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The identification of forest pests is of great significance to the prevention and control of

the forest pests’ scale. However, existing datasets mainly focus on common objects,

which limits the application of deep learning techniques in specific fields (such as

agriculture). In this paper, we collected images of forestry pests and constructed a

dataset for forestry pest identification, called Forestry Pest Dataset. The Forestry Pest

Dataset contains 31 categories of pests and their different forms. We conduct several

mainstream object detection experiments on this dataset. The experimental results show

that the dataset achieves good performance on various models. We hope that our

Forestry Pest Dataset will help researchers in the field of pest control and pest detection

in the future.
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1. INTRODUCTION

It is well known that the untimely control of pests will cause serious damage and loss of commercial
crops (Estruch et al., 1997). In recent years, the scope and extent of forestry pest events in China
have increased dramatically, resulting in huge economic losses (Gandhi et al., 2018; FAO, 2020).
The identification and detection of pests play a crucial role in agricultural pest control, providing a
strong guarantee for crop yield growth and the agricultural economy (Fina et al., 2013). Traditional
forestry pest identification relies on a small number of forestry protection workers and insect
researchers (Al-Hiary et al., 2011), generally based on the appearance of insects, through manual
inspection, visual inspection of insect wings, antennae, mouthparts, feet, etc. to complete the
identification of insects, but Due to the wide variety of pests and the small differences between the
species, this method has major defects in practice. With the development of machine learning and
computer vision technology, automatic pest identification has received more and more attention.

Most of the early pest identification work was done by using a machine learning framework,
which consists of two modules: (1) hand-made feature extractors based on GIST (Torralba et al.,
2003), Scale-Invariant Feature Transform(SIFT) (Lowe, 2004), and (2) machine learning classifiers,
including support vector machine (SVM) (Ahmed et al., 2012) and k-nearest neighbor (KNN)
(Li et al., 2009) classifiers. The goodness of the hand-designed feature components will affect
the accuracy of the model. If incomplete or incorrect features are extracted from pest images,
subsequent classifiers may not be able to distinguish between similar pest species.

With the continuous development of science and technology, deep learning technology has
become a research hot spot of artificial intelligence. Image recognition technology based on deep
learning improves the efficiency and accuracy of recognition, shortens the recognition time, reduces
the workload of staff greatly, and lowers the cost. At present, pest identification methods based
on deep learning technology are becoming more and more mature, and the scope of the research
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includes crops, plants, and fruits (Li and Yang, 2020; Liu and
Wang, 2020; Zhu J. et al., 2021). However, the detection of
forest pests faces many difficulties due to the lack of effective
datasets. Some datasets are too small to meet the detection needs.
Furthermore, most pest datasets are collected through traps or
controlled laboratory environments, but they lack consideration
of the real environment (Sun et al., 2018; Hong et al., 2021).
Different species of pests may have a similar appearance. The
same species may have different morphologies (nymphs, larvae,
and adults) at different times (Wah et al., 2011; Krause et al., 2013;
Maji et al., 2013).

For solving the problems mentioned above, we proposed
a new forestry pest dataset for the forestry pest identification
task. We collected pest data by searching through Google search
engine and major forestry control websites. After filtering, we
collected 2,278 original pest images covering adults, larvae,
nymphs, and eggs of various pests. To alleviate the problem
of category imbalance and improve the performance of the
dataset for generalization ability, we took data enhancement
operations, After data enhancement operations, the total amount
of data increased to 7,163. For our pest dataset, we invited three
experts in the field to assist us in classifying pests with the
help of authoritative websites. Under the premise of knowing
the category, we use the LabelImg annotation tool to annotate
the image.

Our dataset covers 31 common forestry pests.We collected the
forms of pests in different periods in the real wild environment.
It meets the basic requirements of forestry pest identification.
Figure 1 shows some examples of the dataset. To explore the
application value of our proposed dataset, we use popular object
detection algorithms to test the dataset.

The contributions of this work are summarized as follows:

1) We construct a new forestry pest dataset for the target
detection task.

2) We tested our dataset on several popular object detection
models. The results indicate that the dataset is challenging and

FIGURE 1 | Sample images of Forestry Pest Dataset. (A) Drosicha contrahens; (B) Apriona germari; (C) Hyphantria cunea; (D) Micromelalopha troglodyta(Graeser);

(E) Plagiodera versicolora(Laicharting); and (F) Hyphantria cunea larvae.

creates new research opportunities. We hope this work will
help advance future research on related fundamental issues as
well as forestry pests identification tasks.

2. RELATED WORKS

In this section, we introduce the related work of agricultural pest
identification and review the existing data sets.

Pest Identification of Agriculture
Pest identification helps researchers improve the quality and yield
of agricultural products. Earlier pest identification models are
mainly based on machine learning techniques. For example, Le-
Qing and Zhen (2012) utilizes local average color features and
SVM to diagnose 10 insect pests based on a dataset containing
579 samples. Fina et al. (2013) combined K-mean clustering
algorithm with adaptive filter for crop pest identification. Zhang
et al. (2013) designed a field pest identification system and their
dataset comprises approximately 270 training samples. Ebrahimi
et al. (2017) used a differential kernel function SVM method for
classification and detection, but the evaluated dataset is small,
containing just 100 samples. Wang et al. (2018) uses digital
morphological features and K-means to segment pest images.
The above traditional pest identification algorithms have been
studied with good results, but all of them have limitations, and
their detection performance depends on the performance of the
pre-designed manual feature extractor and the selected classifier.

Convolutional neural network (CNN) has strong image
feature learning capability, such as ResNet (He et al., 2016) and
GoogleNet (Szegedy et al., 2015) can learn deep higher-order
features from images and can automatically learn shape, color,
and texture of complex images and other multi-level features,
overcoming the traditional manually designed feature extractors’
limitations and subjectivity. It has obvious advantages in target
detection, segmentation, classification of complex images, etc.

Liu and Wang (2020) constructed a tomato diseases and pests
dataset and improved the YOLOV3 algorithm to detect tomato
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pests. Wang et al. (2020) introduced an attention mechanism
in residual networks for improving the recognition accuracy
of small targets. A two-stage aphid detector named Coarse-to-
Fine Network (CFN) is proposed by Li et al. (2019) to detect
aphids with different distributions. Zhu J. et al. (2021) uses super-
resolution image enhancement technology and an improved
YOLOv3 algorithm to detect black rot on grape leaves.

In general, CNN-based pest identification work can
well avoid the limitations of traditional methods and
improve the performance of pest identification. However,
most target detection models have applied many hand-
crafted components.To some extent, the parameters
of the manual components increase the workload. To
eliminate the impact of manual components on the
model, researchers have considered using the versatile and
powerful relational modeling capabilities of the transformer
to replace the hand-crafted components. Carion et al.
(2020) put forward the end-to-end object detection with
transformers (DETR) by combining the convolutional neural
network and the transformer, which built the first complete
end-to-end target detection model and achieved highly
competitive performance.

Related Datasets
At present, deep learning-based agricultural pest identification
and classification is maturing. The research scope includes a
variety of cash crops such as crops, vegetables, and fruits, and
relevant datasets have also been constructed.

Wu et al. (2019) constructed the IP102 pest dataset, which
covers more than 70,000 images of 102 common crop pests.
Wang et al. (2021) constructed the Agripest field pest dataset,
which includes more than 49,700 images of pests in 14 categories.
Hong et al. (2020) constructed a moth dataset by pheromone
traps, which were labeled with four classes, including three moth
classes and an unknown class of non-target insects. As a result
of data collection and labeling, a total of 1,142 images were
obtained. Liu Z. et al. (2016) constructed a rice pest dataset.
The data were collected from image search databases of Google,
Naver, and FreshEye, including 12 typical species of paddy field
pest insects with a total of over 5,000 images. He et al. (2019)
designed an oilseed rape pest image database, including a total
of 3,022 images with 12 typical oilseed rape pests. Lim et al.
(2018) build an insects dataset by specimens and Internet. The
dataset consists of about 29,000 image files for 30 classes. Baidu
constructed a forestry pest dataset that includes over 2,000 images
for 7 classes through the specimen and traps. Chen et al. (2019)
build a garden pests datasets. The dataset consists of about
9,070 image files for 38 classes. Liu et al. (2022) constructed
a representative dataset of forest pests classification, including
67 categories and 67,953 original images. However, so far, only
the dataset of Liu et al. (2022) is available for the detection of
forest pests.

In conclusion, the research on crop diseases and insect pests
based on deep learning covers a wide range, but in forestry, the
detection and control of forest diseases and insect pests is still
a challenge.

3. OUR FORESTRY PEST DATASET

Data Collection and Annotation
We collect and annotate the dataset with following four
stages: 1) taxonomic system establishment, 2) image collection,
3) preliminary data filtering, 4) Data Augmentation, and 5)
professional data annotation.

Taxonomic System Establishment
We have established hierarchical classification criteria for the
Forestry Pest Dataset. We asked three forestry experts to help us
discuss common forest pest species. In addition, to better meet
the needs of forest pest control, we use the larvae, eggs, and
nymphs of each pest as subclasses, specifically, Sericinus montela
and Sericinus montela(larvae) according to our The standards are
divided into two categories. There are 31 classes finally obtained
and they present a hierarchical structure as shown in Figure 2.

Image Collection
We utilize the Internet and forestry pest databases as the main
sources of dataset images. We use the Chinese and scientific
names of pests to search and save on common image search
engines and also search for their corresponding eggs, larvae, and
other images. Afterward, we searched for corresponding images
from specialized agricultural and forestry pest websites.

Preliminary Data Filtering
From candidate images obtained from various websites and
databases, we organized four volunteers to manually screen
images. With the assistance of forestry experts, volunteers
removed invalid and duplicate images that did not contain pests
and repaired damaged images. And establish the initial category
information. Specifically, in the initial pest collection work, we
collected according to 15 categories, the purpose of this is to
enhance the balance of data in the next step. Finally, we obtained
2,278 original images.

Data Augmentation
To ensure the effectiveness of the model and improve the
generalization ability of the dataset, we use 7 image enhancement
techniques such as rotation, noise, and brightness transformation
to expand our dataset. For the species with less data, we adopt
7 methods for augmentation, and our purpose is to balance
the number of pest images for each category. Figure 3 shows
some examples of data augmentation. At the same time, we
extract subclasses such as eggs, larvae, and nymphs under each
category to establish subclass information. Finally, we obtained
a forestry pest dataset of 31 categories (including 16 sub-
categories) with a total of 7,163 images. Table 1 shows specific
data for each category.

Professional Data Annotation
For object detection tasks, annotation information is very
important, which is related to the recognition accuracy of
the model. The first is to classify the collected pests. In the
image collection stage, we already have the initial classification
information. On this basis, our three experts first need to
independently determine whether the image conforms to the
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FIGURE 2 | The classification structure of Forestry Pest Dataset.

category. Uncertain images are eliminated by three experts. The
location information of pests is also very important, which can
help forestry protection workers better find the specific location
of pests. On the premise of understanding the types of pests, we
use the LabelImg tool to label the images, mainly labeling the
types and locations of pests.

We recruited three volunteers to assist us in the annotation
of the data. First, each volunteer will receive guidance and
training from three forestry professionals to understand the basic
characteristics of each type of pest. After that, we will train the
three volunteers to use the LabelImg tool. Volunteers need to
master the basic usage of LabelImg, including importing files and
adding, modifying, and deleting annotation information. Experts

will assist volunteers to annotate some images in the early stage,
and then volunteers will independently complete subsequent
image annotations. In the process of annotation, images that
are difficult to identify or annotate will be resolved through
consultation by three experts. After all image annotations are
completed, volunteers use the annotation visualization to check
whether there is any wrong or defective annotation information
and submit it to experts for the final ruling.

Dataset Split
Our Forestry Pest Dataset contains 7,163 images and 31 pest
species. To ensure the training results, we randomly divide
according to the following ratio: (Train: Val=9: 1): Test=9:
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FIGURE 3 | Example of image data enhancement method. The first row is the original image, and the second row corresponds to the enhanced image. (A) Original

image, (B) Original image, (C) Original image, (D) Noise, (E) Brightness transformation, and (F) Rotation.

TABLE 1 | Details of Forestry Pest Dataset.

Class index Pest Sample size

0 Drosicha contrahens (female) 218

1 Drosicha contrahens (male) 210

2 Chalcophora japonica 158

3 Anoplophora chinensis 426

4 Psacothea hilaris(Pascoe) 218

5 Apriona germari(Hope) 342

6 Monochamus alternatus 184

7 Plagiodera versicolora(Laicharting) 306

8 Latoia consocia(Walker) 290

9 Hyphantria cunea 303

10 Cnidocampa flavescens(Walker) 290

11 Cnidocampa flavescens(Walker) (pupa) 176

12 Erthesina fullo 280

13 Erthesina fullo (nymph) 156

14 Erthesina fullo (nymph 2) 192

15 Spilarctia subcarnea(Walker) 188

16 Psilogramma menephron 218

17 Sericinus montela 364

18 Sericinus montela (larvae) 200

19 Clostera anachoreta 294

20 Micromelalopha troglodyta(Graeser) 238

21 Latoia consocia(Walker) (larvae) 204

22 Plagiodera versicolora(Laicharting) (larvae) 196

23 Plagiodera versicolora(Laicharting) (ovum) 134

24 Spilarctia subcarnea(Walker) (larvae) 186

25 Spilarctia subcarnea(Walker) (larvae 2) 164

26 Psilogramma menephron (larvae) 208

27 Cerambycidae (larvae) 196

28 Micromelalopha troglodyta(Graeser) (larvae) 226

29 Hyphantria cunea (larvae) 224

30 Hyphantria cunea (pupa) 174

1. Specifically, the Forestry Pest Dataset is split into 5,801
training, 645 validation, and 717 testing images for the object
detection task.

Comparison With Other Forestry Pest
Datasets
In Table 2, we compare our dataset with some existing datasets
related to forestry pest identification tasks. Sun et al. (2018) and
Hong et al. (2021) created related datasets using pheromone trap
collection, but their datasets only deal with specific species of
pests. The forestry pest dataset proposed by Baidu is processed
and collected in a controlled laboratory environment. Due to
these limitations, these related datasets are difficult to apply to
practical applications. Chen et al. (2019) and Liu et al. (2022)
focus on the classification of forest pests. Their dataset is rich
in pest species and has a sufficient number of samples, which
has played a huge role in practical applications. However, they
have not made relevant attempts on pest detection tasks, and the
relevant datasets have not been published.

Diversity and Difficulty
Pests with different life cycles have different degrees of damage to
forestry, so we retained images of these different morphological
pests during data collection and annotation. However, due to
the small differences between classes (similar features) and large
differences within classes (there are many stages in the life cycle)
of pests, accurate classification of their features is a difficult task
in detection tasks. In addition, the imbalanced data distribution
brings challenges to the feature learning of the model, and the
imbalanced data will cause the learning results of the model to be
biased toward a relatively large number of classes.

4. EXPERIMENT

To explore the application value of our proposed dataset, we
evaluate several popular object detection algorithms on this
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TABLE 2 | Comparison with existing forestry pest datasets.

Dataset Year Class Sample size Avg Public

Sun et al. (2018) 2018 1 2,183 - Y

BaiDu 2019 7 2,183 311 Y

Chen et al. (2019) 2019 38 9,072 238 N

Hong et al. (2021) 2021 1 50 - N

Liu et al. (2022) 2022 67 67,953 1,014 N

Ours 2022 31 7,163 231 Y

The “Class” denotes the number of categories. The “Public” indicates if the dataset is

open source and available. The “Y” and “N” denote “yes” and “no,” respectively. The

“Avg” denotes average numbers of samples per class.

TABLE 3 | Configuration of experimental environment.

Hardware Model

CPU i7–8,700

Memory 64GB

GPU RTX 3,090 24GB

Hard disk 2.5TB

dataset. Based on the two-stage approach of Faster RCNN
(Ren et al., 2015), they scan the feature maps for potential
objects by sliding windows, then classify them and regress the
corresponding coordinate information. YOLOV4 (Bochkovskiy
et al., 2020) and SSD (Liu W. et al., 2016) based on one-stage
methods directly regress category and location information. In
addition, we also evaluate the transformer-based end-to-end
object detection algorithm Deformable DETR (Zhu X. et al.,
2021).

Experimental Settings
The framework used for this experiment is python3.8, torch1.9,
cuda11.1. The experimental hardware is shown in Table 3.

Object Detection Algorithms
After the accumulation of R-CNN and Fast RCNN, Faster
RCNN integrates feature extraction (feature extraction),
proposal extraction, bounding box regression (rect refine),
and classification into one network in structure, which greatly
improves the comprehensive performance., especially in terms of
detection speed. SSD is a single-stage target detection algorithm,
which uses convolutional neural network for feature extraction,
and takes different feature layers for detection output. SSD is a
multi-scale detection method.Based on the original YOLO target
detection architecture, the YOLOV4 algorithm adopts the best
optimization strategy in the CNN field in recent years, and has
different degrees of optimization in terms of data processing,
backbone network, network training, activation function,
loss function, etc., achieving the perfect balance of speed and
precision. Based on DETR, Deformable DETR improves the
calculation method of the attention mechanism through sparse
sampling, reduces the amount of calculation, and greatly reduces
the training time of the model while ensuring accuracy.

TABLE 4 | Model parameter settings of SSD, Faster RCNN, and YOLOV4.

Name Value

Batch size 16

Epoch 150

Learn rate 0.0001

NMS 0.3

Match threshold 0.5

TABLE 5 | Model parameter settings of Deformable DETR.

Name Value

Batch size 2

Epoch 150

Learn rate 0.00002

Parameters of Model Training
SSD, Faster RCNN, YOLOV4, and Deformable DETR initial
model parameter settings are shown in Tables 4, 5. To take
into account the accuracy and training time, in the previous
Deformable DETR model training process, the model reached
convergence around 150 epoch, therefore, we chose 150 epoch,
and Deformable DETR performed a learning rate decay every 40
epoch, so we chose 80 epoch as the intermediate result, Compare
the performance of the four models on the dataset. At the same
time, to maintain the consistency of the training cycle, we set the
same epoch as Deformable DETR for the other three models.

Evaluation Metrics
We use mAP and Recall as evalution metrics which are two
widely used metrics in target detection. mAP and Recall are
calculated as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

mAPα =
1

N

∑
N
n=1AP

n
α

(3)

mAPmulti−scale =
1

Nms

1

10

∑
Nms
nms

∑
0.95
α=0.5,step=0.05mAPα

ms (4)

Where, TP is a positive sample predicted by the model as a
positive class, FP is a negative sample predicted as a positive
class by the model, FN is a negative class predicted by the model
positive sample. Each class can calculate its Precision and Recall,
and each class can get a PR curve, and the area under the curve is
AP. mAPα and mAPmulti−scale are the average of all classes AP at
different confidence levels α and different scales value.

In the MS COCO dataset, objects with an area less than 32*32
are considered small objects, while objects with an area greater
than 32*32 and less than 96*96 are considered medium objects.
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Experimental Results
Average precision performance of object detection methods
under different IoU thresholds. The results are shown in Table 6.

From the experimental results in Table 6, it can be seen that
the dataset in this paper has good accuracy on mainstream
target detection models under short-time training. The recently
proposed Deformable DETR can also be used on the dataset in
this paper. Achieve roughly the same performance as SSD, Faster
RCNN, and YOLOV4. An example of the detection of the model
is shown in Figure 4.

From the above results, Deformable DETR based on
Transformer architecture does not perform as well as YOLOV4
or even Faster RCNN in some cases. Based on our analysis, there
are the following reasons.

1) Deformable DETR has no prior information. Whether it is
YOLOV4 or Faster RCNN, they all have a part of prior
information input, such as the clustering results of the
coordinate information of the dataset, which can help the
model find the target faster.

TABLE 6 | mAPα values of different models on Forestry Pest Dataset.

Model Epoch mAP0.5 mAP0.75

SSD 80 96.6 80.6

Faster RCNN 80 96.8 83.6

YOLOV4 80 98.8 70.2

Deformable DETR 80 96.6 89.8

SSD 150 98.1 91.1

Faster RCNN 150 97.5 85.2

YOLOV4 150 99.7 88.3

Deformable DETR 150 97.1 90.4

2) Although the attention mechanism calculation of Deformable
DETR has been improved, its essence is still based on pixel
calculation, which leads to a huge amount of calculation
for high-resolution images. Deformable DETR does not
have a feature fusion module similar to YOLOV4, which is
detrimental to the detection of small objects.

3) Deformable DETR uses the Hungarian matching algorithm
to match the prediction and ground truth, which cannot
guarantee the convergence and accuracy of the model to a
certain extent.

Confusion Matrix
The confusion matrix in target detection is very similar to
that in classification, but the difference is that the object of
the classification task is a picture, while the detection task is
different. It includes two tasks of positioning and classification,
and the object is each target in the picture. Therefore, to be
able to draw positive and negative examples in the confusion
matrix, it is necessary to distinguish which results are correct
and which are wrong in the detection results. At the same
time, the detection of errors also needs to be classified into
different error categories. How to judge whether a detection
result is correct, the most common way at present is to
calculate the IOU of the detection frame and the real frame,
and then judge whether the two frames match according
to the IOU. For some targets below the threshold or not
detected, they will be considered as the background class. The
confusion matrix results of the model on the test set are shown
in Figure 5.

Case Study: Experiment on Large,
Medium, and Small Targets
Small targets have always been a difficult task in target detection
due to their small size and lack of feature information.

FIGURE 4 | Sample detection results on adults and larvae. From left to right are (A,E) SSD, (B,F) Faster RCNN, (C,G) YOLOV4, and (D,H) Deformable DETR.
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In the field of forest pest detection, the detection of small
targets is also a difficult task due to the real complexity.
Our dataset contains small objects such as larvae and eggs.
We also consider the model’s ability to detect small objects
in our dataset. The results are shown in Tables 7, 8. The
detection example of each model on small targets is shown
in Figure 6.

As can be seen from the above table, YOLOV4 significantly
leads the rest of the models in the detection of small targets,
thanks to its powerful network structure and feature fusion,
Deformable DETR is based on the attention mechanism of
pixel-level computing, and the detection of small targets is not
very friendly.

5. CONCLUSION AND FUTURE
DIRECTIONS

Conclusion
In this work, we collect a dataset, for forest insect pest
recognition, including over 7,100 images of 31 classes. Compared
with previous datasets, our dataset focuses on a variety of
forestry pests, meets the detection needs of both real and
experimental environments, and also includes pest forms in

TABLE 7 | mAPmulti−scale values of multi-scale results achieved by different models

on Forestry Pest Dataset.

Model Epoch mAPsmall mAPmedium mAPlarge

SSD 80 27.4 53.5 72.7

Faster RCNN 80 14.2 49.0 74.0

YOLOV4 80 49.4 57.0 62.2

Deformable DETR 80 28.0 61.6 87.1

SSD 150 35.2 65.4 84.7

Faster RCNN 150 30.0 48.9 76.5

YOLOV4 150 56.2 63.1 73.2

Deformable DETR 150 30.3 63.8 87.7

different periods, which some previous forestry pest datasets
neglected. Meanwhile, we also evaluate some state-of-the-art
recognition methods on our dataset. Exceptionally, this dataset
has received good feedback on somemainstream object detection
algorithms. However, in the detection of small objects, the
existing deep learning methods cannot achieve the desired
accuracy. Inspired by the success of the application in computer
vision of the Transformer model, we also introduced the
Transformer model to solve the forestry pest identification
problem. We hope this work will help advance future research
on related fundamental issues as well as forestry pests
identification tasks.

Future Directions
To better promote the development of forestry pest
identification, we will continue to collect forestry pest
data and expand the dataset to 99 categories. For pests
that have occurred or diseases caused by pests, there
is a lack of relevant data sets and research support. In
response, we will collect images of diseases caused by
insect pests.

Although the existing deep learning models have achieved
good results in forest pest identification, small target recognition
is still a challenge. We will optimize and improve the model in

TABLE 8 | Recallmulti−scale values of multi-scale results achieved by different

models on Forestry Pest Dataset.

Model Epoch Recallsmall Recallmedium Recalllarge

SSD 80 41.2 61.5 77.1

Faster RCNN 80 23.8 55.8 78.1

YOLOV4 80 53.0 61.0 67.7

Deformable DETR 80 31.4 68.8 91.3

SSD 150 44.9 69.6 87.4

Faster RCNN 150 38.8 54.7 80.0

YOLOV4 150 60.2 67.5 77.0

Deformable DETR 150 34.3 71.1 91.6

FIGURE 5 | Confusion matrix of the mo del on the test set. Epoch=150, Iou-threshold=0.5, Index=31 means background. (A) SSD, (B) Faster RCNN, (C) YOLOV4,

and (D) Deformable DETR.
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FIGURE 6 | Small sample detection results on our Forestry Pest Dataset. (A) SSD, (B) Faster RCNN, (C) YOLOV4, and (D) Deformable DETR.

the follow-up to further improve the model’s ability to detect
small targets.
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