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Sapindus is an important forest tree genus with utilization in biodiesel, biomedicine,
and it harbors great potential for biochemical engineering applications. For advanced
breeding of Sapindus, it is necessary to evaluate the genetic diversity and construct a
rationally designed core germplasm collection. In this study, the genetic diversity and
population structure of Sapindus were conducted with 18 expressed sequence tag-
simple sequence repeat (EST-SSR) markers in order to establish a core germplasm
collection from 161 Sapindus accessions. The population of Sapindus showed high
genetic diversity and significant population structure. Interspecific genetic variation
was significantly higher than intraspecific variation in the Sapindus mukorossi,
Sapindus delavayi, and combined Sapindus rarak plus Sapindus rarak var. velutinus
populations. S. mukorossi had abundant genetic variation and showed a specific
pattern of geographical variation, whereas S. delavayi, S. rarak, and S. rarak var.
velutinus showed less intraspecific variation. A core germplasm collection was created
that contained 40% of genetic variation in the initial population, comprising 53
S. mukorossi and nine S. delavayi lineages, as well as single representatives of
S. rarak and S. rarak var. velutinus. These results provide a germplasm basis
and theoretical rationale for the efficient management, conservation, and utilization
of Sapindus, as well as genetic resources for joint genomics research in the
future.

Keywords: genetic diversity, population structure, core germplasm, Sapindus mukorossi, Sapindus delavayi,
Sapindus rarak, Sapindus rarak var
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HIGHLIGHTS

- Sapindus is biodiesel, biomedical, and multifunctional
economic forest species.

- Interspecific genetic variation was significantly higher than
intraspecific variation in the Sapindus populations.

- Sapindus mukorossi showed a specific pattern of geographical
variation, whereas Sapindus delavayi, Sapindus rarak, and
Sapindus rarak var. velutinus showed less intraspecific
genetic variation.

- A core germplasm collection was created that contained 40% of
the initial population; it comprised 53 individuals of Sapindus
mukorossi, nine of Sapindus delavayi, one of Sapindus rarak,
and one of Sapindus rarak var. velutinus.

INTRODUCTION

Sapindus is a widely distributed economic forest genus of
Sapindaceae family; it is typically scattered as single plant or
extremely small populations in temperate to tropical regions,
with main biodiversity in Southeast Asia and America (Liu
et al., 2017). Among Sapindus, Sapindus mukorossi Gaertn. (S.
mukorossi), Sapindus delavayi (Franch.) Radlk. (S. delavayi),
Sapindus rarak DC. (S. rarak), and Sapindus rarak var. velutinus
(S. rarak var.) are concentrated in east and southeast Asia
(Liu et al., 2017). Seed oils of Sapindus are suitable for the
preparation of biodiesel under both American and European
standards (D6751 and EN 14214, respectively) (Chakraborty
and Baruah, 2013; Pelegrini et al., 2017; Caowen et al., 2019),
owing to the high oil content (26.69–44.69%) and unsaturated
fatty acid (mean: 86.21%) (Sun et al., 2017; Liu et al., 2021a).
The pericarp of Sapindus also contains abundant triterpene
saponins (4.14–27.04%) and sesquiterpenes (Xu et al., 2018;
Liu et al., 2019). More than 70 of these triterpenoid saponin
compounds have been identified (Xu et al., 2018) and shown
to exhibit outstanding surface activity, antibacterial (Basu
et al., 2015), elution (Mukhopadhyay et al., 2013; Mukherjee
et al., 2015; Mukhopadhyay et al., 2016), pharmacological
(Rodriguez-Hernández et al., 2015), and physiological properties
(Singh and Singh, 2008). Saponins from the pericarp of
Sapinuds are widely used in commercial soaps, shampoos,
and body washes (Muntaha and Khan, 2015), seeds oils are
utilized in biodiesel and premium lubricants, and seedlings are
commonly used for landscaping in southern China. Sapindus is
consequently recognized as a sustainable biodiesel, biomedical,
biochemical, and multifunctional economic forestry species in
China (Sun et al., 2016; Liu et al., 2017; Liu et al., 2021a)
with annual production values exceeding 100M USD. However,
with worldwide deforestation and the rapidly anthropogenic
expanding, the habitat and populations of Sapindus have been
severely damaged or vanished in recent centuries, and the genetic
diversity of Sapindus faces unprecedented threats (Liu et al.,
2017; Liu et al., 2021b). Hence, breeders have recently carried
out several surveys and collections of Sapindus germplasm
resources, and over 1,000 samples have been collected (Liu
et al., 2017). However, due to inconsistencies in the timing,

standards, and designation of germplasm collections, there is
considerable homonymy, synonymy, and genetic redundancy
within the resources. Therefore, a comprehensive evaluation
of the genetic diversity in Sapindus and the construction of a
rationally designed core germplasm collection are needed.

Germplasm resources form the foundation of forest genetic
breeding, and the development of forest tree breeding and
industry depends largely on the extent and diversity captured by
these resources. However, redundancy in germplasm resources
may lead to lower conservation and management efficiency.
The construction of core germplasm collection is the optimal
solution to genetic redundancy. Core germplasm collection is
a subset of germplasm accessions that represents the minimum
repeatability and maximum genetic diversity of one species
(Frankel, 1984; Brown, 1989; Lv et al., 2020). They have been
widely used for germplasm management, conservation, and
application in crop, flower, and horticultural tree species. Most
core germplasm collections represent only 5–20% of the total
germplasm collected (Hintum et al., 2000; Lv et al., 2020), thereby
reducing conservation and management costs and improving
the efficiency of germplasm utilization. However, woody plant
germplasm is predominantly derived from natural populations
with brief history of domestication and long generation time,
therefore the accessions have a high intrinsic genetic diversity
and core germplasm collections typically represent 10–45% of the
complete germplasm collections within these species (Belaj et al.,
2012; Duan et al., 2017; Min et al., 2017; Preethi et al., 2020).

Molecular markers are one of the most powerful and
inexpensive tools for analyzing genetic diversity and establishing
core germplasm collections, compared to whole genome
sequencing, resequencing, or transcriptome sequencing
approaches. Microsatellite markers, also referred to as the
simple sequence repeats (SSR) markers, have been widely applied
in genetic breeding, variety identification, germplasm diversity
evaluation and conservation (Powell et al., 1996). EST-SSR
(expressed sequence tags microsatellite markers) markers not
only have the beneficial characteristics of high intraspecific
polymorphism, co-dominant nature, and high reproducibility,
but also originate from genomic coding regions and thus directly
reflect the diversity of the underlying genes (Adams et al., 1991;
Wang et al., 2017; Parthiban et al., 2018). EST-SSRs have been
commonly used to evaluate genetic diversity of Dendrobium
officinale (Xie et al., 2020), Paeonia rockii (Guo et al., 2020),
coconut (Preethi et al., 2020), and Stevia rebaudiana (Cosson
et al., 2019) and to construct core germplasm collections of Rosa
roxburghii (Min et al., 2017), crape myrtle (Ye et al., 2017), and
olive (Dervishi et al., 2021). Previous studies have applied ISSR
(inter-simple sequence repeat) and RAPD (random amplified
polymorphic DNA) molecular markers to evaluate the genetic
diversity of the S. mukorossi population (Mahar et al., 2011b;
Diao et al., 2016), however, there have been no studies or reports
on the construction of Sapindus core germplasm collection.

In this study, 18 EST-SSR markers were selected based on
whole transcriptome sequencing and used to evaluate the genetic
diversity and population structure of 161 Sapindus individuals.
The aim was to obtain a representative core germplasm
collection which would retain maximum amount of genetic
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diversity and population structure of the sampled Sapindus
population. The core germplasm will enable more scientific and
rational conservation, management, and utilization of the genetic
resources in Sapindus.

MATERIALS AND METHODS

Expressed Sequence Tag-Simple
Sequence Repeat Marker Retrieval and
Primer Design
Expressed sequence tag-simple sequence repeats were identified
in transcript sequences from the Sapindus whole transcriptome
sequencing project using MISA1 (Thiel et al., 2003), and
Primer3 (Untergasser et al., 2012) was used to design EST-SSR
primers. We screened all EST-SSR markers against eight Sapindus
germplasm accessions representing different geographic origins
and selected 18 pairs of highly polymorphic and stable EST-SSR
markers (Table 1) (unpublished). The 18 EST-SSR primers were
synthesized by Beijing Ruiboxingke Biotechnology Co. Ltd. and
used in subsequent experiments.

Plant Materials
The Sapindus population analyzed in this study comprised 161
wild individuals, with 160 individuals from 16 provinces in China
and one individual from Vietnam (Figure 1 and Supplementary
Table 1). It included 117 S. mukorossi individuals, as well as
36 S. delavayi, four S. rarak, and four S. rarak var. velutinus
representatives. The criteria for Sapindus germplasm collection
were representative local, naturally superior plants with a

1https://webblast.ipk-gatersleben.de/misa/

diameter at breast height of at least 30 cm. These germplasms
were conserved ex situ by grafting at a Sapindus national
germplasm nursery in Jianning County, Fujian Province, China
(27◦06′ N, 117◦25′ E), comprising 175 clones and 64 half-sib
families by grafting and seeding respectively, with at least 15
plants for each clone. The average temperature in germplasm
nursery is 17.4◦C, with a maximum temperature of 36.8◦C (July)
and a minimum temperature of 4.3◦C (January), and an average
relative humidity of 83.9% (Wang et al., 2020). At present, the
grafted clones are 6 years old.

DNA Extraction and Expressed
Sequence Tag-Simple Sequence Repeat
Genotyping
300 mg fresh leaf tissue from each Sapindus accession was
used for DNA extraction with a Plant Genomic DNA
Extraction Kit (Tiangen, DP320-03). The DNA samples
concentration and quality were determined with a VERTEX 70
UV spectrophotometer (Bruker, Germany).

Eighteen EST-SSR markers were applied to genotype the 161
Sapindus tree samples. The forward primer of each marker was
labeled at the 5′ end with a fluorescent dye (FAM, HEX, TAMRA,
or ROX) according to the target fragment size of the marker.
PCR (Polymerase Chain Reaction) was performed on a T100
thermal cycler (Biorad) in a 20-µL volume that contained 10.0 µL
2×Taq Plus PCR mix [Taq Plus DNA Polymerase (recombinant),
3 mM MgCl2, 0.4 mM dNTPs (dATP, dCTP, dGTP, and dTTP):
0.4 mM], 0.3 µL 10 µM forward primer, 0.3 µL 10 µM reverse
primer, and 1.0 µL genomic DNA. The PCR protocol was
5 min denaturation at 94◦C; 20 cycles of 30 s at 94◦C, 30 s at
52/72/95/50◦C (annealing temperature depended on the primer

TABLE 1 | Information of 18 EST-SSR primers used in this study.

No Abbreviation Microsatellite
marker

Multiplex Repeat
motifs

Forward primer sequence 5′ → 3′ Reverse primer
sequence 5′ → 3′

Tm(◦C) Size range
(bp)

1 S129 Samuk12G0105900 p3 (GAC)10 AGGAGATTCAAGTGGTGGCG GACGACGTACACTGCTCCAT 59.83 180–216

2 S704 Samuk07G0120400 p3 (TGG)9 ACAACTGGCAAGAGATCGCA CACACCTCCATTTGGCTCCT 59.96 216–240

3 S73 Samuk07G0117300 p2 (GA)11 TTTGGCAGGCCTGTTGATCA ACGTGAGCAAGACCGACTTT 59.90 252–286

4 S36 Samuk03G0000600 p2 (AT)15 GTCACAGCTCAGGTGTTCCT TCGCCACTCCTTTAGGCTTT 59.31 258–314

5 S78 Samuk07G0006800 p3 (CAA)11 GAAGCCGGATCTAATGGGCA TCACTCCAACAGCCTTGTCC 59.89 174–198

6 S20 Samuk02G0314000 p2 (TA)10 CTTATCGGATGGCCCTGCTT CGCACTCACGGTACACCTAA 59.76 212–250

7 S63 Samuk06G0002300 p2 (TA)11 TTGCTTTCTCGTTGGCCTCA ACAGATTGTGGTTGGACGCA 60.18 252–272

8 S29 Samuk02G0156900 p2 (CT)12 TCAGCGTTGAAGAGCCACAG AGTCTCTCAACGGTGCCATC 59.75 168–322

9 S140 Samuk14G0055000 p2 (TC)10 GCTACCCACAGCTCACAAGT ACTCTGTGAGGAGGGTCAGA 59.22 212–222

10 S105 Samuk10G0092500 p3 (ATC)10 TTCTTCCGATTGAGCGCCAT CGAATCCAGTGGCAGTAGCA 60.11 219–240

11 S714 Samuk07G0111400 p2 (TC)11 ATGGAAGTCGGCCTGTCAAG ACAGAGCTACAGCACATGGG 59.75 286–332

12 S14 Samuk01G0267400 p2 (AT)11 CCAGTCTGAGGGCTGCATTT AACAAGGGGGAGCTGTGATC 59.67 284–332

13 S449 Samuk04G0084900 p4 (AAAT)5 CTAGCTGTGGGGGCACATAC GCATATTAGCACCGACCGGA 59.97 212–262

14 S143 Samuk14G0082300 p2 (CT)10 CTAAGCACTTGAGCCCAGCT TACATCATGCGCGCTGAGAT 59.97 248–298

15 S13 Samuk01G0206300 p3 (TGA)9 CGGCACTGCTGTTTGAGTTC CTGTCCACGCCACTGACATA 59.75 363–408

16 S543 Samuk05G0084300 p2 (AT)11 CGCTGCGTCTCTGTTTTTGT ACTGGGGCAGATGAGTATGC 59.53 216–236

17 NG1 NewGene.10582 p2 (AT)12 CTCTTCGGCAGCAGGAATGA GCTTTTTGTCGCCAGTCACA 59.62 248–274

18 NG2 NewGene.27440 p3 (AAG)11 TACAACGCATCCACAACCCA ACTTTATGTGCCAGGCGTCT 59.68 258–285

No., number; Tm, temperature of melting.
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FIGURE 1 | Geographic distribution of 161 Sapindus individuals. The map was generated using ArcMap 10.5 software.

used, see Table 1), and 30 s at 72◦C; and a final extension
for 5 min at 72◦C. Microsatellite alleles were called on an
ABI 3730XL DNA analyzer, and the amplicons were statistically
analyzed by GeneMarker 2.2.0 software (SoftGenetics, State
College, PA, United States).

Data Analysis
For each microsatellite marker, the number of alleles (Na),
number of effective alleles (Ne), observed heterozygosity (Ho),
expected heterozygosity (He), unbiased expected heterozygosity
(uHe), ibreeding coefficient (F), and Shannon’s information
index (I) were calculated using GenAlEx v6.5 (Peakall and
Smouse, 2006). The polymorphic information content (PIC) was
calculated using PowerMarker V3.25 software (Liu and Muse,
2005). F-statistics calculations (FIS, FIT, and FST) and principal
coordinate analysis (PCoA) were also performed in GenAlEx
v6.5 combined with Microsoft Excel. A neighbor-joining (NJ)
tree was generated based on pairwise genetic distances between
individuals by using PowerMarker V3.25 (Liu and Muse, 2005),
and plotted with iTOL.2

The population structure analysis was performed with
Bayesian model-based admixture analyses in STRUCTURE v2.3.4
(Pritchard et al., 2000). We set the number of Markov chain
Monte Carlo (MCMC) iterations after burn-in to 100,000 with a
100,000-run length, and the number of genetically homogeneous
clusters (K value) ranged from 1 to 20 with 10 replicate runs

2https://itol.embl.de/

for each analysis. The optimum K-value was determined by the
highest 1K method (Evanno et al., 2005) in Structure Harvester3

(Earl and VonHoldt, 2012). The structure plot was constructed in
R 4.1.0 (R Core Team, 2013).

The optimal set of core germplasm was extracted by the
Core Hunter 3 (De Beukelaer et al., 2018) which maximized
the genetic variation and allelic richness using local search
algorithms. Based on the previously reported distribution of core
germplasm fractions in woody plants ranging from 10 to 45%
(Belaj et al., 2012; Duan et al., 2017; Feng et al., 2018; Lv et al.,
2020), we decided to test 10 sampling fractions (10, 15, 20, 25,
30, 35, 40, 45, and 50% and initial group) respectively by Core
Hunter 3. Na, Ne, Ho, He, I, and uHe were calculated separately
for each fraction using GenAlEx software, as described above.
These indicators were t-tested between the core subset and the
initial group using Microsoft Excel. The smallest core subset
that did not differ significantly with the 100% population group
(P ≤ 0.05) was then selected as the optimal core germplasm
collection (Lv et al., 2020).

RESULTS

Genetic Diversity of Sapindus
There were 236 alleles identified by the 18 EST-SSR markers.
All 161 individuals could be uniquely genotyped using these 236

3http://taylor0.biology.ucla.edu/structureHarvester/
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TABLE 2 | Genetic diversity parameters for Sapindus individuals at the 18 microsatellite markers.

No Marker N Na Ne Ho He uHe I F PIC

1 S129 159 11 5.226 0.277 0.809 0.811 1.864 0.658 0.783

2 S704 161 8 3.498 0.547 0.714 0.716 1.577 0.235 0.687

3 S73 159 14 6.353 0.623 0.843 0.845 2.114 0.261 0.826

4 S36 160 25 11.503 0.725 0.913 0.916 2.683 0.206 0.907

5 s78 160 9 5.023 0.419 0.801 0.803 1.771 0.477 0.772

6 S20 156 13 5.472 0.538 0.817 0.820 1.943 0.341 0.795

7 S63 124 11 5.424 0.355 0.816 0.819 1.896 0.565 0.792

8 S29 155 18 10.609 0.781 0.906 0.909 2.541 0.138 0.898

9 S140 161 6 2.625 0.429 0.619 0.621 1.202 0.308 0.561

10 S105 161 8 4.745 1.000 0.789 0.792 1.720 –0.267 0.759

11 S714 161 12 5.312 0.516 0.812 0.814 1.944 0.365 0.790

12 S14 161 21 8.128 0.863 0.877 0.880 2.433 0.016 0.866

13 S499 160 11 5.690 0.725 0.824 0.827 1.998 0.120 0.804

14 S143 159 20 5.055 0.447 0.802 0.805 2.048 0.443 0.782

15 S13 161 12 5.085 0.522 0.803 0.806 1.822 0.351 0.777

16 S543 153 11 2.875 0.320 0.652 0.654 1.496 0.509 0.627

17 NG1 160 16 6.581 0.556 0.848 0.851 2.159 0.344 0.833

18 NG2 160 10 3.596 0.406 0.722 0.724 1.661 0.437 0.693

Mean(± SD) 157.3(±8.6) 13.1(±5.1) 5.711(±2.355) 0.558(±0.196) 0.798(±0.0.078) 0.801(±0.368) 1.937(±0.368) 0.306(±0.217) 0.775(±0.088)

No., number; N, number of individuals; Na, number of alleles; Ne, number of effective alleles; Ho, observed heterozygosity; He, expected heterozygosity; uHe, Unbiased
Expected Heterozygosity = [2N/(2N−1)] × He; I, Shannon’s information index; F, inbreeding coefficient = (He − Ho)/He = 1 − (Ho/He); PIC, polymorphic information
content; SD, standard deviation.

alleles, demonstrating the high discrimination capacity of these
18 EST-SSR markers. The markers showed considerable variation
(Table 2), with number of alleles (Na) ranging from 6 to 25 (mean
13.1), number of effective alleles (Ne) from 2.625 to 11.503 (mean
5.711), observed heterozygosity (Ho) from 0.277 to 1.000 (mean
0.558), expected heterozygosity (He) from 0.619 to 0.913 (mean
0.798), unbiased expected heterozygosity (uHe) from 0.621 to
0.916 (mean 0.801), Shannon’s information index (I) from 1.202
to 2.683 (mean 1.937), and polymorphic information content
(PIC) from 0.561 to 0.907 (mean 0.775). The marker with the
highest number of alleles was S36 (25), and the marker with the
lowest was S140 (6). The observed heterozygosity of all markers
was lower than the expected heterozygosity, with the exception
of S105. All markers exhibited high polymorphism (PIC > 0.5;
Table 2). The S36 marker captured the most genetic diversity with
the highest PIC value (0.907).

There were marked differences in genetic diversity among the
four different Sapindus taxa (Table 3). S. mukorossi exhibited the
highest Na, Ne, I, Ho, He, and uHe values and the lowest F value
compared with S. delavayi, S. rarak, and S. rarak var. velutinus.
By contrast, S. rarak var. velutinus showed lower levels of genetic
diversity, probably because of its narrow distribution area and
smaller number of individuals. The mean pairwise FST coefficient
between the four species of Sapindus was 0.154 (Table 4); highest
differentiation was between S. delavayi and S. rarak (0.183) and
lowest for S. mukorossi versus S. delavayi (0.122).

Genetic Structure of Sapindus
The first and second coordinates of the PCoA analysis accounted
for 40.54 and 13.44% of the total genetic variation, respectively
(Figure 2).The population of Sapindus was split into three

clusters on the first principal coordinate axis (PCoA 1), which
corresponded approximately to the S. delavayi group, the S. rarak
and S. rarak var. velutinus group, and the S. mukorossi group.
On the second principal coordinate axis (PCoA 2), individuals
of S. mukorossi were roughly divided into two subgroups: the

TABLE 3 | Genetic diversity parameters for four different Sapindus species.

Pop N Na Ne I Ho He uHe F

SM 115.83 11.83 5.12 1.82 0.60 0.77 0.77 0.22

SD 33.67 7.44 3.25 1.32 0.47 0.61 0.62 0.25

SR 3.89 2.94 2.40 0.83 0.38 0.47 0.54 0.27

SRV 3.89 2.89 2.34 0.85 0.37 0.49 0.57 0.35

SM, S. mukorossi; SD, S. delavayi; SR, S. rarak; SRV, S. rarak var.; N,
number of individuals; Na, number of alleles; Ne, number of effective alleles; Ho,
observed heterozygosity; He, expected heterozygosity; uHe, Unbiased Expected
Heterozygosity = [2N/(2N − 1)] × He; I, Shannon’s information index; F, inbreeding
coefficient = (He − Ho)/He = 1 − (Ho/He).

TABLE 4 | The pairwise FST comparison among four different Sapindus
population.

Comparison FST

SM vs. SD 0.122

SM vs. SR 0.151

SD vs. SR 0.183

SM vs. SRV 0.156

SD vs. SRV 0.137

SR vs. SRV 0.174

SM, S. mukorossi; SD, S. delavayi; SR, S. rarak; SRV, S. rarak var.
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FIGURE 2 | Principal coordinate analysis of 161 Sapindus individuals. SM, S. mukorossi; SD, S. delavayi; SR, S. rarak; SRV, S. rarak var. velutinus.

individuals from southern Guizhou province and the remaining
S. mukorossi germplasm. Likewise, S. rarak and S. rarak var.
velutinus were also divided into two subgroups along the second
principal coordinate axis.

In contrast to the PCoA results, the STRUCTURE analysis
indicated that the Sapindus population could be genetically
divided into two distinct subgroups by the 1K method
(Figures 3B,C). Subgroup 1 contained all individuals of
S. mukorossi, and subgroup 2 included all individuals of
S. delavayi, S. rarak, and S. rarak var. velutinus. When K
was equal to 3–6, individuals of subgroup 2 were consistently
divided into S. rarak subgroup and S. rarak var. velutinus
subgroup (Figure 3A). Furthermore, S. mukorossi individuals
were divided into several subgroups (K = 3–6). Intriguingly,
individuals from southern Guizhou province formed a separate
subgroup (K = 3–6), suggesting that they originated from a
distinct ancestral population.

The neighbor-joining dendrogram based on genetic distances
among individuals (Figure 4) grouped S. mukorossi, S. delavayi,
and S. rarak into their own populations, except for one S. delavayi
individual that was grouped together with the S. mukorossi
individuals. Furthermore, S. mukorossi individuals could be

divided into multiple subgroups which largely correlated with
their geographic distribution. Interestingly, some S. mukorossi
individuals from Guizhou province appeared to be more closely
related to S. rarak.

Construction and Evaluation of a
Sapindus Core Germplasm Collection
We produced nine candidate core germplasm collections of
different sizes using Core Hunter. To determine the optimal core
germplasm size, we compared the nine subgroups to the whole
population according to six diversity parameters: Na, Ne, Ho, He,
uHe, and I (Table 5). The core 10 and 15% subgroups differed
significantly (P ≤ 0.05) and highly significantly (P ≤ 0.01)
from the full population in Ne and I, respectively. The core
10–25% subgroups differed highly significantly (P ≤ 0.01) and
significantly (P ≤ 0.05) in Na from the core 30 and 35%
subgroups. The remaining parameters showed no significant
differences between the subgroups and the full collection. Hence,
the core 40% subgroup was selected as the optimal core
germplasm collection. It contained 64 Sapindus individuals: 53
S. mukorossi, nine S. delavayi, one S. rarak, and one S. rarak var.
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FIGURE 3 | Structure analysis of 161 Sapindus individuals. (A) The population structure of Sapindus was determined using STRUCTURE 2.3.4 software (K = 2–6);
(B) Estimated average likelihood L(K) distribution (mean ± SD) from 2 to 10 possible clusters (K); (C) Delta K distribution based on the rate of change in L(K)
between continuous K values.

velutinus (Supplementary Table 2), respectively. Relative to the
full collection, the core 40% subgroup maintained 80.66% of Na,
97.65% of I, and 90.69% of Ho, and it had 101.90% higher Ne,
103.68% higher He, and 109.59% higher uHe.

DISCUSSION

Genetic Diversity and Population
Structure of Sapindus Germplasm
The collection of natural germplasm resources and genetic
diversity evaluation is important for the conservation, breeding,
and utilization of germplasm resources (Glaszmann et al., 2010).
Previous studies have documented abundant genetic diversity
in Sapindus. Diao et al. (2016) and Jiang et al. (2016) found
significant genetic divergence among germplasm accessions of
S. mukorossi using ISSR markers. Sun et al. (2018) also found
significant interspecific genetic differences between S. mukorossi
and S. delavayi in China using ISSR markers, and they reported
that S. mukorossi could be broadly divided into two subgroups.
In this study, for the first time, we have pooled S. mukorossi,
S. delavayi, S. rarak, and S. rarak var. velutinus germplasms from
China to analyze their genetic diversity and population structure
using EST-SSR markers. We also found substantial genetic
diversity within the Sapindus germplasm, with S. mukorossi
exhibiting the highest genetic variation (Na = 11.83, I = 1.82);
S. rarak and S. rarak var. velutinus showed less variation
(Na = 2.94 and 2.89 and I = 0.83 and 0.85, respectively)
(Tables 2, 3). This may be due to the wider distribution and
population size of S. mukorossi; S. rarak and S. rarak var.
velutinus have a limited distribution in Yunnan Province, China,
with S. rarak found only in Xishuangbanna Dai Autonomous
Prefecture, Yunnan Province and S. rarak var. velutinus only

in Shiping and Jianshui counties in Honghe Hani and Yi
Autonomous Prefecture, Yunnan Province.

It is difficult to distinguish S. mukorossi, S. delavayi, S. rarak,
and S. rarak var. velutinus in nature because of their high
phenotypic similarity, and there has been a lack of molecular
biological support for the species splits in the Sapindus taxonomy.
A better understanding of Sapindus genetic structure is a first step
toward addressing these issues. Here, we have identified varying
levels of genetic divergence among S. mukorossi, S. delavayi,
S. rarak, and S. rarak var. velutinus for the first time using SSR
markers. Pairwise FST comparisons among the four Sapindus
taxa showed high genetic differentiation (Table 4), and PCoA
(Figure 2) and a neighbor-joining dendrogram (Figure 4)
supported this (Figure 2). However, structure analysis divided
the Sapindus germplasms into two subgroups, a S. mukorossi
subgroup and subgroup containing the other taxa (Figure 3A),
probably due to the higher representation of S. mukorossi among
the samples. Structure analysis was developed for comparing
populations within a single species and requires the assumption
of Hardy-Weinberg equilibrium in the population, which may
be violated by the populations of Sapindus studied here (Lv
et al., 2020). Hence, PCoA analysis can be a more valid and
efficient approach for genetic structure identification owing to
its relaxed Hardy-Weinberg equilibrium hypothesis (Lv et al.,
2020). We presented the results of structure analysis for K = 3–
6 and found that S. mukorossi, S. delavayi, and the combination
of S. rarak and S. rarak var. velutinus were divided into three
distinct subgroups; S. mukorossi could be further divided into
multiple subgroups (Figure 3A). Intriguingly, structure analysis
suggested that S. rarak and S. rarak var. velutinus originated from
the same ancestral population (Figure 3A), and PCoA analysis
also indicated that S. rarak and S. rarak var. velutinus were
closely related (Figure 2), supporting the theory that S. rarak var.
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FIGURE 4 | Dendrogram based on genetic distances among individuals in the Sapindus population. Green, S. mukorossi; yellow, S. rarak and S. rarak var. velutinus;
red, S. delavayi.

velutinus is a variety of S. rarak. Moreover, we also found that
individuals from southern Guizhou Province formed a distinct
subgroup (Figure 3A), consistent with the PCoA analysis in
which S. mukorossi individuals were divided into two subgroups
along PCoA axis 2 (Figure 2). Previously, (Mahar et al., 2011a,b,
2013) used RAPD, DAMD, and ISSR molecular markers to
analyze germplasm of S. mukorossi, Sapindus trifoliatus, and
Sapindus emarginatus. They found higher variation in genetic
diversity within populations than between populations. Here, we

found that Sapindus was genetically diverse, with interspecific
genetic variation significantly higher than intraspecific variation.
S. mukorossi had higher levels of genetic variation and showed
a pattern of geographic variation, whereas S. delavayi, S. rarak,
and S. rarak var. velutinus showed low levels of intraspecific
genetic variation. These results differ from those of Mahar et al.,
perhaps because their population originated in India, where
the germplasm collection was smaller and unevenly distributed
(Mahar et al., 2011a,b, 2013). It is also possible that interspecific
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TABLE 5 | Comparison of genetic diversity parameters of different fractions of
core germplasm subgroups.

Fraction (%) Na Ne I Ho He uHe F

Initial collection 100 7.76 3.89 1.41 0.48 0.64 0.66 0.29

Core 50% 50 6.53 3.92 1.37 0.43 0.66 0.71 0.37

Core 45% 45 6.33 3.97 1.38 0.44 0.67 0.72 0.37

Core 40% 40 6.26 3.97 1.38 0.43 0.67 0.72 0.38

Core 35% 35 5.88* 3.86 1.33 0.44 0.66 0.73 0.35

Core 30% 30 5.80* 3.89 1.34 0.44 0.66 0.73 0.36

Core 25% 25 5.64** 3.86 1.34 0.43 0.66 0.73 0.36

Core 20% 20 5.18** 3.59 1.26 0.42 0.64 0.72 0.36

Core 15% 15 4.47** 3.28* 1.08** 0.35 0.56 0.67 0.40

Core 10% 10 3.82** 2.99* 0.93** 0.37 0.48 0.59 0.21

Na, number of alleles; Ne, number of effective alleles; I, Shannon’s
information index; Ho, observed heterozygosity; He, expected heterozygosity;
uHe, Unbiased Expected Heterozygosity = [2N/(2N − 1)] * He; F, inbreeding
coefficient = (He − Ho)/He = 1 − (Ho/He). *P ≤ 0.05 or **P ≤ 0.01 for difference
between a core subset and the total population of Sapindus in simple t-tests.

incompatibility is lower between the Indian species. Overall, we
believe that these results provide molecular biological support
for the current consensus taxonomy of Sapindus in China.
Furthermore, it suggests that special attention should be paid
to Sapindus rarak var. velutinus with respect to its relationship
with the other Sapindus species when carrying phylogenetic
studies in future.

The Core Germplasm Collection of
Sapindus
The construction of a core germplasm resource is an effective
way to achieve efficient, scientific and rational conservation and
utilization of genetic diversity (Xu et al., 2020), and the selection
of an appropriate core population size is a crucial factor in
establishing a core germplasm collection. Balakrishnan et al.
(2000) and Zhang et al. (2010) suggested that the proportion of
core germplasm should be determined by the size of the initial
germplasm resource. Li et al. (2002) recommended sampling 5–
40% of the core germplasm in crops, with 10% being optimal.
However, woody plants are more genetically diverse, and the
sampling percentage of core germplasm for woody plants is
typically in the range of 10–45%. For instance, 14.71% (64/435)
in apple (Malus domestica Borkh.) (Zhang et al., 2010), 17.96%
(30/167) in Citrus reticulata (Garcia-Lor et al., 2017), 35%
(247/707) in Eucalyptus cloeziana F. Muell (Lv et al., 2020), 35%
(63/180) in Ginkgo biloba (Xuan et al., 2016), and 42.9% (300/700)
in Chinese fir (Duan et al., 2017).

In this study, we selected a 40% (64/161) subgroup of the
Sapindus core germplasm using Core Hunter. The population
contained 53 S. mukorossi, nine S. delavayi, one S. rarak, and
one S. rarak var. velutinus individuals (Supplementary Table 2).
During the construction of core germplasm collections, allele
retention is frequently considered as an evaluation criterion.
For example, in Saccharum officinarum germplasm collection
the criteria were to retain at least 70% of allele richness as well
as other genetic diversity parameters (Balakrishnan et al., 2000).
Compared with all Sapindus germplasm, the core germplasm

collection had higher genetic diversity and maintained 80.66%
of the allelic richness (Table 5), showing a balanced geographic
composition (Supplementary Table 2). Previously, the core
germplasm collection of lychee using 18 SSR markers resulted
in 29.92% (38/127) individuals (Wang et al., 2012). The
combined results indicate that the Sapindus core germplasm
collection constructed in this study well represent the initial
collection. The non-core germplasm of Sapindus population,
also called reserve collection of Sapindus, is important for
the conservation and utilization of Sapindus diversity, and it
may harbor specific phenotypic, phenological and ecological
characteristics to be of future use, thus it is important to conserve,
exploit and understand the reserve collection as well. Although
we have achieved our objectives of exploring genetic diversity
and population structure in Sapindus and constructing a core
germplasm collection using EST-SSR markers, our study still
have some limitations. Compared with the millions of single
nucleotide polymorphisms (SNP) and indel markers that can
be obtained by whole genome resequencing or transcriptome
sequencing, the number of EST-SSR markers in this study is
relatively low, and the results obtained are not sufficient to
fully elucidate the genetic structure of Sapindus. Hence, in
future studies we hope to perform transcriptome sequencing or
resequencing of this core germplasm collection to further explore
interspecific and intraspecific genetic structure, evolutionary
history, and regions under natural selection in Sapindus.
Nevertheless, we believe the results of this study can help
facilitate the efficient management, conservation, and utilization
of Sapindus germplasm resources in the future.

CONCLUSION

In this study, we have revealed high genetic diversity and
significant genetic structure in Sapindus germplasms using 18
EST-SSR markers. Interspecific genetic variation was significantly
higher than intraspecific variation in S. mukorossi, S. delavayi,
and S. rarak plus S. rarak var. velutinus populations. S. mukorossi
had abundant genetic variation and showed a pattern of
geographic variation, whereas S. delavayi, S. rarak, and S. rarak
var. velutinus showed less intraspecific genetic variation. A core
germplasm collection was defined as 40% of the initial
population; it comprised 53 S. mukorossi, nine S. delavayi, one
S. rarak, and one S. rarak var. velutinus. The results obtained
here provide a germplasm basis and theoretical rationale for the
efficient management, conservation, and utilization of Sapindus
germplasm, as well as genetic resources for joint genomics
research in the future.
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