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Rose (Rosa sp.) flowers have a rich diversity of colors resulting from the differential
accumulation of anthocyanins, flavonols, and carotenoids. However, the genetic and
molecular determinants of the red-petal trait in roses remains poorly understood. Here
we report that a transposable element-like insertion (Rosa1) into RcMYB114, a R2R3-
MYB transcription factor’s promoter region causes its transcription, resulting in red
petals. In red-petal varieties, RcMYB114 is expressed specifically in flower organs, but is
absent from non-red varieties. Sequencing, yeast two-hybrid, transient transformation,
and promoter activity assays of RcMYB114 independently confirmed the role of Rosa1
in altering RcMYB114’s transcription and downstream effects on flower color. Genetic
and molecular evidence confirmed that the Rosa1 transposable element-like insertion,
which is a previously unknown DNA transposable element, is different from those in
other plants and is a reliable molecular marker to screen red-petal roses.

Keywords: Rosa1 transposable element-like, RcMYB114, transcription, petal color, rose, anthocyanin

INTRODUCTION

Rose (Rosa sp.) is a widely cultivated plant prized for its ornamental, therapeutic, and cosmetic
properties (Marmol et al., 2017; Hibrand Saint-Oyant et al., 2018; Raymond et al., 2018). Flower
color is of primary importance in ornamental plants and rose exhibits a diverse array of petal
colors. Many studies have sought to uncover the molecular and genetic basis of petal coloration
in order to accelerate the selective breeding process. In general, differences in color patterns
among flowers are determined by the differential regulation of pigment biosynthesis genes during
flower development (Martin and Gerats, 1993). For example, red flower color is conferred by
the anthocyanin pigment, the biosynthesis of which has been widely studied (Grotewold, 2006;
Carbone et al., 2009; Schaart et al., 2013b; Hsu et al., 2015). Anthocyanin biosynthesis involves
many structural genes encode essential biosynthetic enzymes including phenylalanine ammonia-
lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate:coenzyme A ligase (4CL), chalcone
synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-
reductase (DFR), anthocyanin synthase (ANS), and UDP flavonoid glucosyltransferase (UFGT)
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(Winkel-Shirley, 2001). In particularly, the enzymes DFR, ANS,
and UFGT are markers of the late anthocyanin biosynthetic
pathway (Winkel-Shirley, 2001; Grotewold, 2006; Tanaka et al.,
2008; Wang et al., 2020). The genes encoding these late-stage
enzymes are regulated by various R2R3-MYB transcription
factor genes such as AtMYB123(TT2) (Baudry et al., 2004),
FaMYB9/FaMYB11 (Schaart et al., 2013a), FaMYB10 (Wang
et al., 2020), MlPELAN and MlNEGAN (Yuan et al., 2014),
PavMYB10.1 (Jin et al., 2016), PsMYB12 (Gu et al., 2019),
VvMYBA2r and VvMYBA2w (Jiu et al., 2021), CgsMYB6, and
CgsMYB11 (Lin and Rausher, 2021).

The total numbers of R2R3-MYB transcription factors were
different in different plant species. For example, a 70 R2R3-MYB
transcription factors were identified in sugar beet (Stracke et al.,
2014). In grapevine, 108 R2R3-type MYBs were described and
classified (Matus et al., 2008). In Arabidopsis thaliana, there are
126 MYBs of the R2R3-type described (Stracke et al., 2001).
A total of 285 R2R3-MYB transcription factors were identified
in banana (Pucker et al., 2020). According to its phylogenetic
relationships and short signature motifs the R2R3-MYBs were
classified into different subgroups (Kranz et al., 1998; Dubos et al.,
2010). The anthocyanin activating R2R3-MYB transcription
factors which belong to subgroup 6, had the signature motif
“[R/K]PRPRx[F/L].” The first anthocyanin activating R2R3-
MYB transcription factors were identified by Paz-Ares et al.
(1987). Then many newly R2R3-MYB transcription factors
activating anthocyanin were identified in other plants such as
snapdragon, lily, petunia, monkey-flower, peony, moth orchid,
strawberry, cheery, apple (Goodrich et al., 1992; Quattrocchio
et al., 1999; Borevitz et al., 2000; Spelt et al., 2000; Schwinn
et al., 2006; Jin et al., 2016; Wang et al., 2020). In snapdragons
(Antirrhinum majus), the genes Rosea1, Rosea2, and Venosa
regulate petal color intensity and anthocyanin pigmentation
(Schwinn et al., 2006). In Asiatic hybrid lily (Lilium asiatica
hybrid), the genes LhMYB12 and LhMYB6 regulate anthocyanin
pigmentation in tepals, filaments, and styles, and LhMYB6 also
regulates light-induced pigmentation in leaves (Yamagishi et al.,
2010). In monkey-flower (Mimulus spp.), the genes PELAN
and NEGAN regulate anthocyanin pigmentation in the petal
lobe and nectar guide, respectively. NEGAN is activated by
the NEGAN-MlANbHLH1-WD40 complex via autocatalytic
feedback, which is required to generate anthocyanin spots.
The abnormal expression of PELAN leads to yellow petals
(Yuan et al., 2014). In the orchid Phalaenopsis equestris,
the differential expression profiles of R2R3-MYB transcription
factors regulate the formation of red flowers, which in the
orchid Phalaenopsis Aphrodite, overexpression of the PeMYB2
gene causes anthocyanin accumulation in sepals and petals of
white-flowered species, suggesting that in this species, PeMYB2
is responsible for the fully red flower trait (Hsu et al., 2015).

Gene transcription is influenced by several mechanisms
including silencing, rearrangement, and insertion of transposable
elements (McClintock, 1950; Brown, 1981; Signor and Nuzhdin,
2018; Nakayama and Kataoka, 2019; Gil and Ulitsky, 2020).
Barbara McClintock first predicts that transposable elements
(Ac/Ds system), which was a mobile piece of DNA, were present
in eukaryotic genomes and her studies showed that transposable
elements influenced the color of kernels in maize (McClintock,

1950). Transposable elements can replicate and integrate into
different positions of the genome, altering the expression of
adjacent genes (McClintock, 1950; Butelli et al., 2012; Drongitis
et al., 2019; Niu et al., 2019). Transposable elements can be quite
volatile and are able to insert themselves into intergenic regions,
promoters, exons, introns, and both the 5′ and 3′ untranslated
regions (UTRs) of genes. These insertions can lead to both
genetic and phenotypic variation (McClintock, 1950; Elbarbary
et al., 2016; Hirsch and Springer, 2017; Niu et al., 2019). Often,
environmental factors, such as increased temperatures, alter the
number and activity of transposable elements, potentially leading
to adaptation (Niu et al., 2019). Therefore, transposable elements
have potential to quickly create genetic and phenotypic diversity
within a population.

During a field survey, we found an interesting red rose (Rosa
chinensis ‘Semperflorens’ cv. ‘Slater’s Crimson China’) specimen
that contained both red and white flowers on the same branch.
The flowers had no other obvious differences, having the same
number of petals, pistils, stamens, and sepals. We suspected a
transposable element may be affecting the expression of one or
more R2R3-MYB transcription factor genes. In this research, we
sought to understand the genetic basis of this phenomenon.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Samples of a red rose (R. chinensis ‘Semperflorens’ cv. ‘Slater’s
Crimson China’) containing both red and white (mutant) flowers
on the same plant were identified and collected. Beijing (116◦20′
N, 39◦56′ E) has a warm temperate semi humid and semi-
arid monsoon climate. Summer is hot and rainy, winter is cold
and dry, and spring and autumn are short. The annual average
temperature is 10∼12◦C. All these rose plants were grown outside
under nature cultivation conditions at the Institute of Forestry
and Pomology, Beijing Academy of Agriculture and Forestry
Sciences, Beijing, China. The plants are pruned each December.
Samples of the leaves, stems, styles, and petals were used for gene
expression analysis. Petals at different developmental stages were
used to assess anthocyanin content (Guterman et al., 2002). The
leaves, stems, styles, and petals of the other rose varieties were
sampled and quick frozen using liquid nitrogen, and stored in the
freezer (−70◦C).

Petal Anthocyanin Quantification and
Identification
A pH differential method was used to identify and quantify
the total anthocyanin content of petals of both red and white
(mutant) ‘Slater’s Crimson China’ roses at stage 4 (Cheng and
Breen, 1991; Benvenuti et al., 2004). In order to quantify
anthocyanin content, rose petals were ground in liquid nitrogen
and 10 mg of petal powder was extracted with 0.1% HCl-
methanol solution for 4 h, in the dark, at room temperature.
All petal extractions were centrifuged for 20 min at 8500 g and
all supernatants were filtered using a 0.45-µm membrane. A pH
differential method was used to estimate the total content of
anthocyanins (Cheng and Breen, 1991; Benvenuti et al., 2004).
The absorbances at 510 and 700 nm were determined. The
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anthocyanin content was calculated using anthocyanin content
A = (a510-a700) pH 1.0–(a510-a700) pH 4.5. All analyses were
performed using three biological replicates.

The anthocyanin contents were quantified and calculated
as cyanidin-3,5-O-diglucoside equivalents in µg per g FW. In
order to identify the anthocyanin present, the extracts were
assayed using ultra-high-performance liquid chromatography–
mass spectrometry (UPLC-MS/MS) using a Acquity UPLC
system (Waters, MA, United States) coupled to a XEVO-TQ
triple-quadrupole mass spectrometer (Waters, Milford, MA,
United States) with electrospray ionization (ESI). The analysis
conditions were as follows: a 0.4 mL/min flow rate and
positive ion ESI modes, 3.0 kV capillary voltages, and 16 L/h
nebulization nitrogen flow. The chromatographs were plotted
and analyzed using Origin software (OriginLabs, Northampton,
MA, United States). The characteristics of UV-Vis spectra
of peaks and the mass spectrometric information of the
petal anthocyanin compounds were analyzed according to the
difference of the retention times of standards. The anthocyanins
content’s relative quantification was analyzed by calculating the
peak areas of samples according to the corresponding standard
compound’s intensity. All analyses were performed using three
biological replicates.

cDNA and Genomic Sequence
Amplification and Sequencing
Genomic DNA was isolated from 250 mg fresh leaf samples
from red and white (mutant) with a Super Plant Genomic
DNA Kit (Tiangen Biotech Co., Beijing, China). Total RNA
extractions of both red and white (mutant) ‘Slater’s Crimson
China’ roses at stage 4 were performed using an RNA isolation
kit (Tiangen Biotech Co., Beijing, China). After the RNA
extract had been treated with DNase I, first-strand cDNA was
synthesized with a Revert Aid First-Strand cDNA synthesis
kit (Thermo Scientific Inc., Waltham, MA, United States).
Primer synthesis was performed by Shanghai Sangon (Sangon,
Shanghai, China) (Supplementary Table 3). cDNA sequence
RcMYB114 was cloned using the red petal cDNA as template.
The genomic sequence of RcMYB114 was cloned using the
Genomic DNA as template from wild type and mutant petals.
PCR was conducted in a 50 µL volume containing 5 µL
10 × buffer, 5 µL dNTPs (2 mmol), 3 µL MgSO4 (25 mmol),
1.5 µL of each primer (10 pmol), 1 U KOD plus polymerase
(Toyoboco, Ltd. Life Science Department, Osaka, Japan), and
3 µL genomic DNA (100 ng) or cDNA (100 ng). The cycling
conditions were as follows: 1 cycle at 94◦C for 4 min, 35
cycles at 98◦C for 30 s, 55 ∼58◦C for 30 s, and 68◦C for
2 min; followed by a final cycle at 68◦C for 5 min. PCR
products were separated. The amplifying fragments were ligated
into pLB-Simple Vector (Tiangen Biotech Co., Beijing, China),
transformed into Escherichia coli strain, and sequenced.

Sequence Alignment and Phylogenetic
Analysis
The evolutionary analysis of RcMYB114Red gene was carried
out using its protein sequence. The other MYB transcription

factor’s protein sequences were acquired from GenBank,1

including A. thaliana (AtMYB4, AtMYB75, AtMYB90,
AtMYB105, AtMYB114) (Kranz et al., 1998; Borevitz et al.,
2000; Jin et al., 2000; Stracke et al., 2001), Solanum pennellii
(SpMYB114) (Kiferle et al., 2015), A. majus (AmROSEA1,
AmROSEA2, AmVENOSA) (Schwinn et al., 2006), Malus
domestica (MdMYB16, MdMYB17, MdMYB111, MdMYB114)
(Lin-Wang et al., 2010; Xu et al., 2017; Song et al., 2019),
Prunus avium (PaMYB114) (Jin et al., 2016), Prunus persica
(PpMYB114) (XP_020420992), Prunus mume (PmMYB114)
(XP_016652295), Pyrus× bretschneideri (PbMYB114) (Yao et al.,
2017), Rosa rugosa (RrMYB114) (QEV87523), Fragaria vesca
(FvMYB114) (XP_004288854), Fragaria × ananassa (FaMYB1,
FaMYB5, FaMYB9, FaMYB11) (Paolocci et al., 2011; Schaart
et al., 2013a), R. chinensis (RcMYB23, RcMYB308, RcMYB4,
RcMYB113, RcMYB105), Rosa hybrid (RhMYB10) (Lin-Wang
et al., 2010). The MYB protein alignment was performed using
CLUSTALW2 (Chenna et al., 2003; Larkin et al., 2007). An
evolutionary tree was produced using MEGA X3 by the neighbor-
joining approach executing 1000 bootstrap replicates (Tamura
et al., 2011; Kumar et al., 2018).

RNA-Seq Analysis of Transcription
Levels
Total RNA extractions of both red and white (mutant) ‘Slater’s
Crimson China’ roses at stage 4 were performed using an
RNA isolation kit (Tiangen Biotech Co., Beijing, China). After
the total RNA extraction and DNase I treatment, magnetic
beads with Oligo (dT) are used to isolate mRNA. Mixed with
the fragmentation buffer, the mRNA is fragmented into short
fragments. Than the cDNA was synthesized using the mRNA
fragments as templates by reverse transcriptase (Invitrogen,
Carlsbad, CA, United States). The sequencing libraries were
prepared using the Library Prep Kit (New England BioLabs,
Rowley, MA, United States) Short fragments are purified and
resolved with EB buffer for end reparation and single nucleotide
A (adenine) addition. After that, the short fragments are
connected with adapters. After agarose gel electrophoresis, the
suitable fragments are selected for the PCR amplification as
templates. At last, the library could be sequenced using the
HiSeqTM 2000 system (Illumina, San Diego, CA, United States)
by Novogene (Novogene Biotech Co., Ltd., Beijing, China).
Primary sequencing data that produced by Illumina HiSeqTM
2000, called as raw reads. Raw data (raw reads) of fastq format
were firstly processed through in-house perl scripts. In this
step, clean data (clean reads) were obtained by removing reads
containing adapter, reads containing N base and low quality
reads from raw data. At the same time, Q20, Q30, and GC
content the clean data were calculated. All the downstream
analyses were based on the clean data with high quality. After
QC, clean reads was aligned to the reference sequences with
SOAPaligner/SOAP2. The alignment data is utilized to calculate
distribution of reads on reference genes and perform coverage

1https://www.ncbi.nlm.nih.gov/genbank/
2https://www.genome.jp/tools-bin/clustalw
3https://www.megasoftware.net/
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analysis. The gene expression level is calculated by using RPKM
method (Mortazavi et al., 2008). The RPKM method is able to
eliminate the influence of different gene length and sequencing
discrepancy on the calculation of gene expression. Therefore, the
calculated gene expression can be directly used for comparing
the difference of gene expression among samples. Differential
expression analysis was performed using the edgeR (Robinson
et al., 2010). The P values were adjusted using the Benjamini
and Hochberg method. Corrected P-value 0.05 and absolute
fold change of 2 were set as the threshold for significantly
different expression.

Real-Time Quantitative PCR Assay of
Genes Related to Anthocyanin
Biosynthesis
Total RNA of each tissue sample was extracted and first-
strand cDNA was synthesized with a cDNA synthesis kit
(Thermo Scientific, Waltham, MA, United States). RT-qPCR was
performed using a Bio-Rad CFX96 system (Bio-Rad, California,
CA, United States). For RT-qPCR conditions, 10 µL reaction
mixture included 5 µL 2 × SYBR Premix, 1 µL forward primer
(10 µM), 1 µL reverse primer (10 µM), 1 µL cDNA template
(20 ng) and 2 µL ddH2O; the PCR conditions were as follows:
1 cycle at 95◦C for 30 s, 40 cycles at 95◦C for 5 s, and 1
cycle at 60◦C for 30 s. Primers for various regulatory and
structural genes related to the anthocyanin biosynthesis pathway
are shown in Supplementary Table 3. Data were analyzed using
the 2−11CT method as outlined by Livak and Schmittgen (2001).
Expression of specific genes were normalized to actin (KC514920)
(Meng et al., 2013). All analyses were performed using three
biological replicates.

Yeast Two-Hybrid Assay of Gene
Function
Yeast Two-Hybrid (Y2H) experiments were performed
according to the method used in a previous study. Briefly,
AH109-competent cells were co-transformed according to the
manufacturer’s instructions (Clontech Laboratories, California,
CA, United States). RcMYB114Red and RcWD40 were introduced
into pGADT7 to produce fusion proteins using the GAL4
activation domain (AD). RcMYB114Red and RcWD40 were
separately cloned into pGBKT7 to make recombinants with
the GAL4 DNA binding domain (BD). The vector of RcbHLH
fused with the GAL4 AD and BD was kept in our laboratory
(Li et al., 2017). All primers are listed in Supplementary
Table 3. All constructs were confirmed by enzyme digestion and
sequencing. The various combinations of BD and AD vectors
were co-transformed into yeast strain AH109 using the lithium
acetate method (Gietz et al., 1995) and selected on SD/–Leu–Trp
media under 30◦C culture conditions for 3–4 days. To assay
the interaction, these clones were then incubated on SD/–Ade–
His–Leu–Trp culture media under 30◦C culture conditions for
7 days. β-galactosidase tests were performed on the same plate
and positive clones were dyeing by using 3–5 µL 4 mg/mL
X-α-gal, and false-positive activation was excluded using the P53
plus SV40 vector.

Nicotiana benthamiana Expression
Assay of Gene Function
Transient expression of RcMYB114Red constructs was performed
using a Hyper Trans system (Sainsbury et al., 2009; Butelli et al.,
2017). Briefly, RcMYB114Red was isolated from the genomic DNA
of both the white (mutant) and red flowers of ‘Slater’s Crimson
China.’ RcMYB114Red was placed into the pEAQ686HT-
DEST1 vector. The RcMYB114Red plasmid was transformed
into Agrobacterium tumefaciens GV3101. The transformation
protocol was conducted as previously described (Sparkes et al.,
2006). Leaves were sampled 7 days after injection. We then
photographed the leaves and carried out measurement of the total
anthocyanin content, high-performance liquid chromatography
analysis of anthocyanin compounds, and RT-qPCR analysis
of the expression of the RcMYB114Red transcription factor
and other genes.

Chromatin Immunoprecipitation Assay
Chromatin immunoprecipitation assays were performed
according to Bowler’s methods (Bowler et al., 2004). Briefly,
we used a rabbit (New Zealand) to produce an IgG antibody
to RcMYB114Red. The rabbit IgG was purified using Pan’s
protocol (Pan et al., 2005). The chromatin immunoprecipitation
experiments were carried out as described by Bowler (Bowler
et al., 2004) using a Pierce Agarose ChIP kit (No. 26156, Thermo
Scientific, Waltham, MA, United States). Primers were designed
according to the promoter sequences of RcPAL, RcC4H, RcCHS,
RcCHI, RcF3H, RcFLS, RcLAR, RcDFR, RcANS, and RcUFGT.

pRcMYB114Red and pRcMYB114White

Promoter-β-Glucuronidase Fusion Gene
Transformation and Histochemical
β-Glucuronidase Assay
We fused the pRcMYB114Red and pRcMYB114White promoters to
the β-Glucuronidase (GUS) gene vector, which were subsequently
injected into Nicotiana benthamiana leaves (Sainsbury et al.,
2009; Butelli et al., 2017). Leaves were sampled 7 days after
injection and soaked in X-Gluc buffer (12 mM potassium
ferricyanide, 12 mM potassium ferrocyanide, 0.3% (v/v)
Triton X-100, and 1 mg/ml 5-bromo-4-chloro-3-indolyl-β-D-
glucuronide). The buffer was infiltrated into the samples under
a vacuum. The leaves were stained overnight at 37◦C, washed
in 70% (v/v) ethanol several times, and then photographed
(Koo et al., 2007).

RESULTS

RcMYB114 Shares High Homology With
Anthocyanin-Regulating Genes in Many
Plants
During a field survey, we found a red rose (R. chinensis
‘Semperflorens’ cv. ‘Slater’s Crimson China’) specimen that
contained both red and white (mutant) flowers on the same
branch (Figure 1A). We collected both red and white flowers
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from this specimen and performed an RNA-seq analysis. We
found that several key genes upstream of the anthocyanin
biosynthesis pathway, including RcPAL, RcCHI, RcCHS, and
RcC4H, had significantly higher expression levels in red
flowers compared to white flowers. Additionally, several key
downstream genes, including RcDFR, RcANS, and RcUFGT,
also had significantly higher expression levels in red flowers
compared to white flowers (Figure 1B). We further confirmed
these results by real-time quantitative PCR (RT-qPCR). Overall,
we found 125 MYB genes expressed in red flowers and 118
MYB genes expressed in white flowers. Among these MYB
genes, RcMYB113, RcMYB308, RcMYB75, RcMYB90, RcMYB114,
RcMYB4, RcMYB105, and RcMYB23 encode R2R3-type MYB
transcription factors. The RNA-seq heatmap indicated that
the relative transcription levels of these genes showed two
distinct expression patterns between red and white flowers. The
expression levels of RcMYB113, RcMYB308, and RcMYB4 were
lower in red flowers compared to white flowers. Conversely,
the expression levels of RcMYB75, RcMYB114, RcMYB105, and
RcMYB23 were higher in red flowers compared to white flowers.
Notably, RcMYB114 was highly expressed in red flowers, but was
absent in white flowers (Figure 1B). Based on gene annotation
analysis, RcMYB114 was mapped to chromosome 7 (GenBank
accession: MW239569). BLAST similarity analysis indicated
that RcMYB114 was identical to the RchiOBHmChr7g0235271.4

Further, SMART analysis showed that RcMYB114 encoded an
R2R3-MYB transcription factor.5

To determine the phylogenetic relationship of RcMYB114 to
other known R2R3-MYB transcription factors, we constructed
a tree of about 30 closely related transcription factors by
the neighbor-joining approach (Figure 1C). We found that
the protein product of RcMYB114 (RcMYB114) clustered with
strawberry (Fragaria spp.) FvMYB114. The related proteins are
known to primarily regulate anthocyanin biosynthesis, including
FvMYB114 (F. vesca), and it was suspected that RCMYB114 does
the same (Figure 1C).

RcMYB114 Regulates Anthocyanin
Biosynthesis in Roses
We cloned RcMYB114 using the genomic DNA as template from
both white mutant petals and red wild-type petals. The results
found that the sequences of RcMYB114red and RcMYB114white

were identical. To confirm whether RcMYB114 is responsible for
regulating anthocyanin biosynthesis, a Hyper Trans expression
vector was used to transiently deliver the RcMYB114Red plus
RcbHLH into N. benthamiana leaves. We found that, after
5 days, leaves successfully infiltrated with RcMYB114Red plus
RcbHLH showed red color (Figures 2A,B). We found that
the pigmentation was mainly comprised of cyanidin-3-O-
sophoroside, and the total anthocyanin content of these leaves
was 57.92 mg/100 g fresh weight (FW).

To further verify the role of RcMYB114, yeast two-hybrid
(Y2H) and chromatin immunoprecipitation (ChIP) assays were
carried out. The classical MBW complex, which acts as a

4https://lipm-browsers.toulouse.inra.fr/pub/RchiOBHm-V2/
5http://smart.embl-heidelberg.de/

regulatory hub for the anthocyanin biosynthesis and other
processes, consists of MYB, basic helix-loop-helix (bHLH), and
WD40 proteins. In the Y2H assay, yeast system vectors were
constructed using RcMYB114Red, RcWD40, and RcbHLH. We
observed that all three MBW complex proteins interacted with
each other in yeast cells (Figure 2C). ChIP analysis illustrated
that RcMYB114 selectively bound the RcPAL, RcCHS, RcLAR,
RcDFR, RcANS, and RcUFGT promoter regions containing the
MYB binding site (AACCTAA) for light-responsive elements
(Figure 2D). These results indicate that RcMYB114 encodes a
transcription factor protein that interacts with RcWD40 and
RcbHLH and is selectively recruited to RcPAL, RcCHS, RcLAR,
RcDFR, RcANS, and RcUFGT promoter regions to regulate
anthocyanin biosynthesis and accumulation.

A Fragment Insertion (Rosa1) in the
Promoter Region of Rcmyb114 Causes
Its Expression in Red Rose
We found that RcMYB114Red and RcMYB114White were identical
in both form and function. We also found that red roses expressed
RcMYB114Red in high quantities while white roses did not
express RcMYB114White. To determine the cause of this dramatic
difference in transcript abundance between red and white roses
on the same plant, we isolated the upstream promoters of
RcMYB114Red and RcMYB114White. The promoter sequence of
RcMYB114Red (pRcMYB114Red) was approximately 3 kb, but
that of RcMYB114White was only 2866 bp (Figures 3A,B). After
cloning and sequencing these fragments, we found a 148-bp
fragment inserted at −758 bp upstream of the ATG start codon
of RcMYB114Red, which was absent in RcMYB114White. The
148-bp fragment was named Rosa1 and contained a cis-acting
element binding site for transcription factors. For example,
the sense chain had bZIP, TCP, and bHLH domains and the
antisense chain had GRF, WRKY, E2F/PD, NAC, and SBP
domains (Figure 3C). The element CATTCATACGGAAGTG of
SBP is the binding site for MYB transcription factors, which are
involved in regulation of flavonoid biosynthesis (Solano et al.,
1995). There are seven chromosomes in haploid roses, and
we found that the Rosa1 fragment is found in 5–8 locations,
distributed across all chromosomes. Rosa1 is mainly inserted in
the promoter, 5′UTR, 3′UTR, intron, and intergenic regions of
transcription factor genes, including MYB, TIFY, and WD40,
and other genes related to growth and development, including
zinc finger, wuschel family, adenyltransferase, and CoA reductase
(Supplementary Table 1).

To investigate whether the Rosa1 inserted in the promoter
region of RcMYB114Red alters its expression, we used the
GUS reporter system. We constructed pRcMYB114Red (3 kb,
including Rosa1) and pRcMYB114White (2866 bp, without Rosa1)
promoter-GUS fusion constructs (Figure 3D). The RcMYB114
promoter-GUS fusion vectors were infiltrated into the abaxial
surface of N. benthamiana leaves. After GUS staining, the
35S:GUS construct showed the strongest expression, followed
by the pRcMYB114Red GUS construct, with the pRcMYB114White

GUS construct having the weakest expression. This experiment
confirmed that Rosa1 does alter gene expression (Figure 3E).
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FIGURE 1 | Identification of the gene (RcMYB114) regulating anthocyanin biosynthesis in our mutant rose. (A) A red rose (R. chinensis ‘Semperflorens’ cv. ‘Slater’s
Crimson China’) specimen was found to contain both red and white (mutant) flowers. (B) RNA-seq heat map of genes related to anthocyanin biosynthesis.
(C) Evolutionary analysis of MYB genes.

Next, we analyzed the RcMYB114 gene and its upstream
sequence in different rose varieties (red, yellow, white, and
green) (Supplementary Table 2), to confirm the universal
existence of this transposable element-like sequence and
how it is related to RcMYB114 transcript levels and petal
color across phenotypes. RcMYB114 was amplified from the
genomic DNA of 51 rose varieties (Figure 4). All the tested
red-petal varieties showed high expression of RcMYB114,
including ‘Slater’s Crimson China,’ ‘Blue River,’ ‘Betty Prior,’
‘Dortmund,’ ‘Uncle Walter,’ ‘Pierre de Ronasard,’ ‘Hiohgi,’
‘Hohoemi,’ ‘Red Success,’ ‘Terrazza Voila,’ ‘Wonderful Wife,’
‘Crimson Glory,’ ‘Red Cap,’ ‘Carola,’ ‘Seba,’ ‘Black Lady,’ ‘Gold
Carriage,’ ‘Zajibiaoyan,’ ‘Hana-Busa,’ ‘Huangjiabaxinuo,’ ‘2018-
08-3,’ ‘Burgundy Iceberg,’ ‘Xiangchun,’ ‘Dongfanghong,’ ‘Cherry
Bonica,’ ‘Red Lace,’ ‘Rhapsody in Blue,’ and ‘Ingrid Bergman.’
RcMYB114 was not expressed in the non-red varieties (green,
yellow, and white), including the green varieties ‘Viridiflora,’
‘Green Star,’ ‘Lvye,’ ‘Éclair,’ and ‘Creamy Eden’; the yellow varieties
‘Golden Celebration,’ ‘Yellow Meilove,’ ‘Adolf Horstmann,’

‘Golden Scepter,’ ‘Kent Princess,’ ‘Oregold,’ ‘Gold Bunny,’
‘Australian Gold,’ and ‘Golden Shower’; and the white varieties
‘Baihe,’ ‘2018-31-117,’ ‘White Ohara,’ ‘Bridal White,’ ‘Lvyun,’
‘Beizhi,’ ‘Snowflake,’ ‘White Satin,’ and ‘Tiantanbai’ (Figure 4).
All the red-petal varieties contained the Rosa1 sequence in the
promoter of their RcMYB114 gene, and all non-red varieties
lacked Rosa1 (Figure 4). This suggests that the Rosa1 insertion
in the upstream regulatory sequence of RcMYB114 altered
RcMYB114 expression, resulting in anthocyanin biosynthesis
accumulation, and was therefore responsible for the red-petal
phenotype in rose.

A Regulatory Model for Anthocyanin
Biosynthesis and Accumulation in Rose
Petals
Rose plants show a rich diversity of flower colors. The formation
of petal color depends on the differential activation of
pigment biosynthesis genes and accumulation of pigments
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FIGURE 2 | Confirmation of the role of RcMYB114 in regulating anthocyanin biosynthesis. (A) Leaf phenotypes of N. benthamiana after being infiltrated with different
constructs or the empty vector (HT-V). (B) Anthocyanins from the infiltrated N. benthamiana leaves were assayed by UPLC-MS/MS. (C) The yeast two-hybrid (Y2H)
assay to probe the interaction of RcMYB114 with RcWD40 and RcbHLH within the MBW complex. The co-transformants were screened on media
(−Ade/−His/−Leu/−Trp). β-galactosidase tests were performed on the same plate and positive clones were dyeing by using 3–5 µL 4 mg/mL X-α-gal, and
false-positive activation was excluded using the P53 plus SV40 vector. (D) RcMYB114 was selectively recruited to RcPAL, RcCHS, RcLAR, RcDFR, RcANS, and
RcUFGT promoter regions as determined by the ChIP assay. Anti-H3K9 was used as positive control and Anti-IgG was negative control.

during flower development. Red petal color is conferred
by anthocyanins, and the RcMYB114 transcription factor
regulates anthocyanin biosynthesis and accumulation in rose.

A Rosa1 fragment insertion can change gene expression
by altering transcription. In white, green, and yellow rose
varieties, RcMYB114 is not expressed without the Rosa1
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FIGURE 3 | Confirmation that the Rosa1 transposable element-like sequence inserted into the promoter region of RcMYB114 alters its expression. (A) Promoters,
pRcMYB114Red and pRcMYB114White, were cloned by PCR amplification. (B) Sequence analysis of Rosa1, a transposable element-like sequence in the promoter of
RcMYB114Red . Red frame and letters indicate the target site duplication (TSD) and sequence. (C) Domain analysis of the Rosa1 transposable element-like
sequence. (D) Schematic diagram of the pRcMYB114Red and pRcMYB114White promoter-β-Glucuronidase (GUS) fusion vectors. The RcMYB114 promoters
replaced the CaMV35S promoter in pBI121. (E) Histochemical assay of GUS activity in N. benthamiana leaves after being infiltrated with the p35S:GUS,
pRcMYB114Red :GUS, and pRcMYB114White:GUS constructs.

fragment insertion during flower development. Without
RcMYB114 transcription and translation, a putative canonical
MBW complex can’t form, which is responsible for the
expression of the key anthocyanin structural genes, such
as RcDFR, RcANS, and RcUFGT. Therefore, anthocyanin
biosynthesis and accumulation are blocked, resulting in
white-, green-, and yellow-petal roses. However, the Rosa1
fragment insertion in the upstream regulatory sequence of
RcMYB114 causes its expression during flower development.
RcMYB114 is then available to form the canonical MBW
complex with RcWD40 and RcbHLH. This promotes the
expression of RcDFR, RcANS, RcUFGT, and other downstream
anthocyanin structural genes, eventually leading to the

accumulation of anthocyanins and red petal color in rose
flowers (Figure 5).

DISCUSSION

R2R3-MYB Family Genes Are Critical
Regulators of Anthocyanin Accumulation
in Plants
Anthocyanins are secondary metabolites that have multiple
biological functions in plants (Falcone Ferreyra et al., 2012).
The R2R3-MYB transcription factors, regulate the anthocyanin
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FIGURE 4 | Expression of RcMYB114 across different petal-color phenotypes is dependent on the presence of Rosa1 transposable element-like sequence within
the upstream regulatory sequence of RcMYB114. PCR amplification of RcMYB114 from genomic DNA and petal cDNA of 51 rose varieties. Actin was used as a
loading control. Only the red-petal varieties contained the Rosa1 transposable element-like sequence.

biosynthesis pathway, thus effecting anthocyanin biosynthesis
and accumulation (Hichri et al., 2011; Jin et al., 2016; Andersen
et al., 2019; Gu et al., 2019; Li et al., 2019; Wang et al., 2020; Jiu
et al., 2021; Lin and Rausher, 2021; Yin et al., 2021). The addition
or deletion of sequences in the coding region of R2R3-MYB
genes can affect their transcription and protein synthesis and
ultimately alter the accumulation of anthocyanins. For example,
in strawberry (Fragaria × ananassa Duch.), FaMYB10 plays an
important role in controlling anthocyanin biosynthesis. An 8-
bp ACTTATAC insertion at the C terminus genomic region,
leads to a code shift mutation and produces the white octoploid
strawberry (Wang et al., 2020). In sweet cherry (P. avium L.),
the inheritance of cherry fruit skin color is regulated by a single
gene involved in anthocyanin biosynthesis, PavMYB10.1. This
gene has three different alleles: PavMYB10.1a, PavMYB10.1b,
and PavMYB10.1c. PavMYB10.1a contains an intact 672-bp
cDNA sequence, conferring red skin color. A 1-bp deletion in

PavMYB10.1b confers blush skin color and an insertion/deletion
(indel) in the same sequence region of PavMYB10.1c confers
yellow skin color (Jin et al., 2016).

Although different genes control fruit coloration and flower
coloration, their regulation mechanisms are very similar. In
petunia (Petunia × atkinsiana), the anthocyanin2 (an2) locus,
which encodes an R2R3-MYB regulator, is a significant regulator
of petal limb color. Other petunia species, including P. integrifolia
and P. axillaris, possess several color variants. The an2 allele
has two alternative code shifts through insertion into one
position, which cause an an2 functorial defect and alter
the flower color (Quattrocchio et al., 1999). In snapdragons
(Antirrhinum spp.), the Rosea locus, which includes Rosea1,
Rosea2, and Venosa MYB-related transcription factors, has three
different alleles that regulate the intensities and patterns of
magenta anthocyanin pigmentation in petal. Wild-type petals
are nearly wholly colored and contain a high concentration
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FIGURE 5 | A regulatory model for anthocyanin biosynthesis and accumulation in rose petals.

of magenta anthocyanin in the corolla. Two mutant alleles
(roscol and rosdor) at the Rosea locus are created by indels,
resulting in a low level of anthocyanin presentation confined
to the petals’ inner epidermis or a low level anthocyanin
presentation toward tube’s base and anthocyanin presentation
on dorsal lobes’ outer epidermis, respectively (Schwinn et al.,
2006). We found that the RcMYB114 gene can affect the
accumulation of anthocyanins in roses. According to the analysis
results of different varieties with different petal colors, at the
genomic level, RcMYB114 gene was amplified in the genomic
DNA of all rose varieties. Meanwhile, at the level of gene
transcription, the RcMYB114 was only expressed in all red
petal variety, but not in non-red rose varieties such as yellow,
green and white petals. Also, we found that the transcription
level of RcMYB114 was different in all red varieties, and some
varieties had very low expression. These results indicated that
there are other MYB genes that cooperate with RcMYB114
and form MYBs regulation networks to determine the red
color of rose petals.

Rosa1 Plays a Critical Role in
Determining Flower Color by Altering the
Transcription of R2R3-MYB Genes
Insertion incidents influence nearby gene transcription and
raise the mutation rate near the insertion site, leading to
the diversification of plant traits (Bennetzen, 2000; Elbarbary
et al., 2016; Chuong et al., 2017; Niu et al., 2019; Jo and
Kim, 2020). For example, in apple (M. domestica Borkh.),
MdMYB1, which is related to the anthocyanin biosynthesis
pathway, regulates fruit red skin phenotype. The MdMYB1
gene possesses three different alleles: MdMYB1-1, MdMYB1-
2, and MdMYB1-3. The MdMYB1-1 allele is dominant and

leads to anthocyanin biosynthesis and red fruit skin. The
other two alleles, MdMYB1-2 and MdMYB1-3, lead to limited
anthocyanin biosynthesis, producing non-red fruit skin. There
is a 4097-bp retrotransposon insertion with two target site
duplications upstream of the MdMYB1 promoter region, which
controls the development of red skin color in apple (Zhang
et al., 2019). Whether this insertion is present or not is stably
transferred from one generation to the next (Zhang et al.,
2019). In citrus, Ruby, an R2R3-MYB gene, regulates fruit
color. A Copia-like retrotransposon inserted into Ruby induces
its expression, resulting in the striking red color of Sicilian
blood oranges (Citrus sinensis). In addition, the differential
expression of Ruby due to various site mutations, deletions, and
insertions of transposable elements gives rise to variations in
leaf and petal colors in different Citrus species and domesticated
cultivars (Butelli et al., 2012, 2017). In grape (Vitis vinifera
L.), red fruit color is closely associated with the expression
of VvMYBA1, which regulates anthocyanin biosynthesis. Black-
skinned cultivars contain a retrotransposon, Gret1, inserted
into the upstream region of VvMYBA1. Because no VvMYBA1
transcripts are detected in white-skinned grapes, it can be
concluded that the insertion drives expression of VvMYBA1,
presenting as dark-skinned grapes (Kobayashi et al., 2004;
Walker et al., 2007).

The Rosa1 transposable element we found is a previously
unknown DNA transposon, and different from those in apple,
citrus, and grape. For example, Rosa1 contains cis-acting element
binding sites for transcription factors: the sense chain contains
bZIP, TCP, and bHLH domains, and the antisense chain contains
GRF, WRKY, E2F/PD, NAC, and SBP domains. In rose, the
Rosa1 transposable element, which inserts into RcMYB114’s
promoter region, may be considered as an enhancer, promoting
the development of red flower color. Cultivars without the Rosa1
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transposable element do not effectively produce anthocyanin
pigments. Thus, the Rosa1 transposable element can serve as a
DNA molecular marker to distinguish red petal roses.

CONCLUSION

RcMYB114, a R2R3-MYB transcription factor, shares high
homology with anthocyanin-regulating genes in many plants.
RcMYB114 is part of an MBW complex and selectively
recruited to structure gene’s promoter regions to regulate
anthocyanin biosynthesis and accumulation in rose. Rosa1, a148-
bp transposable element-like, insertion in the promoter region
of RcMYB114, enhanced RcMYB114 transcript level and resulted
in upregulation of anthocyanin biosynthesis genes, accumulated
anthocyanins. Thus, the Rosa1 can alter gene transcription and
produce rose red petal.
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