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Tomato fruit phenotypes are important agronomic traits in tomato breeding as a
reference index. The traditional measurement methods based on manual observation,
however, limit the high-throughput data collection of tomato fruit morphologies. In
this study, fruits of 10 different tomato cultivars with considerable differences in fruit
color, size, and other morphological characters were selected as samples. Constant
illumination condition was applied to take images of the selected tomato fruit samples.
Based on image recognition, automated methods for measuring color and size
indicators of tomato fruit phenotypes were proposed. A deep learning model based
on Mask Region-Convolutional Neural Network (R-CNN) was trained and tested to
analyze the internal structure indicators of tomato fruit. The results revealed that the
combined use of these methods can extract various important fruit phenotypes of
tomato, including fruit color, horizontal and vertical diameters, top and navel angles,
locule number, and pericarp thickness, automatically. Considering several corrections
of missing and wrong segmentation cases in practice, the average precision of the
deep learning model is more than 0.95 in practice. This suggests a promising locule
segmentation and counting performance. Vertical/horizontal ratio (fruit shape index) and
locule area proportion were also calculated based on the data collected here. The
measurement precision was comparable to manual operation, and the measurement
efficiency was highly improved. The results of this study will provide a new option for
more accurate and efficient tomato fruit phenotyping, which can effectively avoid artificial
error and increase the support efficiency of relevant data in the future breeding work of
tomato and other fruit crops.

Keywords: quantitative, tomato fruit, phenotyping, image recognition, deep learning

INTRODUCTION

Tomato (Solanum lycopersicum L.) is one of the most widely consumed vegetables around the
world (Kaya et al., 2020; Alam et al., 2021; Faizan et al., 2021). Tomatoes are used for food
in a variety of forms and contain considerable vitamins A, C, and lycopene, which have been
shown to reduce the risk of cancer and neurodegenerative disorder (Kinkade and Foolad, 2013;
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Caseiro et al., 2020). Due to the genetic diversity and commercial
value, tomato is also a model species for fruit development
studies. Since tomato spread out through trade from South
America and Mesoamerica where tomato domestication began, it
was chosen for diverse fruit colors and sizes throughout breeding.
Consequently, current tomato cultivars have various phenotypes
including colors, sizes, and internal structure (Sierra-Orozco
et al., 2021). For example, cultivated tomatoes have colors from
green to orange, red, and black; sizes from 6 to 100 mm, and even
larger; and internal shapes including diverse locule and pericarp
traits. All these traits determine the market valuation and culinary
consumption procedures of tomato fruits, including fresh, sliced,
diced, or cooked (De Corato, 2020).

The growers’ demand for lucrative tomatoes is associated
with the color and size of the tomato fruits. Although all traits
are crucial, consumers prefer to rate tomatoes initially on their
sensory appearance and then on their flavor. For example, large-
sized and flat tomatoes are preferred to be sliced or cooked
because they are easier for manual processing. Thus, fruit size
and vertical/horizontal ratio (fruit shape index) are important
indicators of tomato traits. Fruit color is the most attractive
attribute as commodities (Oltman et al., 2014). The pericarp
is the circular outer part of the fruit fresh part developed
from mesocarp. Locules are septum-enclosed independent spaces
separated by the placenta which are filled with semiliquid tissue.
Pericarp and locules determine the taste and malformation rate.
Fruits with large locule area proportion tend to have higher
moisture content and are suitable for fresh-eating, whereas fruits
with small locules and thick pericarp are preferred for cooking
(Tamasi et al., 2019). Because tomato fruit traits are so important
to customers, tomato breeders are working hard to improve those
qualities. A deeper knowledge of tomato fruit phenotypes can
help in breeding attempts to enhance fruit quality.

Although the tomato genome has been sequenced for many
years (The Tomato Genome Consortium, 2012) and many
quantitative trait loci (QTLs) related to fruit morphology have
been identified (Prudent et al., 2009; Celik et al., 2017), traditional
breeding techniques are still dominant in tomato breeding, and
the traits of parents for hybrid breeding are selected mainly
depending on breeder’s experience (Zhu et al., 2018). Such
multidimensional screening of tomato phenotypes is not only
time-consuming and labor-intensive but also limits the breeding
accuracy and efficiency. Therefore, it is necessary to develop
methods to quantitatively evaluate the tomato fruit phenotypes,
including the fruit color, size, morphology, and locule structures
(Bhatta et al., 2021). Moreover, as the concept of breeding 4.0
being raised, which seeks out the desirable traits combined with
the aid of artificial intelligence based on fully comprehended
bioinformatic and agronomic data (Wallace et al., 2018), high-
throughput and quantitative phenotyping is more likely to
promote crop breeding efficiency in a novel, data-driven way
(Washburn et al., 2019).

Tomato fruit traits pertaining to morphological and structural
aspects are used for fruit phenotyping (Darrigues et al., 2008),
which is closely connected with genetic diversity analysis
regarding the effects of breeding and crop genetic resources
conservation and exploitation (Mata-Nicolás et al., 2020). With

the progress of image recognition based on deep learning
methods, quantitative and high-throughput plant phenotyping is
becoming promising (Pereira et al., 2021). There are plenty of
successful studies in most field crops (Li et al., 2020), but using
high-throughput methods to assess quantitative phenotypes of
vegetables is still at an earlier experimental stage (Tripodi
et al., 2018; Boogaard et al., 2020). Most vegetable breeding
initiatives appear to be hampered by a lack of affordable
and accessible high-throughput techniques. Generally, manual
fruit measurement, which is commonly utilized in traditional
phenotypes evaluation and costs a lot of labor and time, is the
main barrier in comprehensive tomato fruit phenotyping (Costa
et al., 2018). A tool called Tomato Analyzer based on computer
vision has shown to be quite effective in extracting tomato
fruit morphometric and structural features automatically, yet the
analysis of some fruit internal structures, such as locule number
and area, still requires manual operations (Gonzalo et al., 2009).
Another tool called LocAnalyzer attempts to count tomato fruit
locule automatically with the help of computer vision recognition
(Spetale et al., 2020), but it only processes one fruit in each image
and requires image scanning of cut fruits.

In this study, a series of quantitative indicators (color,
diameters, angles, locules, and pericarp) for tomato fruit
phenotypes are proposed based on the quantitative requirements
of tomato breeding. A combination of image recognition and
Mask Region-Convolutional Neural Network (R-CNN) deep
learning methods to extract these indicators is proposed. The
findings are supposed to provide a useful tool for the high-
throughput phenotyping of tomatoes. The tool also assists
breeders to evaluate tomato fruit traits quantitatively and
automatically and could be extended to other fruit crop breeding.

MATERIALS AND METHODS

Materials, Sampling, and Image
Acquisition
The ripe fruits of all 591 tomato cultivars were applied for
image acquisition and phenotyping. Ten cultivars with obvious
differences in fruit size, fruit color, and other aspects were selected
as samples for phenotyping comparison and verification (Table 1
and Figure 1A). All tomato cultivars were cultivated in the
tomato germplasm field of Zhejiang Academy of Agricultural
Sciences, Yangdu, Haining City, Zhejiang, China (120.411◦N,
30.441◦E).

Three to four representative tomato fruit samples were placed
on a white background at intervals. A black-white ruler card
with accurate squares of 1 cm × 1 cm was attached next to the
samples as reference (Figure 1B). Images of both the samples
and the ruler card were acquired using a camera (Canon EOS
20D, 50 mm fixed-focus lens, Canon, Inc., Tokyo, Japan) in a
photo box with a diffuse inner surface and a soft light (24 W,
color temperature 6,000 K, WenaSelin Tec., Co. Ltd., Hangzhou,
China) on the top. Due to the fixed focal length, the image with
the ruler card was taken only once to calibrate the measurement
before taking other images. After taking an image of the intact
tomato fruits (Figure 1B), each fruit was sepal-removed and cut
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vertically through the center. Then, another image of the vertical
cut was taken (Figure 1C). Finally, both the vertical halves were
cut horizontally, and the adjacent parts were put together to take
a third image of the horizontal cut (Figure 1D).

Image Recognition and Phenotyping
Indicators
To quantitatively extract tomato fruit phenotyping indicators
from the images, OpenCV 4.5.3 computer vision library was
applied to conduct image recognition tasks including background
filtering, length measuring, and contour points locating. The
tomato fruit locules were recognized using a deep learning
instance segmentation model developed on PaddlePaddle 1.8.4
(Ma et al., 2019).

Intact Tomato Fruits
The image recognition process for the image of intact tomato
fruits is shown in Figure 1E. The image was first transformed
into Hue-Saturation-Value (HSV) color mode. Based on the
saturation and value differences between the tomato fruits
and the background, HSV filtering and binarization were then
performed to remove the background. Pixels that had H between
0 and 180◦ (ranging 0–360◦) and both S (ranging 0–255◦) and V
(ranging 0–255◦) greater than a certain threshold were marked as
tomato fruit area, and other pixels were background. According
to our preliminary experiment, such a threshold would vary
among cultivars. Still, for a certain fruit color type, the threshold
stays the same. As background pixels were replaced with black
color, the image was binarized, and only fruits were remained.
Then, the fruit color in Red, Green, and Blue (RGB) color mode
was extracted for each fruit in the image and taken the average R,
G, and B value, respectively.

Vertical Cut
The image recognition process for the image of vertical cut
is shown in Figure 1F. HSV filtering and binarization were
performed first, as mentioned above. The fruit contours in
the image and the corresponding minimum area rectangles

TABLE 1 | Tomato samples for image acquisition and phenotyping verification.

Cultivar no. Fruit
colora

First
harvest/db

Botanical name

No. 405 Green 112.8 Solanum lycopersicum L.

No. 459 Yellow 103.2 Solanum lycopersicum L. var.
cerasiforme (Alef.) Voss

No. 106 Orange 118.0 Solanum spp.

No. 68 Orange 129.0 Solanum lycopersicum L.

No. 129 Orange 116.3 Solanum lycopersicum L.

No. 522 Red 111.2 Solanum lycopersicum L.

No. 80 Red 107.6 Solanum lycopersicum L.

No. 341 Red 126.2 Solanum lycopersicum L.

No. 123 Black 105.6 Solanum spp.

No. 113 Black 115.0 Solanum spp.

aFruit color is based on human eye sensory instead of accurate color types.
bThe average number of days between planting and first harvest.

enclosing the fruit contours were extracted. According to our
preliminary experiment, the fruit horizontal diameters extracted
from intact fruit and vertical cut image have no significant
difference. Thus, the width and height of the rectangle were
measured and recorded as the tomato fruit horizontal diameter
and vertical diameter, respectively. Vertical/horizontal ratio (also
called fruit shape index) is calculated as vertical diameter divided
by horizontal diameter. Fruit navel angle and fruit top angle are
the angles of the calyx indentation and top protrusion on the
vertical section, respectively. They were measured as follows:

1. Find the fruit contour;
2. Use the Douglas-Peucker algorithm (Douglas and Peucker,

1973) to locate the approximate convex points;
3. Find the concave point on the contour that had the largest

distance toward the line passing through its two adjacent
convex points. This concave point is marked as the fruit
navel point (red points in Figure 1F);

4. In rare cases, the abovementioned concave point is not the
real fruit navel point. Crop the image region between each
concave point and the center point of fruit contour. Under
HSV color mode, find the concave point that has the lowest
saturation in the cropped region. This concave point is
the fruit navel point because the region near calyx on the
vertical section is whiter than other fruit parts;

5. Find the farthest contour point on the opposite side of the
contour. This is the fruit top point;

6. Find two adjacent convex points of both the fruit navel
point and the fruit top point. Calculate the fruit navel angle
and fruit top angle which are denoted in Figure 1F;

7. The top/navel ratio is calculated as fruit top angle divided
by fruit navel angle.

Horizontal Cut
The image recognition process for the image of horizontal cut is
shown in Figure 1G. The locules in tomato fruits were segmented
using a deep learning instance segmentation model based on
Mask R-CNN (He et al., 2018). The procedures are as follows.

Locules Labeling
Among all cultivars, 335 images of horizontal cut tomato fruits
were selected to form a fruit locule image dataset. All locules in
the images were manually labeled as polygons using an image
annotation tool LabelMe (Russell et al., 2008).

Data Augmentation
Increasing the number of training images by transformation and
enhancement techniques is useful to avoid the overfitting and
non-convergence of R-CNN algorithms. Images rotating 90, 180,
and 270◦ were appended into the dataset. Vertical and horizontal
mirroring of images was also appended into the dataset. Images
were resized into 0.1, 0.25, 0.5, 0.8, 2, and 4 times of the
raw image size with bilinear interpolation. These images were
appended into the dataset to augment image size levels. Besides
the above transformation techniques, image blurry was applied
as an enhancement technique to improve the model performance
on blurred images. All the above mentioned transformed images
were processed by Gaussian blurry with 5 × 5 kernel and
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FIGURE 1 | Tomato samples and image acquisition process. (A) Tomato samples, images are proportional; (B) Image acquisition of ruler card and the intact fruit;
(C) Image acquisition of the vertical cut; (D) Image acquisition of the horizontal cut; the same fruit of vertical cut is cut then joint the corresponding horizontal parts
together. (E) The extraction of the fruit average color Red, Green, and Blue (R, G, B) values from the intact fruit images; (F) Fruit top angle, fruit navel angle, horizontal
diameter, and vertical diameter extraction from the vertical cut images; the red, yellow, magenta, and cyan points are the navel point, the top point, the left, and the
right adjacent convex points, respectively; (G) Fruit locule number, locule area proportion, and pericarp thickness extraction from the horizontal cut images; the gray
and orange circles refer to the locule segmentation and the horizontal cut section, the green points are the center of the horizontal cut section, and the red points are
the intersections of the lines and the edges.
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appended into the dataset. The number of the image dataset
was increased to 8,040 after the abovementioned augmentation
methods. The dataset was then divided into training (5,628
images, 70%), validation (1,608 images, 20%), and testing (804
images, 10%) sets.

Deep Learning Model Training
Mask R-CNN has been wildly applied in fruit detecting (Gao
et al., 2020) and segmentation (Liu et al., 2020), but the network
model for tomato fruit locule segmentation still needs further
training to improve the performance. Feature Pyramid Network
(FPN) was implemented to fuse color and texture features into
the model (Lin et al., 2017). Region Proposal Network (RPN) was
applied to generate region proposals based on the features, which
were aligned with the images through the Region of Interest (RoI)
Align process (Tang et al., 2018). The model was then constructed
by feeding the RoI Aligned features to the convolution layers
for segmentation. During training, a positive segmentation was
confirmed if Intersection over Union (IoU) is greater than 0.5.
The loss function was defined as the sum of the bounding
box regression loss. The termination condition is when the loss
function value remained consistent or it hit 5,000 iterations.

Deep Learning Model Evaluation
To evaluate the segmentation results, all segmentation results
were divided into four types, namely, true positive (TP), true
negative (TN), false positive (FP, wrong segmentation), and false
negative (FN, missing segmentation). Precision (P), recall (R),
and F1-score (the harmonic average of P and R) were defined as
follows:

P =
TP

TP+FP

R =
TP

TP+FN

F1− score =
2 × P × R

P+R

Since there was only one segmentation class, average precision
(AP) was defined as the area under the curve plotted with the P
at the vertical axis and the R at the horizontal axis.

Phenotyping Indicators Extraction
The locule number was consequently the number of locule
segmentations after the deep learning model recognition.
The locule area proportion was the area proportion of all
locule segmentations in one fruit over the corresponding fruit
horizontal cut section. For each fruit, a line was drawn through
the center of the horizontal cut section and each center of the
locule segmentation. Each line intersects the edge of each locule
segmentation and the horizontal cut section at a pair of points
(red points in Figure 1F). Pericarp thickness was thus measured
as the average of the lengths between these pairs of points.

Verification
Among all the phenotyping indicators, the tomato fruit
horizontal diameter, vertical diameter, pericarp thickness, and
locule number could be obtained by direct measurement. Thus,

these indicators were manually counted or measured to make
a comparison with the results obtained by image recognition.
Unequal variance tests (Levene’s test) and significance tests were
conducted between the results of the manual measurement and
the image recognition. The Root Mean Square Error (RMSE)
was applied to evaluate the accuracy of the image recognition as
follows:

RMSE =

√√√√ 1
n

n∑
i = 1

(
Ri−Mi

Mi

)2

where n represents the number of measurements, Ri represents
the image recognition result, andMi represents the manual result.
All statistical calculations and analyses were conducted using the
R programming language (version 4.0.5) (R Core Team, 2020).
The C# code for the methods is presented in Supplementary
Material “used_codes.cs.”

RESULTS

Tomato Fruit Color
The threshold for HSV filtering and binarization is crucial to
tomato fruit color recognition. For green, orange, red, and black
tomato fruits, as sorted in colors in Figure 2, the H thresholds for
HSV filtering keep the same while S and V thresholds change in
a range of 30–130. However, the S threshold varies in a minimal
range from 100 to 120, and the V threshold stays the same at 100
for most samples, except that the black tomatoes (No. 113, No.
123) need S and V thresholds of 30 and 130, and No. 68, which has
mottle on the surface, needs S thresholds of 60. This suggests that
there are certain S and V threshold combinations for the HSV
filtering and binarization of pure color and black tomatoes. Since
No. 68 is the only mottled tomatoes found among all cultivars, the
S and V threshold combination (120, 60) should be considered
as a simple case. Notably, the sepal and calyx are also marked
as background and removed, and this is designed in the HSV
filtering and binarization process so that the sepal and calyx do
not influence the extraction of the fruit color R, G, and B values.
As is shown in Figure 2, the fruit average color is objective and in
accordance with the human eye sensory observation, suggesting
that the fruit color obtained by image recognition is reliable and
not subjected to human judgment. The detailed fruit color R, G,
and B values are listed in Supplementary Table 1.

Performance of Phenotyping From
Vertical Cut Images
The measurements of the tomato fruit vertical diameter and
horizontal diameter were verified. The results are shown in
Figures 3A,B. The results show that the measurements based
on image recognition accord with the manual measurements.
No. 80 has the largest horizontal and vertical diameter. No.
341 and No. 459 have the shortest horizontal and vertical
diameter, respectively. The vertical diameter of No. 341 and
No. 459 are quite close, which accord with the proportional
images in Figure 1A. Significance tests suggest that there are no
significant differences between the results of image recognition
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FIGURE 2 | Fruit average colors and thresholds for Hue-Saturation-Value
(HSV) filtering and binarization of the intact fruit images. The square beside
each tomato fruit image shows the fruit average color in RGB mode. Fruit
images are not proportional.

and manual measurements in the same sample. The RMSE
values of the vertical and horizontal diameter measurements
are 0.016 and 0.017, respectively, which are less than 0.100,
an empirical threshold of RMSE determining the accuracy of
measurement results. In addition, the Pearson’s correlation R2

between the image recognition and the manual measurements
is greater than 0.99. These indicate that the accuracy of the
image recognition measurement is equivalent to that of manual
measurement. The unequal variance test indicates homogeneous
variances between the results of the manual measurement
and the image recognition (p = 0.265), indicating that the
variances between image recognition and manual measurements
are equal. This implies that the fruit vertical and horizontal
diameter measurements by image recognition are as precise as
manual measurements.

The results of fruit top and navel angles are shown in
Figure 3C. Large fruit top angles indicate flat fruit top shape,
whereas small fruit top angles indicate sharp protruding fruit
top shape. Large fruit navel angles indicate flat fruit navel
shape, whereas small fruit navel angles indicate deep indented
or concave fruit navel shape. Among all samples, No. 522 has
the smallest fruit top angle, which is due to the sharp protrusion
on the fruit topside. No. 80 has the largest fruit top angle in
accordance with the smooth and flat shape on the fruit topside.
Fruit top angles of all samples except No. 522 are larger than
150◦, which accord with the sensory judgment. No. 405 has the
smallest fruit navel angle among all samples as the indentation on
the fruit navel side is quite deep. No. 123 has the largest fruit navel
angle as the indentation on the fruit navel side is quite shallow.
For most samples, the fruit navel angles are smaller than the fruit
top angles as expected, except that No. 522, 341, and 123 show
the opposite pattern. Although the fruit top and navel angles are
difficult to measure manually, the results accord quite close with
the sensory judgment. Therefore, the fruit top and navel angles by
image recognition are feasible to reflect the tomato fruit top and
navel phenotypes quantitatively. Detailed fruit lengths and angles
data are listed in Supplementary Table 1.

Performance of Phenotyping From
Horizontal Cut Images
The number of iterations has an impact on the training results
of deep learning models. The training and validation datasets
had closely identical variation trends, indicating that the model
was not overfitted with the parameters chosen during the
validation procedure. The loss value reduces as the number
of iterations increases, but it remains rather consistent as the
number of iterations hits 4,000, and it progressively approaches
the minimum value of 0.1505. The results show that the Mask
R-CNN used in this model can learn the features efficiently
and converge rapidly, indicating that it has the potential to
accomplish the required objectives. The detailed loss curves of
the training and validation sets for 5,000 iterations are shown in
Supplementary Figure 1A.

When evaluating the performance of a model, both recall
and precision are critical. As recall increases, the precision
decreases, but the precision of an outperforming model keeps a
high level as recall increases, implying the model will segment
a large majority of TP before detecting FP. Thus, the F1-
score, the harmonic average of precision and recall, is used to
evaluate the model performance. Values between 0 and 1 are
set as various thresholds. Segmentations having a prediction
probability larger than the threshold are considered positive. The
F1-score reaches the maximum of 0.8620 when the threshold is
0.6, implying that 0.6 is a trade-off that balances the precision and
recall and maximizes the performance of the model. The AP is
0.8753, implying that the segmented locule areas match the true
locule areas more than 87.53% of the circumstances. When the
threshold is 0.9, the AP is 0.8107 (greater than 0.8). This indicates
that the model based on Mask R-CNN has high accuracy. The
trajectories of the F1-score at various thresholds are shown in
Supplementary Figure 1B.
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FIGURE 3 | Verification of phenotyping indicators from fruit vertical cut images. (A) Vertical diameters of tomato fruits; (B) Horizontal diameters of tomato fruits;
(C) Fruit top and navel angles, fruit images are not proportional.

The measurements of tomato fruit locule number and
pericarp thickness were verified and presented in Figure 4. Blue
regions represent the locule segmentation by the deep learning
segmentation model. The results suggest that the model can
accurately segment locule areas from the fruit horizontal cut
images after training. Color, fruit size, and seeds have barely
influenced the model segmentation performance. No. 106 and
No. 80 in Figure 4A indicate that small locules which are not
fully formed in the fruit can also be segmented by the model. The
locule counting results in Table 2 show that locule counted by
the deep learning segmentation model is promising, suggesting
that the model can automatically count the fruit locule number
with perfect accuracy. The only wrongly counted cultivar among
all samples is No. 459, which is also difficult for manual counting
due to its small fruit size and hazy septum.

The results in Figure 4B show that the pericarp thickness
measurements based on image recognition accord with the
manual measurements. No. 80 and No. 123 have the thickest
and thinnest fruit pericarp, respectively. The thickness of No.
68 and No. 129 are quite close in accordance with the sensory
judgment. Significance tests suggest that there are no significant
differences between the pericarp thickness by image recognition
and manual measurements in the same sample. The RMSE
of the pericarp thickness measurement is 0.024, which is less
than 0.100, indicating high accuracy of image recognition
measurement. In addition, the Pearson’s correlation R2 between
the image recognition and the manual measurements is greater
than 0.99. This indicates that the accuracy of the pericarp
thickness measurement by image recognition is equivalent

to that of manual measurement. The unequal variance test
indicates homogeneous variances between the results of the
manual measurement and the image recognition (p = 0.303),
indicating that the variances between image recognition and
manual measurements are equal. This implies that the pericarp
thickness measurements by image recognition are as precise as
manual measurements.

The results of fruit locule area proportion are shown in
Figure 4C. A larger locule area proportion indicates a larger
locule volume proportion in the fruit. Among all samples,
No. 459 and No. 68 have the largest and smallest locule
area proportion, respectively. No. 129 has a larger locule area
proportion than No. 106. The locule area proportions of No.
522 and No. 341 are quite close. These all accord with the
sensory judgment from the fruit images. Although the fruit
locule area proportions are difficult to measure manually,
the results accord quite close with the sensory judgment.
Therefore, the fruit locule area proportions measured by the
deep learning segmentation model can quantitatively represent
tomato fruit locule phenotypes. Detailed fruit locule number,
locule area proportion, and pericarp thickness data are listed in
Supplementary Table 1.

DISCUSSION

This study proposed a combination of image recognition and
deep learning segmentation methods to extract several important
tomato fruit phenotypes quantitatively. The manual measuring
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FIGURE 4 | Verification of phenotyping indicators from fruit horizontal cut images. (A) Fruit locule segmentation, fruit images are not proportional; (B) Pericarp
thickness of tomato fruits; (C) Locule area proportions of tomato fruits.

of these phenotypes is essential for tomato breeding but is time-
consuming. The proposed combination of methods can reduce
the operating steps of tomato fruit phenotyping and increase the
measurement accuracy, which greatly reduces the phenotyping
time consumption. The HSV filtering and binarization process
is applicable to isolate most pure color and black tomato fruits
from the white background with a respective combination of S
and V thresholds, which meets the requirement in most cases.
Mottled tomato fruits use a different combination of S and V
thresholds, but such cultivars are uncommon. Considering black
tomato fruits do not fit the black background, blue might be
a more general background color for tomato fruit phenotyping
because blue or similar colored fruits are not found among all
cultivars in this study or other studies (Merk et al., 2012). In
addition, the images of intact tomato fruits are taken from the
navel side instead of from the top side. This is because the shape,
size, and other aspects of the sepals are also important phenotypes
that require further analysis. The navel side images of intact
tomato fruits include both extractable fruit and sepal phenotypes,
which could investigate more phenotypes without increasing the
number of images per tomato cultivar.

Based on the horizontal and vertical diameter and the navel
and top angle, their corresponding ratios are also important
fruit phenotypes, i.e., vertical/horizontal ratio and top/navel ratio.
All cultivars are plotted with the top/navel ratio at the vertical
axis and the vertical/horizontal ratio at the horizontal axis in
Figure 5A. Most cultivars have a top/navel ratio between 0.9
and 1.3 and also a vertical/horizontal ratio between 0.7 and 1.0,
indicating most tomato fruits have a longer horizontal diameter
and a larger top angle. Although all samples have a linear trend

TABLE 2 | Tomato samples for image acquisition and phenotyping verification.

Cultivar no. Average locule number per fruita

Manual count Deep learning segmentation

No. 405 4.25 4.25

No. 459 1.50 1.25

No. 106 3.50 3.50

No. 68 2.50 2.50

No. 129 3.00 3.00

No. 522 2.50 2.50

No. 80 4.50 4.50

No. 341 2.00 2.00

No. 123 2.50 2.50

No. 113 4.50 4.50

aThe averages are based on all tomato fruits in one horizontal cut image.

in the plot (R2 = 0.6995), all cultivars do not fit a specific trend,
indicating that the top/navel ratio does not correlate with the
vertical/horizontal ratio. Several cultivars are shown in Figure 5A
to represent the sensory differences.

To increase locule segmentation performance, the deep
learning model applied the feature mapping strategy (Gupta,
2014) to merge color and texture features in the FPN structure
when training the Mask R-CNN. In this study, tomato fruits with
different colors, sizes, and locule shapes were tested to evaluate
the locule segmentation performance of the deep learning model.
The tomato fruit locules are separately located on one surface
in the images, thus overlapping and occluding do not occur in
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FIGURE 5 | Evaluation of tomato fruit phenotyping indicators and fruit locule segmentation. (A) Distribution of top/navel ratio against horizontal/vertical ratio among
cultivars; the dashed line refers to the corresponding value equals one; (B) Incorrect segmentation cases that do the correct locule counting; (C) Incorrect
segmentation cases caused by hazy septum. Fruit images are not proportional.

these scenarios. However, the deep learning model recognizes
mainly two types of incorrect segmentations: ones that do the
correct locule counting and ones that are caused by a hazy
septum (Figures 5B,C). In the first type, one obstacle to locule
segmentation is the slit between two joint parts of fruit cut. As
shown in Figure 4A, although the fruit parts are joined together
before taking the horizontal cut images, the slit between two
joint parts does not influence the segmentation performance.
Still, the only incorrect segmentation caused by the slit is
shown on the right in Figure 5B, where the slit has passed
through the locule. This implies that the fruit parts should be
joined together closely or cut another fruit before taking the
horizontal cut images. Figure 5B left and middle also shows
representative incorrect segmentations that are partly correct and
do the correct counting. Such cases do not miss any locules
but still be recognized as missing segmentation due to the
low IoU, yet they should be considered as correct in practice
(Tripodi et al., 2018). In the second type, the most common
incorrect segmentation cases are shown in Figure 5C. The tomato
fruits in these cases all have small horizontal diameters and
hazy septum. Manual labeling is difficult and unreliable for
these cases, which could be the reason for wrong and missing
segmentations. In practice, the locule number of such fruit is not
essential and could be considered as one, whereas the recognition
results of locule area proportion and pericarp thickness could be
considered correct. With the abovementioned correct counting
cases (except Figure 5B right) and hazy septum cases modified
as correct, the AP is 0.9564 when the threshold is 0.6, indicating

that the model is quite promising for tomato fruit locule
segmentation and outperforms other image recognition methods.
The results also indicate that the model is robust to segment fruit
locules with different colors, sizes, and locule shapes. Compared
with Tomato Analyzer (Gonzalo et al., 2009) and LocAnalyzer
(Spetale et al., 2020), the advantage of the proposed methods
is the ability to measure pericarp thickness, locule number, and
area automatically. Moreover, the locule segmentation model
increases the phenotyping efficiency by processing multi-fruit
images instead of scanning one fruit each time, while still having
a similar or even higher AP than LocAnalyzer.

The collection and analysis of phenotypes in a consistent
manner is requisite for plant phenomics research (Song et al.,
2021). Current crop phenotyping systems apply high-throughput
techniques to capture numerous phenotypes automatically, and
the accuracy of these procedures is steadily increasing (Zhang
et al., 2021). The proposed combination of methods can
automatically collect a group of tomato fruit phenotypes from a
set of tomato fruit images. The results of the verification indicate
that the locule number is reliably counted, and the locule area
proportion is quantitatively defined. The fruit horizontal and
vertical diameter, top and navel angle, and pericarp thickness
are also accurately recognized. Furthermore, the proposed
combination of methods may considerably minimize manual
observation workloads and make cultivar investigation during
tomato breeding more time-efficient. Operation mistakes during
manual measurement can also be prevented. Besides, the
efficiency and accuracy during the investigation of tomato fruit
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phenotypes are greatly improved, particularly when assessing
fruit locule number and area proportion.

In terms of the image acquisition method, all the fruit images
are taken with a fixed focal length in a constant illumination
condition, and the color space values are utilized to describe
the fruit color, allowing the tomato fruit color to be shown
quantitatively under the same standard. Nevertheless, the juice
of the tomato fruit cut parts is likely to contaminate the
background in practice, which requires cleaning up before taking
each image. Based on the phenotyping demand and barriers in
tomato breeding, this study proposed a quantitative and high-
throughput phenotyping tool that integrates fruit processing,
image acquisition, and phenotypes extraction. The tool is proved
feasible and promising and has significant implications for the
phenotypes evaluation of tomato fruit (Kim et al., 2021). Since
tomato is the model species of fruit development studies, the
methodology could also be extended to other fruit crops.

It is important for omics research to assess the tomato fruit
phenotypes with a consistent and quantitative phenotyping tool
based on image recognition and deep learning segmentation.
Such consistent and quantitative phenotype data could
also aid tomato genomic, metabolomic, and transcriptomic
investigations. For example, studies have found several QTLs that
control tomato fruit morphological shape and locule number
(Illa-Berenguer et al., 2015; Barraj et al., 2021). Quantitative
phenotyping tools also allow researchers to delve deeper into
the mechanisms behind the formation of certain traits in tomato
fruit at the genetic level (Marefatzadeh-Khameneh et al., 2021).
Research on the association network analysis between tomato
fruit color and metabolic pathways would possibly be accelerated
further as well (Hu et al., 2020; Yuan et al., 2021).

CONCLUSION

In this study, a combination of image recognition and deep
learning model is proposed to extract tomato fruit phenotypes
quantitatively and automatically. First, images of intact tomatoes,
vertical cut fruits, and horizontal cut fruits were acquired under
a constant illumination condition. Second, the method based
on image recognition isolated fruits from the background and
extract fruit color, vertical/horizontal diameters, and top/navel
angles from the images of intact tomatoes and vertical cut. Finally,
the deep learning model based on Mask R-CNN was trained and
tested to segment locules from the images of horizontal cut. The
locule number, locule area proportion, and pericarp thickness
were thus extracted automatically. The proposed combination
of methods improves the efficiency and accuracy of tomato
fruit phenotyping. The proposed deep learning model segments
tomato fruit locules with high average precision, implying that
the whole combination of methods is a promising tool to evaluate

tomato fruit phenotypes thoroughly. In conclusion, the results of
this study provide technical support for the quantitative analysis
and evaluation of tomato fruit phenotyping, which is important
for tomato breeding. Furthermore, the methodology could be
extended to the phenotyping of other fruit crops.
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