-Atom13C and P-Atom15N are plant
13C abundance and plant 15N abundance (%), respectively, which
refer to 13C and 15N as percentages of total carbon and nitrogen
of the plant samples, respectively; S-Atom13C and S-Atom15N
are soil 13C abundance and soil 15N abundance (%), respectively,
which refer to 13C and 15N as percentages of total carbon and
nitrogen of the soil samples; P-Con13C and P-Con15N are plant
13C absolute abundance and plant 15N absolute abundance (mg
g−1), respectively, which refer to the amount (mg) of 13C and
15N contained in one gram of the plant sample; S-Con13C and
S-Con15N are soil 13C absolute abundance and soil 15N absolute
abundance (mg g−1), respectively, which refer to the amount
(mg) of 13C and 15N contained in one gram of the soil sample;
and C% and N% are the amount (g) of total carbon and nitrogen
contained in 100 g of sample.

Determination of Soil Enzymatic
Activities
Determination of rhizosphere soil urease (EC3.5.1.5) and catalase
(EC1.11.1.6) activities according to the method described by
Guan (1986). Urease activity (EC3.5.1.5) was measured by the
colorimetric analysis of sodium phenate-sodium hypochlorite,
and the activity was expressed as micrograms of NH3-N in 1 g
of soil after 24 h (µg g−1 d−1). Catalase activity (EC1.11.1.6) was
evaluated using the potassium permanganate titration volume
method, and the activity was expressed as milliliters of 0.1 mol
L−1 potassium permanganate in 1 g of soil after 20 min (ml g−1

20 min−1). Protease activity (EC 3.4.2.21-24) was determined
according to the method developed by Ladd and Butler (1972),
and the activity was expressed as micrograms of glycine in 1 g
of soil after 24 h (µg g−1 d−1). Glutaminase activity (EC3.5.1.2)
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FIGURE 1 | The 13C and 15N double isotope labeling experiment.

was assayed using a glutaminase kit (Beijing Solarbio Science &
Technology Co., Ltd., Beijing, China) with the specification of
50 tubes/24 samples. The method was visible spectrophotometry,
and 1 g of soil-catalyzed glutamine production of 1 µmol L−1

ammonia per day at 37◦C was defined as one enzyme activity unit
(U g−1) (Sakai et al., 2022).

Soil DNA Extraction, PCR Amplification,
and Illumina Sequencing
The genomic DNA of the samples was extracted using
the SDS method (Nanasato et al., 2018). The purity and
concentration of DNA were subsequently examined using
agarose gel electrophoresis. An appropriate amount of
sample DNA was placed in a centrifuge tube, and the sample
was diluted to 1 ng µL−1 using sterile water. To ensure
amplification efficiency and accuracy, PCR amplification of
the V4 region gene fragment was performed using primers
515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) and high-fidelity
polymerase (Carini et al., 2016). The PCR mixture (30 µl)
contained 15 µL of Phusion Master Mix, 3 µL of each primer
and 10 µL of DNA template (5–10 ng). The amplification
program consisted of predenaturation at 98◦C for 1 min, 30
cycles (denaturation at 98◦C for 10 s, annealing at 50◦C for 30 s,
extension at 72◦C for 30 s), and a final extension step at 72◦C
for 5 min. The PCR products were extracted from 2% agarose
gel, and the target bands were recovered using a gel recovery kit
(QIAGEN China Co., Ltd. Guangzhou, China) (Abdel-Ghany
et al., 2016). The products were then assayed for quantification
and mixing, and library construction was performed after mixing
and purification. The qualified libraries were sequenced using an
Illumina NovaSeq6000 (Illumina, San Diego, CA, United States)
(Modi et al., 2021).

Bioinformatics Analysis and Data
Processing
The data of each sample were split from the downstream
data based on barcode sequences and PCR amplification
primer sequences. The sequences of barcodes and primers were
intercepted and then spliced and filtered using FLASH (Magoc
and Salzberg, 2011) and QIIME (Caporaso et al., 2010). The
chimeric sequences were removed from these sequences to

obtain the final valid data. OTUs were obtained by clustering
the sequences with 97% similarity among the valid sequences
of all samples using Uparse software (Haas et al., 2011). The
SSUrRNA database (Wang et al., 2007) of SILVA132 (Edgar,
2013) was subsequently consulted for species annotation of
OTU sequences, and diversity index, species classification and
abundance analysis were carried out. In addition, redundancy
analysis (RDA) was used to identify key environmental factors
that significantly influenced changes in bacterial communities
between treatment groups.

Alpha diversity analysis (including Shannon, Simpson, Chao1,
and Ace indices) was performed using QIIME (Version
1.9.1). Significant differences between treatments were evaluated
by one-way analysis of variance (ANOVA) followed by
Tukey’s multiple comparison test using SPASS 20.0 (SPSS Inc.,
Chicago, IL, United States). Origin 2021 (Origin Software, Inc.
Guangzhou, China) was used for plotting. Redundancy analysis
(RDA) was used to examine the relationship between the 13C and
15N abundance of plants and rhizosphere soil and the rhizosphere
soil bacterial community compositions with the CANOCO 5.0
software (Microcomputer Power, Ithaca, NY, United States).

RESULTS

13C and 15N Abundance
Temperature and nitrogen application treatments
significantly affected P-Atom13C, P-Con13C, P-Atom15N,
P-Con15N, S-Atom13C, S-Con13C, S-Atom15N, and
S-Con15N (Supplementary Table 1). P-Atom13C and
P-Atom15N were significantly and positively correlated
with S-Atom13C, S-Con13C, S-Atom15N and S-Con15N
(P < 0.05) (Supplementary Table 5). P-Atom13C, P-Con13C,
and S-Con13C of the RN1 treatment were significantly higher
than those of the RN0 treatment (P < 0.05) (Figures 2A,B,F).
There was no significant difference between P-Con13C,
S-Atom13C, and S-Con13C of the LN0 treatment and LN1
treatment (P > 0.05) (Figures 2B,E,F). P-Atom15N and
P-Con15N of the RN1 treatment were significantly higher
than those of the LN1 treatment by 69.05% and 105.06%,
respectively (Figures 2C,D). There was no significant
difference between P-Atom15N, P-Con15N, S-Atom15N, and
S-Con15N in the LN0 treatment and RN0 treatment (P > 0.05)
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FIGURE 2 | Comparisons of (A) plant 13C abundance (P-Atom 13C), (B) plant 13C absolute abundance (P-Con13C), (C) plant 15N abundance (P-Atom15N), (D)
plant 15N absolute abundance (P-Con15N), (E) soil 13C abundance (S-Atom 13C), (F) soil 13C abundance (S-Con13C), (G) soil 15N absolute abundance
(S-Atom15N), and (H) soil 15N absolute abundance (S-Con15N) among different treatments. L and R were low and room temperature treatments, N0 and N1 were
non-nitrogen and nitrogen treatments. Values were shown as means ± standard deviations (SD, n = 3). Different lowercase letters were indicated statistically
significant differences between the four treatments at 0.05 level.

(Figures 2C,D,G,H). S-Atom15N and S-Con15N of the RN1
treatment were significantly lower than those of LN1 by 38.25
and 49.63%, respectively (P < 0.05) (Figures 2G,H). Both
S-Atom15N and S-Con15N had the following treatment rankings:
LN1 > RN1 > LN0, RN0.

Soils Enzymatic Activity
There were significant differences in the rhizosphere soil
urease, protease, and glutaminase catalase activities between
the different temperature and nitrogen application treatments
(Supplementary Table 1). At the same temperature level,

the urease activity was significantly higher in the nitrogen
application treatment group (LN1, RN1) than in the no-
nitrogen treatment group (LN0, RN0) (P < 0.05); at the same
nitrogen level, the urease activity was significantly higher in
the room temperature treatment group (RN0, RN1) than in
the low temperature treatment group (LN0, LN1) (P < 0.05)
(Figure 3A). The urease activity of the RN0 and RN1 treatments
was significantly higher than that of the LN0 and LN1 treatments
by 3.49% and 21.95%, respectively (P < 0.05). The trends
of the protease and glutaminase activities in each treatment
were consistent with that of the urease activity (Figures 3B,C).
Protease and glutaminase activities were significantly increased
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FIGURE 3 | Comparisons of (A) soil urease activity, (B) soil protease activity, (C) soil glutaminase activity, and (D) soil catalase activity among different treatments. L
and R were low and room temperature treatments, N0 and N1 were non-nitrogen and nitrogen treatments. Values were shown as means ± standard deviations (SD,
n = 3). Different lowercase letters were indicated statistically significant differences between the four treatments at 0.05 level.

by 28.84% and 34.18% in the LN1 treatment compared to the
LN0 treatment (P < 0.05). The catalase activity of the LN1
and RN1 treatments was significantly higher than that of the
LN0 and RN0 treatments by 46.05 and 42.55%, respectively
(P < 0.05) (Figure 3D).

Bacterial Community Alpha Diversity
After sequencing quality filtering of the base-called sequences,
a total of 738,893 high-quality sequences were obtained for the
bacteria. A total of 3,148 operational taxonomic units (OTUs)
at 97% similarity were obtained from the rhizosphere soil
(Table 1). Temperature and nitrogen application treatments
had significant effects on the Shannon, Simpson, Chao1, and
Ace indices of the rhizosphere soil bacterial community of M.
sieversii (Supplementary Table 1). Bacterial community diversity
indices (Shannon and Simpson indices) showed that the Shannon
index of the N1 treatment was significantly higher than that of
N0 treatment (P < 0.05), and the Simpson index of the LN0
treatment was significantly higher than that of the other three
treatments (P < 0.05). The Shannon index of the RN1 treatment
was significantly higher than that of the other treatments
(P < 0.05), and the Simpson index of the RN1 treatment was the
lowest (0.976), indicating the highest soil bacterial community
diversity in the RN1 treatment. Bacterial community richness
indices (Chao1 and Ace indices) showed that the Chao1 index

of the LN1 and RN1 treatments was significantly higher than that
of LN0 and RN0 treatments (P < 0.05), and the Ace index of the
RN1 treatment was significantly higher than that of the LN0, LN1,
and RN0 treatments by 21.85, 10.64, and 17.70%, respectively
(P < 0.05).

Composition of the Bacterial
Communities
At the phylum level, a total of 33 bacterial phyla were obtained,
and 9 dominant phyla were obtained (Figure 4A). Among
them, the dominant phyla (relative abundance > 5%)
were Proteobacteria, Bacteroidetes, Acidobacteria, and
Verrucomicrobia. The relative abundances of Proteobacteria,
Bacteroidetes, Acidobacteria, and Verrucomicrobia were 62.05–
72.59%, 10.89–14.23%, 4.13–6.11%, and 2.92–5.95%, respectively,
accounting for 86.37–90.53% of all phyla. The average relative
abundance of the other five phyla only accounted for 9.47–
13.63% of the total bacterial community. Further analysis of
bacterial phyla with relative abundances greater than 1% showed
that temperature and nitrogen application treatments at the
bacterial phylum level had significant effects on Proteobacteria,
Acidobacteria, Verrucomicrobia, and Actinobacteria in the
rhizosphere soil (Supplementary Tables 1, 2). The relative
abundance of Acidobacteria was significantly higher in the
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TABLE 1 | Effect of temperature and nitrogen application on alpha diversity index in rhizosphere soil bacterial communities of M. sieversii.

Treatment Sequences OTUs Diversity and richness indexes

Shannon Simpson Chao1 ACE

LN0 58,804 ± 549c 1,510 ± 23c 7.246 ± 0.152d 0.989 ± 0.001a 2,040.597 ± 51.456b 1,648.302 ± 39.603c

LN1 61,699 ± 1,097b 1,679 ± 20b 7.546 ± 0.030b 0.977 ± 0.001c 2,294.130 ± 45.581a 1,815.171 ± 19.432b

RN0 60,315 ± 120bc 1,617 ± 21bc 7.416 ± 0.031c 0.983 ± 0.002b 2,139.913 ± 76.140b 1,706.402 ± 36.419c

RN1 65,480 ± 1218a 1,857 ± 120a 7.667 ± 0.020a 0.976 ± 0.001c 2,418.799 ± 50.862a 2,008.384 ± 60.436a

Values were shown as means ± standard deviations (SD, n = 3). Different lowercase letters in the same column were indicated statistically significant differences between
the four treatments at 0.05 level.

FIGURE 4 | Relative abundance of primary (A) bacterial phyla (relative abundance ≥ 0.5%), (B) bacterial genera (relative abundance ≥ 0.5%), and (C) bacterial
species (relative abundance ≥ 0.5%) present in the rhizosphere soil bacterial communities of the different treatments.

TABLE 2 | Effect of temperature and nitrogen application on significantly different carbon- and nitrogen-fixing bacterial genera in the rhizosphere soil.

Treatment Rhodopseudomonas Methylibium Pseudomonas Bradyrhizobium

LN0 0.0008 ± 0.00013c 0.0031 ± 0.00046c 0.0013 ± 0.00012b 0.0049 ± 0.00026c

LN1 0.0014 ± 0.00026b 0.0071 ± 0.00213b 0.0049 ± 0.00085b 0.0080 ± 0.00091b

RN0 0.0010 ± 0.00003bc 0.0047 ± 0.00044bc 0.0035 ± 0.00043b 0.0059 ± 0.00082c

RN1 0.0022 ± 0.00046a 0.0131 ± 0.00338a 0.0124 ± 0.00585a 0.0107 ± 0.00156a

Values were shown as means ± standard deviations (SD, n = 3). Different lowercase letters in the same column were indicated statistically significant differences between
the four treatments at 0.05 level.

RN0 treatment than in the LN0 treatment (P < 0.05). The
relative abundance of Verrucomicrobia in the RN1 treatment
was 103.45, 84.38, and 47.50% higher than that in the LN0, LN1,
and RN0 treatments, respectively. The relative abundance of
Actinobacteria in the LN1 treatment was significantly higher than
that in the RN0 and RN1 treatments by 58.82% and 170.00%,
respectively (P < 0.05). At the genus level, a total of 404 bacterial

genera were obtained. Fifteen dominant genera with relative
abundances greater than 0.5% were obtained in each sample
(Figure 4B). The two most abundant bacterial genera in the LN0
treatment were Asticcacaulis (11.14%) and Devosia (5.83%). The
relative abundances of Asticcacaulis (7.07%) and Rhizobacter
(4.68%) were highest in the LN1 treatment. Moreover, the relative
abundance of Asticcacaulis was highest in both the RN0 and RN1
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FIGURE 5 | Redundancy analysis of (A) dominant bacterial phyla (relative abundance ≥ 0.5%) and (B) dominant bacterial genera (relative abundance ≥ 0.5%) and
significantly different bacterial genera related to metabolism of carbon and nitrogen across all of the soil samples. Phyla and genera are indicated by blue vectors and
environmental variables are represented by red vectors. The positions and lengths of the arrows indicate the directions and strengths, respectively, of the effects of
variables on bacterial communities. Abbreviations in panel (A), Acid, Acidobacteria; Acti, Actinobacteria; Bact, Bacteroidetes; Chlo, Chloroflexi; Fib, Fibrobacteres;
Firm, Firmicutes; Gemm, Gemmatimonadetes; P-A13, P-Atom13C; P-A15, P-Atom15N; P-C13, P-Con13C; P-C15, P-Con15N; Prot, Proteobacteria; S-A13,
S-Atom13C; S-A15, S-Atom15N; S-C13, S-Con13C; S-C15, S-Con15N; Verr, Verrucomicrobia. Abbreviations in panel (B), Asti, Asticcacaulis; Brad, Bradyrhizobium;
Cand, Candidatus_Solibacter; Caul, Caulobacter; Devo, Devosia; Dokd, Dokdonella; Emti, Emticicia; Ferr, Ferruginibacter; Lacu, Lacunisphaera; Meso,
Mesorhizobium; Meth, Methylibium; P-A13, P-Atom13C; P-A15, P-Atom15N; P-C13, P-Con13C; P-C15, P-Con15N; Pseudol, Pseudolabrys; Pesudom,
Pseudomonas; Phen, Phenylobacterium; Rhiz, Rhizobacter; Rhoda, Rhodanobacter; Rhodo, Rhodopseudomonas; S-A13, S-Atom13C; S-A15, S-Atom15N; S-C13,
S-Con13C; S-C15, S-Con15N; U_Acid, unidentified_Acidobacteria; U_Gamm, unidentified_Gammaproteobacteria.

treatments, i.e., 7.28 and 9.55%, respectively. At the species level,
a total of 237 bacterial species were obtained. The dominant
species (relative abundance > 5%) were Mesorhizobium_ciceri,
Acidobacteria_bacterium_SCN_69-37, and bacterium_TG149.
Other bacterial species had the largest proportion, with an
average relative abundance of 96.76% (Figure 4C).

Carbon- and Nitrogen-Fixing Bacterial
Genera
The relative abundances of Rhodopseudomonas, Methylibium,
Pseudomonas, and Bradyrhizobium differed significantly
between the different temperature and nitrogen fertilization
treatments (Supplementary Table 1). The relative abundances of
Rhodopseudomonas and Methylibium were significantly higher
in the nitrogen application treatment groups (LN1, RN1) than
in the non-nitrogen application treatment groups (LN0, RN0) at
the same temperature level (Table 2). The relative abundances of
Rhodopseudomonas and Methylibium in the LN1 treatment were
significantly higher than those in the LN0 treatment by 75.00
and 129.03%, respectively (P < 0.05). The relative abundances of
Rhodopseudomonas and Methylibium in the RN1 treatment were
significantly higher than those in the RN0 treatment by 120.00%
and 178.72%, respectively (P < 0.05). The relative abundance of
Pseudomonas and Bradyrhizobium was higher in the nitrogen
treatment group (LN1, RN1) than in the non-nitrogen treatment
group (LN0, RN0) at the same temperature level. The relative
abundance of Bradyrhizobium was significantly higher in the
LN1 and RN1 treatments than in the LN0 and RN0 treatments by
63.27% and 81.36%, respectively (P < 0.05).

Bacterial Phyla and Bacterial Genera and
Correlation With Environmental
Parameters
The relationship between plant 13C and 15N abundance,
soil 13C and 15N abundance and bacterial phyla (relative
abundance > 0.5%) in rhizosphere soil was analyzed by RDA.
Considering the 13C and 15N abundance of M. sieversii plants
and rhizosphere soil as environmental variables, axes 1 and
2 explained 46.86% and 17.72%, respectively, of the total
variation (Figure 5A). P-Atom15N, P-Con15N, and S-Atom13C
were negatively correlated with Proteobacteria, Bacteroidetes,
Actinobacteria, Gemmatimonadetes, and Chloroflexi (P ≥ 0.05)
(Figure 5A and Supplementary Table 3). P-Atom15N and
P-Con15N were significantly and positively correlated with
Verrucomicrobia and Firmicutes (P < 0.05). The RDA showed
that the bacterial communities were differentially influenced
by 13C and 15N abundance. The contribution of P-Con15N
was 28.00%, which was the environmental factor with the
largest contribution.

The relationship between plant 13C and 15N abundance, soil
13C and 15N abundance and bacterial genera in rhizosphere soil
was analyzed by RDA. Considering the 13C and 15N abundance
of M. sieversii plants and rhizosphere soil as environmental
variables, axes 1 and 2 explained 34.20% and 24.13%,
respectively, of the total variation (Figure 5B). P-Atom13C,
P-Con13C, P-Atom15N, and P-Con15N showed highly
significant positive correlations with the carbon and nitrogen
metabolism-related bacterial genera Rhodopseudomonas,
Methylibium, and Bradyrhizobium (P < 0.01) (Figure 5B
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and Supplementary Table 4). S-Atom13C and S-Con13C were
significantly positively correlated with Rhodopseudomonas,
Methylibium, Pseudomonas, and Bradyrhizobium (P < 0.05).
S-Atom13C, S-Con13C, S-Atom15N, and S-Con15N were
significantly positively correlated with Caulobacter (P < 0.05).
RDA also showed that P-Con13C (24.60%) and S-Atom15N
(24.40%) were the two factors with the highest contribution.

DISCUSSION

Rhizosphere Soil Carbon and Nitrogen
Portioning
Carbon and nitrogen metabolism are the two most important
metabolic processes in plants, and they are very closely related
(Nunes-Nesi et al., 2010; Zhang et al., 2018; Zhong et al.,
2021). Carbon metabolism provides carbon and energy for
nitrogen metabolism, which in turn provides enzymes and
photosynthetic pigments for carbon metabolism, both of which
together regulate the material and energy metabolic processes in
plants (Zhang et al., 2014; Ding et al., 2017). The photosynthetic
carbon sequestration capacity of plants in different ecosystems
responds in different ways to nitrogen inputs (Zhu et al.,
2021). In this study, 13C and 15N dual-labeled isotope tracing
techniques revealed that the 13C abundance and 13C absolute
abundance of M. sieversii plants with high 15N abundance
and 15N absolute abundance were also at higher levels in
the treatments, indicating that appropriate nitrogen levels can
promote the allocation and functioning of carbon assimilates.
Zhao et al. (2021) showed that increased nitrogen fertilizer
application increased photosynthetic carbon accumulation in
wheat by 11–20% during 62 consecutive days of 13CO2 labeling.
In this study, the 13C abundance and 13C absolute abundance of
plants and soil showed roughly the same distribution pattern at
different temperatures and nitrogen levels. The 13C abundance
and 13C absolute abundance of the nitrogen treatment groups
(LN1 and RN1) were significantly higher than those of the
non-nitrogen treatment groups (LN0 and RN0) (P < 0.05)
(Figure 1). P-Atom13C and P-Atom15N were significantly and
positively correlated with S-Atom13C, S-Con13C, S-Atom15N,
and S-Con15N (P < 0.05) (Supplementary Table 5). The
S-Atom15N and S-Con15N values of the soil in the LN1
treatment were the highest and were significantly higher than
those in the RN1 treatment. These results indicate that at the
same temperature level, M. sieversii plants had a strong ability
to exchange with soil under room temperature and nitrogen
application, which facilitated the uptake of carbon and nitrogen
by seedlings. More photosynthetic products made by the leaves
were transported downward to the soil, which provided the
material basis for root growth and development, thus alleviating
the effects of low temperature stress (Jiang et al., 2015; Cornic,
2022).

Rhizosphere Soil Enzyme Activity
Soil enzymes are an important indicator of soil biological
activity, and all biochemical activities in soil are performed

under the action of soil enzymes (Utobo and Tewari, 2015;
Nannipieri et al., 2018). Soil enzyme activity is influenced by soil
temperature, soil nutrients, microbial community, fertilization,
and other factors (Cheng et al., 2013; Díaz et al., 2021; Levakov
et al., 2021; Tan et al., 2021). The activities of nitrogen cycle
enzymes such as urease, protease, glutaminase, and catalase
varied significantly under different nitrogen fertilizer treatments
(Cao et al., 2014; He et al., 2021; Li et al., 2021b). Seasonal low
temperatures or diurnal variations in temperature can have a
significant impact on soil enzymes (Viswanathan and Krishnan,
1962; Cao R. et al., 2021). In a field experiment with a winter
temperature range of 0.5–2.0◦C, the activities of soil catalase,
urease, and phosphatase were reduced by 0.08–1.20 mL g−1,
0.004–0.019 mg g−1, and 0.10–0.25 mg kg−1, respectively (Xiao
et al., 2012). In this study, the soil urease, protease, glutaminase,
and catalase activities were higher in the R treatment than in
the L treatment, and the soil urease, glutaminase, and catalase
activities was significantly higher in the N1 treatment than in the
N0 treatment (P < 0.05) (Figure 2). These results indicate low
temperature significantly reduced the soil urease, protease, and
glutaminase activities, while nitrogen application mitigated the
effect of low temperature on the activities of nitrogen metabolism
related enzymes.

Rhizosphere Soil Bacterial Community
Structure
Soil microorganisms are sensitive to environmental changes, and
their composition and activity are influenced by a variety of
factors including fertilizations, climate, and plant type (Dong
et al., 2014; Soman et al., 2017; Grosso et al., 2018; Hu
et al., 2019). Nitrogen fertilizer is an important factor that
affects soil microbial communities in many agricultural systems
(Wang L. et al., 2021; Zhang X. et al., 2021; Hu et al.,
2022). In this study, the bacterial community diversity and
richness of the apple rhizosphere soil in the nitrogen application
treatment were higher than those without nitrogen treatment.
The dominant phyla (relative abundance > 0.5%) of soil bacteria
in the different treatments were Proteobacteria, Bacteroidetes,
Acidobacteria, and Verrucomicrobia, followed by Firmicutes and
Gemmatimonadetes (Figure 3). This result is similar to the
dominant bacterial taxa obtained by Joa et al. (2014) and Wu
et al. (2020). The higher abundance of the phyla Acidobacteria
and Verrucomicrobia in the soil of the room temperature
treatment group indicated that the application of nitrogen at
room temperature could provide a good survival environment
for Acidobacteria and Verrucomicrobia. The major reason is
that nitrogen fertilization provides mineral elements for plant
growth, promotes the growth and substance secretion of plant
root organs, and accordingly increases the physiological activity
of the root system (Hamm et al., 2016; Chen et al., 2020).
Therefore, nitrogen application increased the relative abundance
of Acidobacteria and Verrucomicrobia, which are closely related
to the rhizosphere effect.

Microbial photosynthesis plays an important role in
agricultural soils, and increased fertilizer application can
significantly affect soil carbon decomposition and CO2 emissions
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(Xun et al., 2016; Carrara et al., 2018; Tian et al., 2019). The
microorganisms involved in CO2 fixation are gram-negative
bacteria, with the main dominant group being Proteobacteria
(Li et al., 2020; Wang X. et al., 2021). The Alphaproteobacteria
phylum mainly includes some typical carbon-fixing genera,
such as Rhodopseudomonas and Methylibium (Liao et al.,
2020; Chen et al., 2021a). Bradyrhizobium is a parthenogenic
nitrogen-fixing bacterium that supports nutrient growth by
depleting soil resources through fertilizer application (Li et al.,
2019). In addition, this genus is found in Alphaproteobacteria,
and it is usually classified as a eutrophic organism (Jabir et al.,
2021). Short-term applications of nitrogen fertilizer can increase
the abundance of biological nitrogen-fixing bacteria, and these
microbial communities may use the resources in the fertilizer
to support their own nutritional growth (Karlidag et al., 2007;
Vitousek et al., 2013; Liu et al., 2022). Our results were consistent
with the findings of the previous studies mentioned above.
In this study, the relative abundances of Rhodopseudomonas
and Methylibium were higher in the R treatment than in the
L treatment at the same level of nitrogen application, and the
relative abundance of Bradyrhizobium was significantly higher
in the N1 treatment than in the N0 treatment at the same
temperature level (P < 0.05) (Table 2). These results indicate
that applying nitrogen fertilizer at the appropriate temperature
can increase the number of soil carbon- and nitrogen-fixing
bacterial genera. This study did not investigate the role of
carbon- and nitrogen-fixing bacteria in the rhizosphere soil
material cycle. It is necessary to further quantify the carbon
fixation and nitrification characteristics of Rhodopseudomonas,
Methylibium, and Bradyrhizobium, which are more responsive
to low temperature and nitrogen application than other
bacterial genera.

Relationship Between 13C and 15N
Abundance and Rhizosphere Soil
Bacterial Communities
Soil environmental factors have an effect on the soil microbial
community (Liu et al., 2021; Wang M. et al., 2021; Yin et al.,
2021). Several studies have shown that soil microbial community
composition is influenced by NO3

−, soil organic carbon, and
soil nitrogen content (Chen et al., 2021c; Liu et al., 2021; Ren
et al., 2021). Shen et al. (2015) discovered that the structure
of the bacterial community was significantly correlated with
soil total carbon, total nitrogen, C:N ratio, and dissolved
organic carbon. In this study, P-Atom15N and P-Con15N
showed a significant positive correlation with Verrucomicrobia
and Firmicutes (P < 0.05) (Figure 5A and Supplementary
Table 3), and P-Atom13C, P-Con13C, P-Atom15N, and P-Con15N
showed a highly significant positive correlation with the carbon
and nitrogen metabolism-related genera Rhodopseudomonas,
Methylibium, and Bradyrhizobium (P < 0.01) (Figure 5B and
Supplementary Table 4). Therefore, plant carbon and nitrogen
accumulation are key factors affecting the diversity and structure
of the rhizosphere soil bacterial community in M. sieversii. The
improvement of nutrient uptake by plants may be related to
the mechanisms produced by rhizosphere soil microorganisms
(Jacoby et al., 2017; Jing et al., 2021).

CONCLUSION

In conclusion, nitrogen application altered rhizosphere soil
bacterial communities by influencing soil carbon and nitrogen
accumulation as well as enzyme activities related to nitrogen
metabolism. Furthermore, nitrogen application aided in the
diversification and richness of the bacterial community, as well
as the aggregation of carbon- and nitrogen-fixing bacterial
genera (Rhodopseudomonas, Methylibium, and Bradyrhizobium)
in the rhizosphere soil. RDA suggested that P-Con13C and
P-Con15N were the key variables regulating the composition of
the rhizosphere soil bacterial communities in M. sieversii. This
study creates a suitable soil environment for M. sieversii roots
from the perspectives of soil carbon and nitrogen cycling and
microbial ecology, which has important practical significance for
the breeding of M. sieversii seedlings and the conservation of M.
sieversii germplasm resources. In the future, more emphasis could
be placed on the role and function of carbon- and nitrogen-fixing
bacteria in the rhizosphere soil material cycle of M. sieversii.
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