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In recent years, many image-based approaches have been proposed to classify plant
species. Most methods utilized red green blue (RGB) imaging materials and designed
custom features to classify the plant images using machine learning algorithms. Those
works primarily focused on analyzing single-leaf images instead of live-crown images.
Without considering the additional features of the leaves’ color and spatial pattern, they
failed to handle cases that contained leaves similar in appearance due to the limited
spectral information of RGB imaging. To tackle this dilemma, this study proposes a novel
framework that combines hyperspectral imaging (HSI) and deep learning techniques for
plant image classification. We built a plant image dataset containing 1,500 images of 30
different plant species taken by a 470–900 nm hyperspectral camera and designed
a lightweight conventional neural network (CNN) model (LtCNN) to perform image
classification. Several state-of-art CNN classifiers are chosen for comparison. The
impact of using different band combinations as the network input is also investigated.
Results show that using simulated RGB images achieves a kappa coefficient of nearly
0.90 while using the combination of 3-band RGB and 3-band near-infrared images can
improve to 0.95. It is also found that the proposed LtCNN can obtain a satisfactory
performance of plant classification (kappa = 0.95) using critical spectral features of the
green edge (591 nm), red-edge (682 nm), and near-infrared (762 nm) bands. This study
also demonstrates the excellent adaptability of the LtCNN model in recognizing leaf
features of plant live-crown images while using a relatively smaller number of training
samples than complex CNN models such as AlexNet, GoogLeNet, and VGGNet.

Keywords: plant species classification, live-crown features, leaf feature recognition, plant stress detection,
dimensionality reduction, convolutional neural network, hyperspectral imaging, deep learning

INTRODUCTION

Species composition provides basic individual biological features of a landscape and a forest
ecosystem. The ability to identify species of individual plants or trees over an inventory plot
as well as a forest stand is essential for the automatic mapping of plant distribution, biological
diversity, stand structure, and even for diagnosing the dynamics of a forest stand (Lin et al., 2016;
Lin, 2019; Santos et al., 2019). The development of plant mapping techniques has the benefit of
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identifying signals of climate change based on plant phenology
(Lin C. et al., 2018) and advanced tree segmentation (Lin
C.Y. et al., 2018; Jaskierniak et al., 2021) via remote sensing
images. Remote sensing images have recently been used to map
species distribution mainly according to spectral information
with classification techniques. The gaps in/between tree crowns,
which tend to be caused by lower crown density, greenness, and
background materials, create a challenge for species classification
using high-resolution satellite images (Lin et al., 2015a). Image
fusion that integrates very high spatial resolution images with
atmospherically corrected high spectral resolution can benefit
tree crown delineation and improve the mapping (Lin et al.,
2015b; Lin C.Y. et al., 2018). However, pixels of the inter- and
intra-canopy gaps in a fused image became more significant and
increased impact on species crown reflectance (Lin et al., 2015a).
Consequently, plant species recognition with remote sensing
images becomes a more complicated task involving not merely
pixel-based but also object-based approaches. Recently, advanced
sensor technology can acquire very high spatial resolution
(VHSR) images from various platforms such as in-situ, drone,
airborne, and spaceborne for environmental studies. With regard
to plant studies, VHSR images are capable of sensing every
subtle difference of reflectance in a scale from sub-centimetric
to decimetric size allowing better opportunity to reveal detailed
features of materials. This is particularly evident in in-situ
hyperspectral imaging systems. Moreover, to address the impact
of climate change on a vulnerable vegetation community or
ecosystem, the dynamics of the community must be derived
from the perspective of plant species composition. Therefore,
more effort is needed to investigate the problem of developing
suitable remote sensing algorithms for classifying a large number
of plant species.

During the last decade, most research on plant classification
with red green blue (RGB) images was primarily based on
extracting leaf features and performing classification with
machine learning (ML; Zhang, 2020) classifiers on single-
leaf images. The ML classifiers used include support vector
machine, K-nearest neighbor, probability neural network, and
so on. The methods of leaf feature extraction include polar
Fourier transform (Kadir et al., 2013), Canny edge detection
(Salman et al., 2017), Fourier transforms (Hossain and Amin,
2010; Khmag et al., 2017), and wavelet decomposition method
(Zhang H. et al., 2012), in which the most frequently used
features were the color, shape, contour, and texture of leaves.
Additional features such as leaf width factor and leaf edge
were also used to develop multiscale-distance feature matrixes
to improve classification by Beghin et al. (2010) and Hu
et al. (2012). As noted, the issues raised in these image-based
plant recognition methods are highly dependent on feature
engineering and the lack of leaf composition information.
In other words, much more effort should be made to
achieve noise removal, leaf feature measurements, and texture
divergence calculations. The classification seems very dependent
on leaf preprocessing.

With the breakthrough of hardware technology, deep learning
(DL; Bengio et al., 2017) became the mainstream data processing
method in recent years. Among many DL approaches, the

convolutional neural network (CNN) is the most popular and
representative one in computer vision and imaging processing
communities (Ioffe and Szegedy, 2015; Simonyan and Zisserman,
2015; Szegedy et al., 2015; He et al., 2016; Krizhevsky
et al., 2017; Wang et al., 2021; Yang et al., 2021). Different
from ML methods, CNN can integrate feature derivation,
feature learning, and classifier into a single architecture. Many
studies have reported that using CNN approaches can produce
significantly higher accuracy than using conventional ML
ones, as long as with sufficient training data. The reason is
that CNN can automatically learn objective, multi-scale, and
most discriminative features from raw data without human
subjectivity. Following this trend, a few CNN-based plant
recognition methods were proposed (Lee et al., 2015; Grinblat
et al., 2016; Carranza-Rojas et al., 2017; Lee et al., 2017; Chen
et al., 2018; Zhu et al., 2019; Chen et al., 2021). A two-
dimensional (2D)-CNN model is adopted in each work to learn
the discriminative features from the entire RGB plant images.
The spatial relationship of leaf arrangement (phyllotaxy) and
overlapping patterns can also be discovered. In other words,
various spatial features of interest objects revealed in a VHSR
image can be processed by suppressing background materials’
signals and therefore recognized based on the spatial pattern
in spectra. This allows us to identify plant species in a way
very similar to phytologists with plant morphological features
such as leaf color and size, contour, surface, venation, and
even phyllotaxy.

Although the current DL approaches demonstrate a certain
level of reliability, they still may fail to handle the cases
that contain plant species that are similar in appearance,
even with enough training data, due to the limited spectral
information provided by RGB imaging. If two or more plants
have similar outer appearance characteristics, the CNN-based
methods may misclassify them. Under such circumstances, it is
necessary to use the imaging system providing more delicate
spectral information to improve the recognition performance.
With the advancement of remote sensing imaging technology,
hyperspectral imaging (HSI; Chang, 2013) was developed and
widely applied to many topics such as agriculture (Nicolaï
et al., 2006; Baiano et al., 2012; Teena et al., 2014; Jung
et al., 2015; Marshall et al., 2015; Rapaport et al., 2015; Adão
et al., 2017; Gao et al., 2018; Mirzaei et al., 2019; Sun et al.,
2019; Sinha et al., 2020; Feng et al., 2021), military defense
(Briottet et al., 2006), environment (Zhang B. et al., 2012;
Schmitter et al., 2017; Harrison et al., 2018; Abbas et al.,
2021), plant phenotyping (Ubbens and Stavness, 2017; Nasiri
et al., 2021), and medical imaging (Liu et al., 2007; Fei,
2020). The familiar HSI image contains hundreds of spectral
bands ranging from the visible spectrum to the near-infrared
(NIR) spectrum so that it can capture the complete spectral
characteristics of target objects. Due to its superior spectral
resolution, many substances indistinguishable to the naked eye
can be recognized. In recent years, hyperspectral cameras have
been gradually commercialized. The use of micro hyperspectral
cameras for research has become more and more popular.
Therefore, using HSI technology to classify plant species has
great potential.
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Since the use of both HSI and DL techniques for plant
species recognition has not been fully explored, in this paper,
we conducted a study that adopts hyperspectral plant images
as the sample materials and designed a lightweight CNN
model to achieve accurate image classification. Firstly, we
collect the hyperspectral images from 30 plants of different
species with a hyperspectral camera and build a dedicated
HSI plant dataset containing 1,500 images. Since the existing
CNN-based classification models were designed for the datasets
composed of tens of thousands of RGB images of specific
objects with a large number of categories, they may not be
suitable for the training of our HSI plant dataset. Therefore, this
study proposed an improved lightweight convolutional neural
network based on the architecture of GoogLeNet (Szegedy et al.,
2015) to disclose the issues of species classification through
hyperspectral images by deep learning technique. Hyperspectral
images have hundreds of bands that are highly correlated, and
spectral information of the bands is excessively redundant for
vegetation application such as water content modeling (Lin et al.,
2012), hyperspectral signal restoration (Lin, 2017; Lin, 2018),
and chlorophyll concentration estimation (Lin et al., 2015c;
Lin and Lin, 2019). Appropriate feature selection strategies in
deriving critical bands for accurate species classification were also
explored. Plant classification will be beneficial in diagnosing the
stress of individual trees and, therefore the forest. The objectives
of this study are:

(1) Applying hyperspectral imaging technique to build a plant
species hypercube dataset consisting of 1500 images of
plant species to support developing ML models for the
plant species classification,

(2) Investigating the feasibility of applying published deep
learning architectures to the species classification based on
spectral-textural information of plant live-crown images,

(3) Proposing a lightweight CNN model to catch plant live-
crown features in the hyperspectral images to achieve
optimistic classification performance, and

(4) Exploring the appropriateness of feature selection for
hyperspectral images in species classification and the
influence of using a limited number of spectral bands on
classification performance.

HYPERSPECTRAL DATA COLLECTION

Plant Preparation
As mentioned above, this study aims to recognize plant species
based on plant morphology via features of leaf color, size,
contour, surface, venation, and phyllotaxy. Thirty species of
foliage plants from 27 genera and 18 families were collected
to produce plant images for analysis. To increase the leaf
features and plant geometry diversity in the images, at least
2 or 3 plant individuals were gathered for replications. As
shown in Figure 1, leaf features of the plants appeared
similar or dissimilar in color, size, venation, and leaf edge.
Detailed taxonomy information of the species is shown in
Table 1.

Plant Image Acquisition
The IMEC Snapscan VNIR B150 imaging system1 was used to
capture the hyperspectral images of the species. This system
composes of the spectral image sensor, HSI camera, optics, and
some other components that can acquire hypercube datasets
up to a full-image size of 3,600 × 2,048 pixels covering a
spectrum range from 458 nm to 913 nm. The system’s spectral
and radiometric resolutions are 2.8 nm (equivalent to 161 bands)
and 10 bits. In the image acquisition, the camera is mounted
on a tripod facing downward to the plant at a distance of 40
and 60 cm. Two 50 w/12 V halogen lamps were deployed, one
on each side of the plant at a 45-degree elevation angle from
the horizontal plane. A black material was used to minimize the
background/neighboring material reflectance effects on the target
reflectance. The aperture of the camera was set to f5.6 for every
single snapshot. Due to the vertical and horizontal variations of
the leaves locations, changing the orientation of the plant led
to changes in light intensity over the crown area and therefore
helped to increase the diversity of the sample images. With the
fixed positions of the two light sources, the plant was set to
rotate 90 degrees to generate diverse hyperspectral images of the
same plant. The image-acquisition scheme is shown in Figure 2.
Accordingly, the snapshot acquisition produced a hypercube raw
image with a dimension of 1,200 rows × 1,200 columns × 161
bands, and a dynamic range of 10 bits. With the combination
of two camera-target distances and four plant orientations, eight
HSI raw images of every individual plant of the 30 species were
acquired. Due to the significant noise in the wavelengths at both
ends of the sensor, the raw image was spectrally subset to 147
bands with a spectrum range of 468–898 nm for the analysis.

Data Calibration
To eliminate the impact of inconsistent image quality caused
by the environmental factors, such as different illuminations or
sensor response, each acquired HSI raw image Ro was calibrated
with the formula to derive the HSI reflectance image Rf :

Rf =
Ro−IB

Iw−IB
∗ 100%, (1)

where IB denotes the dark reference image with 0% reflectance
recorded with the lens closed, and Iw presents the white
reference image with more than 95% reflectance recorded with
white a Teflon panel.

Hypercube Dataset Preparation
To increase the total number of images for DL and reduce the
computational complexity of training a CNN model, we adopted
the following steps to segment a large image into multiple
smaller sub-images. First, each 1,200 × 1,200 HSI reflectance
image is evenly segmented into nine non-overlapping 400 × 400
sub-images. Then, those sub-images with a noticeable shadow
or insufficient leaves, e.g., the leaf/background ratio does not
exceed 60%, were removed. As a result, 50 sub-images were
inspected and retained for each species, and a total of 1,500 HSI
reflectance images (hereafter hypercube images) were generated

1https://www.imec-int.com/en/
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FIGURE 1 | The RGB sample images of the 30 plant species.

TABLE 1 | The taxonomy information and image samples list of the 30 plant species.

ID Family Scientific name Abbreviation Number of individuals Number of
full-size
images

Number of
sub-images

0 Acanthaceae Fittonia albivenis F.a 2 16 50

1 Apocynaceae Hoya carnosa H.c 2 16 50

2 Apocynaceae Hoya kerrii H.k 2 16 50

3 Apocynaceae Ammocallis rosea A.r 2 16 50

4 Araceae Spathiphyllum kochii S.k 2 16 50

5 Araceae Zamioculcas zamiifolia Z.z 2 16 50

6 Araceae Aglaonema anyamanee A.an 2 16 50

7 Araceae Aglaonema commutatum A.c 2 16 50

8 Araceae Alocasia amazonica A.am 2 16 50

9 Araliaceae Hydrocotyle verticillata H.v 2 16 50

10 Araliaceae Polyscias guilfoylei P.g 2 16 50

11 Araliaceae Schefflera arboricola S.a 2 16 50

12 Asparagaceae Sansevieria trifasciata S.t 3 24 50

13 Asparagaceae Dracaena marginata D.m 2 16 50

14 Asparagaceae Chlorophytum comosum C.c 2 16 50

15 Begoniaceae Begonia cathayana B.c 3 24 50

16 Bromeliaceae Cryptanthus bivittatus C.b 3 24 50

17 Clusiaceae Clusia rosea C.r 2 16 50

18 Davalliaceae Davallia griffithiana D.g 2 16 50

19 Haloragaceae Myriophyllum aquaticum M.a 2 16 50

20 Lamiaceae Glechoma hederacea G.h 2 16 50

21 Lamiaceae Plectranthus amboinicus P.am 2 16 50

22 Lamiaceae Plectranthus amboinicus
cv.

P.a.cv 2 16 50

23 Malvaceae Pachira aquatica P.aq 2 16 50

24 Marantaceae Calathea lancifolia C.l 3 24 50

25 Nephrolepidaceae Nephrolepis exaltata N.e 2 16 50

26 Orchidaceae Spathoglottis plicata S.p 2 16 50

27 Piperaceae Peperomia puteolata P.p 2 16 50

28 Podocarpaceae Podocarpus macrophyllus P.m 3 24 50

29 Urticaceae Pilea cadierei P.c 2 16 50

Frontiers in Plant Science | www.frontiersin.org 4 April 2022 | Volume 13 | Article 855660

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-855660 April 7, 2022 Time: 14:9 # 5

Liu et al. Lightweight CNN for Plant Classification

for the study. It is worth noting that each sub-image still retains
sufficient spatial information of which type of plant it belongs
to. The overall process is illustrated in Figure 3. After that, the
images were randomly divided into training and test datasets.
The former contains 1,200 hypercube images, and the latter has
300 ones. Figure 4 shows some example images of the species at
some selected wavelengths in the visible and NIR regions. The
reflectance and the features of leaves are retained in each band of
the hypercube image.

Deriving Representative Spectra of the
Plant Species
In remote sensing, a reflectance curve is typically representative
of the spectral behavior of an object. In addition to the deep
learning approach, this study also investigates the spectral
reflectance of the plant species. The representative reflectance at
each wavelength of the visible-NIR region is determined as the
average of the plant leaves. To do this, it is necessary to eliminate
background components to extract the region-of-interest (ROI),
referred to as leaf regions. The steps to extract the representative
reflectance curve of the species are described as follows.

First, two particular bands with the largest globally average
reflectance, abbreviated maxBand, and the smallest globally
average reflectance, abbreviated minBand, among all bands of a
hypercube image were identified. Second, a different image of
the two specific bands is determined as maxBand – minBand.
Third, a thresholding method (Ma et al., 2015) is used to
differentiate the different images into two parts, i.e., the region-
of-interest vs. the background. The threshold value was set to
be 0.3, determined based on the experience. Fourth, a regional-
averaging model is adopted to the hypercube image to calculate
the average reflectance of every pixel in the ROI. Fifth, the
representative reflectance of a particular wavelength of a Plant
Species is generalized as the mean of all the corresponding
average values of the 50 hypercube images of the species. Finally,
the full-wavelength reflectance Spectra of the species are restored
by assembling the representative reflectance at every wavelength.
Figure 5 illustrates the overall procedures for deriving the
generalized reflectance curve.

METHODS

The Lightweight Convolution Neural
Network Architecture
Considering the limitation of gathering a large number of
species and images, this study followed the concept of “compact”
in ML to design the lightweight CNN (LtCNN) for better
modeling fitting. The LtCNN model is developed by referring to
GoogLeNet (Szegedy et al., 2015) and other networks (Ioffe and
Szegedy, 2015; Simonyan and Zisserman, 2015; Szegedy et al.,
2015). As shown in Figure 6, the architecture of LtCNN is only
composed of three parts. The first two are responsible for feature
extraction, and the last one is for prediction. The details of those
parts are explained below, and the setting of network parameters
of the LtCNN model is summarized in Table 2.

Part I: Part I aims to convert the input image into low-level
(or shallow) features as the input of Part II. It comprises two
convolutional layers (5× 5 and 3× 3) and one pooling layer.

Part II: The objective of Part II is to learn the high-level
features in a multi-scale manner as the input of Part III. It adopts
three “Inception modules” originating from GoogLeNet. Our first
two inception modules adopt a 3-path structure and replace the
5 × 5 convolution in the original version with two 3 × 3 ones
to reduce the number of parameters while maintaining the same
receptive field. The third inception module only adopts a 2-path
structure since the size of the feature map has been reduced.

Part III: Aims to perform classification via the features
received from Part II. It uses global average pooling (GAP) to
integrate all the features and then applies two fully-connected
(FC) layers, one dropout layer, and a Softmax classifier to predict
the species of the input image.

Loss Function
The cross-entropy is selected as the loss function to measure
the difference between two probability distributions of the target
ground truth and the model’s prediction. It is defined by

lossCE =

C∑
c=1

S∑
i=1

−yc,i log2(pc,i), (2)

where C stands for the number of classes, S denotes the batch size,
yc,i is a binary indicator, and pc,i is the predicted probability. In
our experiment, we set S = 12 and C = 30.

Experimental Setting
The experiments were implemented on the hardware
environment with an Intel i7-7700k CPU, 32 GB RAM, and
NVIDIA GTX-1080Ti GPU. Three well-known CNN models
such as AlexNet (Krizhevsky et al., 2017), VGGNet (Simonyan
and Zisserman, 2015), and GoogLeNet (Szegedy et al., 2015)
were applied as a referring method for Performance comparison
of the Species recognition/Classification. Since AlexNet was
designed for the classification of a large number of categories
with very deep neural networks, the number of neurons of FC
layers was reduced. Specifically, the number of output classes was
set to 30 in this study. This model is, therefore, named AlexNetr.
Similarly, it is difficult to reach convergence when training the
original VGGNet (16 layers) on our plant dataset. The original
architecture of VGGNet (16 layers) is therefore simplified by
preserving the first eight convolution layers and three FC layers
and reducing the number of neurons in the FC layers. It is named
VGGNetr in this study. Similar to the LtCNN, a ReLu activation
function is applied to improve the nonlinearity.

All the models are trained from scratch without pre-
trained parameters or transfer learning techniques. They are
implemented on Tensorflow 1.8.0. The size of the input is set to
200 × 200 × L for our lightweight model and 224 × 224 × L
for other CNN models, where L denotes the number of selected
bands. If we set L = 6, the number of parameters of AlexNetr,
GoogLeNet, VGGNetr, and the proposed lightweight model
are 10865310, 15901982, 10404938, and 1388950, respectively.
For data augmentation, we used random crop, random flip in
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FIGURE 2 | Illustration of plant image acquisition.

FIGURE 3 | An illustration of sub-image generation.

FIGURE 4 | Examples of the reflectance sub-images of plant species (Top: S.a, #11; Middle: P.am, #21; Bottom: P.c, #29) at some selected wavelengths in the
visible-NIR region.

horizontal or vertical to expand the size of the training dataset.
For parameter settings, the batch size was set to 12. The learning
rate was set to be exponential decay with an initial rate of 10−3

and a decay rate of 0.9 for every 5 epochs. The training epoch
was assigned as 200, and the optimizer was ADAM. To evaluate
model performance, four quantitative metrics were used: overall
accuracy (OA), precision, macro F1-Score, and kappa coefficient.

Feature Selection Methods
The hyperspectral image bands are mostly correlated, particularly
those in a similar spectral region. Using full spectral bands for
data analysis may lead to the curse of Dimensionality (Hughes,
1968) and increase the computational burden. To achieve a better
calculation efficiency while retaining classification accuracy,
data dimensionality reduction (Chang, 2013) is required to
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FIGURE 5 | An illustration of leaf region extraction and spectral reflectance generalization of plant species.

FIGURE 6 | The architecture of the proposed lightweight convolutional neural network (LtCNN). Conv is the convolution layer, Concat means concatenation
operation, MaxPool denotes max-pooling layer, GAP stands for global average pooling layer, and FC means fully connected layer. A ReLu function follows every CNN
process to increase the network’s nonlinearity.

select critical bands or discriminative spectral features for the
Species classification/recognition with DL techniques. The band
selection was made via two approaches: manual inspection of the
reflectance curves and automatic selection based on the spectral
heterogeneity of bands. The methods are summarized in Table 3,
and the suggested bands with the corresponding wavelength are
listed in Table 4.

RESULTS

Use of the Visible-Infrared Spectra
Variation of Plant Species for
Classification
A generalized reflectance curve of species leaves (average spectra)
is essential for differentiating and labeling pixels in a pixel-
based classification. Figure 7 shows the averaged spectra of the
ROI regions of the 30 plant species, where the x-axis denotes
wavelength and the y-axis indicates reflectance values. Each curve

was drawn by averaging the spectral reflectance vectors of all the
leaf pixels of that particular hypercube image of a species. As can
be seen, the reflectance spectra of all species vary at each of the
wavelengths. At the same time, the particular features of green
peaks, blue and red valleys, and near-infrared plateau remain
evident and visually differentiated. Due to the complicated light
environment in leaf pixels and even a natural variety of leaf
colors for the same species, the reflectance of the species changed
dramatically and consequently showed a wide SD band along the
visible-infrared regions. The high variation of reflectance of the
same materials will lead to difficulty of species classification using
pixel-based methods. For example, In Figure 8, the leaf of species
D.m (#13) has a white line feature distributed from the bottom
to the top of the leaf rib, but species C.c (#14) has two white
stripes on the leaf edges. In contrast to the all-green-leaf image
of species Z.z (#5), the red spots randomly distributed over the
leaf mesophylls of species A.an (#6) make it more challenging for
pixel-based species classification.

As noted in the subfigures on the right column of Figure 8,
four hypercube images of species A.an highlight the difference
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TABLE 2 | Detailed network parameters of the proposed lightweight CNN model.

Parameter Kernel
size

Depth Strides Output

Input 200 × 200 × L

Convolution 5 × 5 1 2 100 × 100 × 64

Max pooling 3 × 3 0 2 50 × 50 × 64

Convolution 3 × 3 1 1 50 × 50 × 96

Max pooling 3 × 3 0 2 25 × 25 × 96

Inception module1 2 25 × 25 × 288

Inception module2 2 13 × 13 × 296

Inception module3 2 7 × 7 × 480

Global average pooling 7 × 7 0 1 1 × 1 × 480

FC layer 1 1 × 1 × 196

Dropout (40%) 0

Output 1 1 × 1 × 30

Softmax 0 1 × 1 × 30

The number of parameters (Input dimension = 6): 1388950

between the global and local mean reflectance curves. The former
is derived from every pixel of the whole image (the blue curve),
and the latter is derived from those red leaf pixels (the red curve).
In the visible region, the red-curve spectra spread far from the
blue curve and locate almost close to the border of the standard
deviation band of the global mean spectra. In contrast, the red
curve in the infrared region distributes very close to that of the
blue curve. These subfigures reveal that infrared reflectance of
leaves is not correlated to the leaf color but to the chlorophyll
contents and water contents in mesophyll tissues. In other words,
the infrared reflectance of leaves behaves very similarly for the
same species as the standard curve. According to Lin et al. (2012,
2015c), leaf reflectance over the VNIR-SWIR region may affected
by leaf water and concentration contents. Their study first
highlighted the effect of water stress on chlorophyll concentration
estimation and further proposed effective chlorophyll indices to
account for the influence of water content to achieve accurate
estimation of leaf chlorophyll concentration. Therefore, the
dissimilarity in the infrared reflectance among hypercube images
indicates the possibility of species difference or physiological
stress such as water content shortage. Including near-infrared
spectra with visible spectra is beneficial to species classification

TABLE 3 | A summary of the manual and automatic approaches
for band selection.

Approach Description Source

RGB Three bands can be used to simulate the
normal-color RGB image. The IMEC hyperspectral
sensor recommends the bands.

IMEC
Snapscan

v1.1.2

NIR Three near-infrared bands are used to simulate a
false-color RGB image and are used as a
comparison of the normal-color RGB image. Bands
are selected according to the reflectance curve, as
shown in Figure 7.

Visually
inspection

RGB+NIR The combination of natural-color and false-color
images is mentioned above. It is used to
compensate for the spectral information absent in
each of the two images.

PCA The principal component analysis (PCA) transforms
the hyperspectral image to principal components
(PCs). Only the first six PCs were selected for they
retained over 99% energy of eigenvalues.

Gao et al.,
2018; Ma et al.,

2015.

UBS The uniform band selection (UBS) is a typical band
selection algorithm based on sampling with equal
intervals in the whole spectrum. The full range of
wavelengths of the IMEC VNIR sensor is divided
into 3, 6, and 9 sub-regions. The datasets with 3, 6,
and 9 bands are UBS-3, UBS-6, and UBS-9.

Li et al., 2019.

FNGBS FNGBS stands for the Fast Neighborhood
Grouping Band Selection algorithm that partitions
the global wavelengths of an HSI cube into M
groups based on a coarse-fine strategy and selects
the band with the maximum product of local
density and information entropy from each group to
obtain a subset with M bands for application. In this
study, the selected datasets with 3, 6, and 9 bands
are abbreviated as FNGBS-3, FNGBS-6, and
FNGBS-9.

Wang et al.,
2020.

because leaf pattern features and mesophyll structure are
considered simultaneously.

An Overall Assessment of Species
Classification Accuracy for the Four
Deep Learning Models
Table 5 shows the accuracy measures of the CNN models
performing on 6 different spectral features combinations of the

TABLE 4 | The selected bands and corresponding wavelengths of the hypercube image for species classification.

Approach Bands The selected band no. Representative wavelengths (nm) of the corresponding bands

RGB 3 2/19/39 471.44/535.06/602.94

NIR 3 89/109/126 750.75/799.99/851.04

RGB+NIR 6 2/19/39/89/109/126 471.44/535.06/602.94/750.75/799.99/851.04

PCA 6 PC1-PC6 A component is a linear transformation of bands as the input

UBS 3 1/74/147 468.63/700.27/898.72

6 1/30/59/88/117/147 468.63/569.27/664.12/747.22/824.74/898.72

9 1/19/37/55/74/92/110/128/147 468.63/535.06/594.66/651.37/700.27/761.18/802.71/856.68/898.72

FNGBS 3 36/68/92 591.46/681.80/761.18

6 14/25/68/92/104/118 514.83/551.20/681.80/761.18/783.39/827.35

9 15/32/33/69/80/92/103/118/137 520.08/557.84/571.04/685.36/721.58/761.18/780.53/827.35/871.66
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FIGURE 7 | The generalized reflectance curve of the plant species. Refer to Table 1 for the abbreviation of the species.

plant hypercube dataset. In the classification with the natural-
color RGB bands, the AlexNetr, GoogLeNet, VGGNetr achieved
an OA of 76.3, 71.7, and 79.9%, a macro F1-score of 0.758,
0.699, and 0.782, and a kappa value of 0.755, 0.707, and 0.790,
respectively. Each of the models had a precision of 0.832,
0.705, and 0.806, which indicates that the AlexNetr model
and VGGNetr model showed better adaptability in retrieving
information of species leaf features and leaf structure in RGB
reflectance and therefore achieved a prediction with lower
commission error or false positive than the GoogLeNet model. In
contrast, the LtCNN model performed at the best accuracy with a
value of OA = 89.7%, macro F1-score = 0.896, and kappa = 0.893
which is correspondingly higher than the previous models by
10–18%, 0.11–0.19, and 0.10–0.19. Using only RGB spectral
features, the LtCNN model performed species classification with
a commission error around 0.1.

The accuracy measures decreased significantly when checking
with the classification results using three NIR bands or the
simulated false-color RGB bands, as mentioned in Table 5.
For example, the decrease of OA was 15, 5, 10, and 21%
for the AlexNetr model, GoogLeNet model, VGGNetr model,
and LtCNN model, respectively. These four DL architectures
performed the species classification at an OA between 60
and 70% using only NIR-based false-color images. Obviously,
the natural-color RGB images provide more diverse spectral
information and inherently spatial information of the species
than the false-color NIR images. Such cases are due to some
species having a similar leaf mesophyll structure (Hopkins
and Hüner, 2004; Lin et al., 2015c) and behaving similarly
in the near-infrared bands. As shown in Figure 7, the
reflectance in the visible-NIR region varied dramatically and
overlapped significantly. This leads to a higher degree of
omission and commission error in it. In contrast, the natural-
color RGB is supposed to catch leaf color, shape, and
surface texture changes and consequently contribute species
classification accuracy.

In general, the reflectance of RGB bands is low correlated to
the NIR bands. The leaf features derived simultaneously from
the RGB natural-color bands (471.44, 535.06, and 602.94 nm)
and the NIR false-color bands (750.75, 799.99, and 851.04 nm)
are assumed to be of benefit to species classification. However,
as noted in Table 5, the kappa coefficient achieved by the
GoogLeNet model was 0.693, which is even slightly smaller than
0.707, the performance baseline achieved in the classification
using only the RGB natural-color bands. In contrast, the
AlexNetr, VGGNetr, and LtCNN models revealed a lively
performance as the OA, F1-score, and kappa significantly
increased by nearly 5%, 0.05, and 0.05, respectively. This verifies
that additional NIR bands in respect to the RGB basic spectral
information are beneficial to species classification.

Although the principal component analysis (PCA) method
can transform the spectral information of bands in the
hypercube image into several components, the classification
using most informational details through the four CNN models
did not perform better than the RGB bands’ baseline. For
example, the F1-score of PCA and RGB for the AlexNetr,
GoogLeNet, VGGNetr, and LtCNN was 0.703/0.758, 0.700/0.699,
0.778/0.782, and 0.881/0.896, respectively. The result implies
that the PCA is most likely inappropriate for use in the
reduction of the dimensionality of hypercube images in
the view of species classification via DL. Considering the
performance improvement of RGB+NIR classification, the linear
transformation of hyperspectral bands most likely destroyed
the physical properties of the materials in each band, thereby
weakening the spatial relationship between the features or
different tissues on the leaf which decreases the classification
ability of a CNN.

A Comprehensive Examination of the
Species Confusion in the Models
To illustrate the prediction results of the four CNN models
more comprehensively, a confusion matrix is used to examine
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FIGURE 8 | Variation of spectral reflectance in hypercube image of plant leaves. Left: the generalized mean curve and standard deviation ring of the whole leaf pixels
for species D.m (#13), C.c (#14), A.an (#6), and Z.z (#5). Right: the difference between the generalized mean curve of the red leaf pixels and that of the global leaf
pixels for species A.an. The ring overlapped with the mean curves is the SD of the global leaf pixels.

the confusion among the species for the classification scenario
using the RGB+NIR dataset. In Figure 9, the matrix entries
contain the numbers of prediction rates of the four models,
which are marked with different colored squares. The value of
one in diagonal entries specifies the classification of 100% from
the view of ground truth. The perfect true-positive rate indicates
the superior excellence of a CNN model in describing the leaf
features of the plant species. As can be seen, there were 10, 4,
13, and 22 species being classified with 100% of true positive
rate for the AlexNetr, GoogLeNet, VGGNetr, and LtCNN models,
respectively. As noted in Figure 9, the species Ammocallis rosea
(A.r, #3) was completely misclassified by the GoogLeNet model.
It is mostly recognized as Sansevieria trifasciata (S.t, #12) with
a false-negative rate of 0.6 while as Aglaonema commutatum
(A.c, #7), Schefflera arboricola (S.a, #11), and Hoya carnosa
(H.c, #1) with false-negative rate 0.2, 0.1, and 0.1, respectively.
Interestingly, this species was recognized accurately by the other
three models. Comparing the appearance of species #3, #12, #7,

and #1, the flowers of #3 in the hypercube images seem not to
work like a feature but a noise in the GoogLeNet model.

Of the 30 plant species, the LtCNN model failed to completely
and accurately recognize every image of 8 species, which are
Spathiphyllum kochii (abbreviated S.a with the species identity
#4), Zamioculcas zamiifolia (abbreviated Z.z, #5), Alocasia
amazonica (A.am, #8), Clusia rosea (C.r, #17), Glechoma
hederacea (G.h, #20), Plectranthus amboinicus cv. (P.am.cv, #22),
Spathoglottis plicata (S.p, #26), and Podocarpus macrophyllus
(P.m, #28) with a true-positive rate of 0.9, 0.5, 0.9, 0.7, 0.9, 0.8, 0.9,
and 0.8, respectively. Poorer confidence of classification occurred
in species #5 and #17. The false-negative in species #17 is mainly
due to the lack of the full leaf shape in the sub-images randomly
generated during the convolution, which resulted in a partial leaf
and therefore increased the feature similarity of species #17, #5,
and #2. Looking into the false-negative classification of species
#5, whose images were misclassified as the species #4, #11, and
#10 with a rate of 20, 20, and 10%, respectively. These species are
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TABLE 5 | Classification performance of different CNN models applied to different
feature selection settings.

CNN model Feature
selection ¶

OA (%) Precision Macro
F1-score

Kappa
coefficient

AlexNetr RGB (3) 76.30 0.832 0.758 0.755

NIR (3) 60.70 0.637 0.601 0.593

RGB+NIR
(3+3)

82.30 0.836 0.824 0.817

PCA (6) 70.70 0.716 0.703 0.697

GoogLeNet RGB (3) 71.70 0.705 0.699 0.707

NIR (3) 66.00 0.635 0.640 0.648

RGB+NIR
(3+3)

70.30 0.668 0.678 0.693

PCA (6) 71.00 0.708 0.700 0.700

VGGNetr RGB (3) 79.70 0.806 0.782 0.790

NIR (3) 69.70 0.737 0.686 0.686

RGB+NIR
(3+3)

84.00 0.88 0.838 0.834

PCA (6) 78.00 0.803 0.778 0.772

LtCNN RGB (3) 89.70 0.903 0.896 0.893

NIR (3) 68.00 0.728 0.674 0.669

RGB+NIR
(3+3)

94.70 0.950 0.945 0.945

PCA (6) 88.00 0.898 0.881 0.876

¶The numbers in parentheses represent the feature dimensionality used in the
classification. The bold number in each column of the four accuracy measures
indicates the best performance achieved by the corresponding CNN model with
the selected features.

visibly differentiated based on leaf margin, surface leathery, and
petiole features, but the LtCNN model misclassified 50% of the
species. The misclassification is also evident in the other models.
This is highly probably due to the inability of retaining leaf
margin (serrate and entire), surface leathery, and petiole features
during the convolution and pooling processes as the features
are too small to detect with respect to the leaf area. Figure 10
illustrates some examples of the confusion in species #3, #5, #13,
and #14, and the excellent recognition in species #6 and #19 for
the AlexNetr, GoogLeNet, VGGNetr, and LtCNN models. It is
also noted that the images of species #13 and #14 were partially
misclassified by AlexNetr, GoogLeNet, and VGGNetr models
mainly due to the leaf shape similarity; meanwhile, the models
missed their heterogeneous features. In contrast, the LtCNN
model showed excellence in successfully learning the key features,
and therefore the images were classified as the species.

DISCUSSION

Band Selection Contributes to Improving
the Performance of Species
Classification
The accuracy figures for the species classification using the
dataset with the predetermined bands of RGB, NIR, or RGB+NIR
in Table 5 shows the proposed LtCNN is more appropriate
than the AlexNetr, GoogLeNet, and VGGNetr for dealing with
classification when using a smaller number of species classes.
This section examines the contribution of diverse bands in

species classification. With regards to 3-band classification, the
Fast Neighborhood Grouping Band Selection (FNGBS) method
suggested the bands #36, #68, and #92, whose wavelengths are
located at the green-edge (591.46 nm), red-edge (681.80 nm),
and near-infrared (761.18 nm), while the uniform band selection
(UBS) suggested bands #1 (468.83 nm), #74 (700.27 nm), and
#147 (898.72 nm) at the regions of blue, red-edge, and near-
infrared. As can be seen in Figure 11, the sensitivity of spectral
features is evident in each of the four CNN models. With
the diverse spectral bands, the kappa changes dramatically. For
example, the value dropped by 0.11 for the UBS but raised by
0.042 for the FNGBS in the AlexNetr model. Accordingly, the
change rate was equivalent to 15 and 6% of the RGB’s kappa
value. In contrast, the GoogLeNet and LtCNN models appeared
to be more flexible at catching the spectral features from the three
bands suggested by band selection methods. The kappa value
was increased nearly by 11∼12% from the baseline of 0.707 for
the GoogLeNet model and by 4∼6% concerning the baseline of
0.893 for the LtCNN model for UBS and FNGBS, respectively.
Similarly, the VGGNetr model achieved a classification with an
increase of kappa value by 10% through the FNGBS suggested
bands but failed to improve the performance through the UBS
suggested bands.

When the number of spectral bands in a species classification
is raised to 6, for example, the bands #14, #25, #68, #92, #104, and
#118 selected by FNGBS, three of the models failed to improve
the classification performance the exception being the AlexNetr
model with an increase of kappa by 0.049 or 6% of the baseline
for the RGB+NIR case. Similarly, the classification with a rise
in kappa occurred only in the GoogLeNet model when the six
bands #1, #30, #59, #88, #117, and #147 recommended by UBS
were used for classification. The kappa value was improved from
0.693 to 0.772, and the increase rate was around 11%. The kappa
value achieved by the LtCNN model via the two band-selection
methods is very close to the 3-band case (0.938 vs. 0.945 for
FNGBS and 0.948 vs. 0.931 for UBS), this indicates that as long
as the band is selected appropriately, using only three bands can
achieve a satisfactory classification accuracy.

To summarize, the CNN models appeared to be sensitive to
the spectral features of a hypercube image when the number
of bands used for species classification is subject to only three
spectral bands. For such cases, the FNGBS method works more
efficiently and can adapt to AlexNetr, GoogLeNet, VGGNetr,
and LtCNN models. And, the LtCNN is the most significant
of the four models to achieve reliable and stable classification
performance with a minimum number of bands and the most
informative spectra. Specifically, the most appropriate spectral
features for species classification via the LtCNN model are
the green-edge (591.46 nm), red-edge (681.80 nm), and near-
infrared (761.18 nm).

Appropriate Dimensionality of
Hyperspectral Imaging Images in
Recognizing and Classifying Plant
Species
As noted in Figure 11, the four CNN models revealed
diverse sensitivity of spectral bands in species classification. An
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FIGURE 9 | Confusion matrices of species classification of the four CNN models using the six bands of the RGB+NIR dataset. The values in each diagonal entry are
the probability of a species image being classified correctly. The numbers in upper/lower off-diagonal entries are the omission rate/commission rate. The numbers
highlighted are for the models AlexNetr (pink), GoogLeNet (cyan), VGGNetr (green), and LtCNN (orange).

interesting question arises: Can using more bands help improve
accuracy? Or what is the best accuracy achievable by the four
models? To address this question this study conducted extended
experiments by adding the number of bands progressively up
to 60 with an interval of 3 as the input image of species
classification for the CNN models. All the models are trained with
the parameters mentioned in section “Experimental Setting”,
except for the VGGNetr model, because it was unable to handle
higher dimensional data under our hardware environment. The
adaptability of the AlexNetr, GoogLeNet, and LtCNN models to
high-dimensional data is shown in Figure 12.

The x-axis presents the number of bands (M) in each
subfigure, and the y-axis shows the corresponding accuracy

measure. The yellow, blue, and red curves denote the accuracy
trends of the three CNN models, respectively. From the point
of view of the species classification, the main observation is that
increasing M cannot help to improve accuracy and may even
cause worse results. This phenomenon mainly occurred when
using AlexNetr and GoogLeNet. The impacts of M on the CNN
models are summarized below.

(1). For the cases of UBS, as shown in Figure 12A, the kappa
coefficient of AlexNetr starts at 0.624 and increases to
0.779∼0.800 when M = 6 to 18. As M increases, the
accuracy is no longer improved but becomes unstable. The
kappa of GoogLeNet starts at 0.797 and gradually decreases
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#3 #3#3#3#3#3#3#3#3#3

#5 #5#5#5#5#5#5#5#5#5

#6 #6#6#6#6#6#6#6#6#6

#13 #13#13#13#13#13#13#13#13#13

#14 #14#14#14#14#14#14#14#14#14

#19 #19#19#19#19#19#19#19#19#19

FIGURE 10 | An illustration of species classification by the four CNN models. Species #13 and #14 whose images are entirely recognized by the LtCNN model but
eventually misclassified by the other models. The number above each image is the species identity, and the number highlighted by a color box indicates the
classified label of the species by the models. Please refer to Figure 8 for the color indication.

when M increases. For the proposed LtCNN model, the
increase of M does not cause a significant change in
the classification accuracy. The best value appears at
M = 15, which is 0.976. After that, the accuracy curve
maintains between 0.941 and 0.969. It implies that the
amount of spectral information is saturated. On average,
the kappa accuracy for the AlexNetr, GoogLeNet, and
LtCNN models was 0.717 ± 0.079, 0.666 ± 0.084, and
0.951± 0.021, respectively.

(2). Similarly, as shown in Figure 12B for the cases of FNGBS,
the trends generated by AlexNetr and GoogLeNet are
gradually declining when M increases or fluctuates between
0.503 and 0.866 and 0.538 and 0.807, respectively. On
the contrary, the LtCNN model can maintain accuracy
between 0.92 and 0.973 and is not sensitive to M.
Each of the three models was averaged 0.696 ± 0.096,
0.674± 0.081, and 0.940± 0.018.

(3). From the point of view of the amount of spectral
information, it is evident that using a sufficient number
of bands can achieve the highest accuracy. For example,
the LtCNN model obtained 0.976 with M = 15 selected by
UBS in Figure 12A and 0.972 with M = 18 recommended
by FNGBS in Figure 12B. The other two CNNs models
also follow the same fashion. This proves that using
hyperspectral imaging for species classification can obtain
good results without too many bands.

Comparison of Conventional Neural
Network Models
The AlexNetr and GoogLeNet models produced lower, unstable,
and downward accuracy in the plant classification is most likely
due to two reasons. Firstly, they were designed and specialized
for handling large databases with a large number of categories
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FIGURE 11 | A comparison of the sensitivity of spectral bands for species classification in the four CNN models. Charts (A,B) show the kappa coefficients with
3-band and 6-band classifications recommended by the band selection methods. A considerable difference of kappa values in any classifications with different
datasets indicates higher sensitivity of the CNN models.

FIGURE 12 | The relationship between the number of bands (M) and produced accuracy when using a subset of hypercube images for classification. Line charts
(A,B) present the kappa variation for the uniform band selection (UBS) and Fast Neighborhood Grouping Band Selection (FNGBS) method. The numbers below the
M list the kappa values of the CNN models.

and training images. Since the tested plant database has only
30 classes and 1,500 images, the training data is relatively
insufficient for them. Besides, the nature of the plant image is
distinct from the objects’ colors, shapes, and patterns for which
the models were originated. This may explain why AlexNetr
and GoogLeNet produce lower accuracy performance. Secondly,
when M increases, the inter-band correlation of data increases.
The input data with excessive redundant information may further
interfere with the training process of the more extensive network
under insufficient training data. This additionally imposes the

difficulty of getting convergence in network training. This may
explain why AlexNetr and GoogLeNet produce an unstable
performance at different M values. In contrast, the proposed
model LtCNN adopts a simplified architecture that is optimized
for smaller datasets and significantly performs better than the
other two in both accuracy and stability. This emphasizes the
importance of designing a dedicated network for processing a
particular dataset. And it suggests that as long as the network
design is correct, it will not be too sensitive to data redundancy.
Meanwhile, it can also be efficient with minimum bands to
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achieve satisfactory accuracy. Such a conclusion is significant for
dealing with hyperspectral images.

Limitation and Opportunity
The main strength of the proposed plant image classification
method is that it uses the abundant spectral information provided
by HSI, and uses the “deep features” learned by CNNs for
plant species classification. However, this approach suffers from
some drawbacks and limitations. Firstly, the cost of hyperspectral
cameras is high so it is difficult for it to become widely adopted.
Its long-shooting time also limits data acquisition and the
possibilities for in-field investigations. Secondly, limited by the
existing network architecture of CNN and memory size of GPU,
it is hard to use high-resolution HSI images as the material to
learn the more comprehensive features. Thirdly, our framework
relies on band selection to reduce the data dimensionality.
Ideally, we can feed all the bands into CNN and let it learn
the discriminative bands automatically. However, limited by the
network architecture, memory size, and the amount of training
data, it is temporarily impossible to achieve. Finally, if we want to
increase the species, except for adding image data to expand the
database, it is also necessary to expand the network architecture
and retrain the model. This is one of the crucial shortcomings of
the current CNN approaches.

Even with these limitations, we are confident that this study
will contribute to educational use as well as to the development
of plant identification and forest remote sensing. One of the
critical findings of this study is that applying only green-edge,
red-edge, and near-infrared bands can substantially improve
the species classification via the proposed model LtCNN. This
finding provides an additional opportunity for sensor design
specifically for plant applications and therefore benefits the
imaging technology development for plant science research and
education at a lower investment cost.

CONCLUSION

From the point of view of individual tree recognition and
mapping, this study applied hyperspectral imaging to build a
plant image dataset via a VNIR imaging system with a spectral
resolution of 2.8 nm and a radiometric resolution of 10 bits.
The plant dataset contains 1500 images accounting for the crown
and leaf features of 30 species. The plant images show dramatic
reflectance values over the spectral range from the visible to the
near-infrared region and therefore reveal the dilemma of pixel-
based plant classification via remote sensing images. Although
a pixel-based inspection of plant images reveals that diverse
leaf colors increase the difficulty of plant classification using
merely visible spectra, the near-infrared reflectance of colorful
leaves of the same species remains very similar and behaves
homogeneously and stably. In contrast to the variation of visible
spectra, the species consistency of near-infrared spectral features
provides an optimistic opportunity for plant classification.

According to the results, the complex deep learning
architecture of AlexNetr, GoogLeNet, and VGGNetr models
are not suitable for plant classification using a limited number
of training samples and therefore failed to obtain satisfactory

performance when integrating the features in 3-band RGB and
3-band NIR bands. Correspondingly, the best kappa accuracy
for these models was 0.817, 0.693, and 0.834. The proposed
lightweight conventional neural network, the LtCNN model,
however, achieved an optimistic kappa accuracy of 0.945.
Interestingly, this novel model has demonstrated its excellence in
retrieving critical features from limited training samples through
three bands suggested by the fast neighborhood grouping band
selection method. The classification using the bands of green-
edge (591.46 nm), red-edge (681.80 nm), and near-infrared
(761.18 nm), the LtCNN model can achieve a kappa accuracy
of 0.945, a value equal to the accuracy of a classification using
6 bands of RGB and NIR. Because the accuracy is very close to
the maximum accuracy of 0.976, the best performance with 15
spectral bands of the hyperspectral images, the LtCNN model
is concluded to be very efficient and reliable in classifying
plant images. It is also concluded that a feature selection
should be implemented before applying hyperspectral images
to plant classification to reduce training cost and hardware
loading significantly.

Many studies developed deep learning techniques for plant
classification based on single-leaf images. This study is devoted to
exploring an appropriate method for recognizing and classifying
plant species according to live-crown and leaf features. Although
the hyperspectral imaging technique can provide a hyperspectral
dataset with critical spectral features for the application, some
false-positive and false-negative errors still occurred in some
species by the AlexNetr, GoogLeNet, VGGNetr, and LtCNN
models simultaneously. These species are visual recognizably
based on the features of leaf margin, surface leathery, and petiole.
Developing a new network model with a 3D-CNN module
should enhance feature learning in the spectral domain. The
ability to retrieve tiny leaf features would also be an essential
task for the future.
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