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Exposure of plants to low temperatures adversely affects plant growth, development,
and productivity. Plant response to cold stress is an intricate process that involves the
orchestration of various physiological, signaling, biochemical, and molecular pathways.
Calcium (Ca2+) signaling plays a crucial role in the acquisition of several stress
responses, including cold. Upon perception of cold stress, Ca2+ channels and/or Ca2+

pumps are activated, which induces the Ca2+ signatures in plant cells. The Ca2+

signatures spatially and temporally act inside a plant cell and are eventually decoded by
specific Ca2+ sensors. This series of events results in the molecular regulation of several
transcription factors (TFs), leading to downstream gene expression and withdrawal of
an appropriate response by the plant. In this context, calmodulin binding transcription
activators (CAMTAs) constitute a group of TFs that regulate plant cold stress responses
in a Ca2+ dependent manner. The present review provides a catalog of the recent
progress made in comprehending the Ca2+ mediated cold acclimation in plants.

Keywords: calcium, calmodulin, CAMTA, cold stress, transcription factor

INTRODUCTION

Plants sense and respond to distinct environmental and developmental cues via intricate signal
transduction pathways. The signal transduction pathways comprise various protein and non-
protein elements. The protein elements encompass various enzymes, receptors, and TFs, while the
non-protein elements include second messengers such as Ca2+, cyclic AMP, cyclic GMP, inositol
triphosphate, diacylglycerol, lipids, and hydrogen ions. Amongst all the reported second messenger
molecules, Ca2+ is considered central to several signal transduction pathways (Stael et al., 2012;
Sarwat et al., 2013; Kudla et al., 2018). Ca2+ is an essential plant macro-nutrient that is pivotal
for maintaining the structural integrity of cell walls, regulating stomatal guard cells movement,
growth of pollen tubes, and elongation of root hairs (Sanders et al., 2002; White and Broadley,
2003; Dodd et al., 2010). Ca2+ signals are elicited when a plant experiences any environmental
and developmental stimuli, leading to spatial and temporal changes in Ca2+ ion concentration in
cells. Several reviews have extensively covered different aspects of plant Ca2+ signaling (Costa et al.,
2018; Kudla et al., 2018; Thor, 2019; Tian et al., 2020; Iqbal et al., 2021a; Pirayesh et al., 2021). Briefly,
under control conditions, the levels of Ca2+ ions in the cell are usually low (ranging from 100 to
200 nm), but upon receiving signals to respond, the Ca2+ channels are transiently opened, resulting
in the rapid influx of Ca2+ ions inside the cell. This eventually leads to an increase in cytosolic
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Ca2+ ([Ca2+]cyt) levels. The levels of Ca2+ ion inside the cell
fluctuates either due to Ca2+ influx via dedicated channels or
Ca2+ efflux via specific pumps (Xiong et al., 2006; Tuteja and
Mahajan, 2007). In Arabidopsis thaliana, plasma membrane-
bound Ca2+-permeable channels are categorized into four main
families, namely, cyclic nucleotide-gated channels (CNGCs),
glutamate receptor-like channels (GLRs), stretch-activated Ca2+

channels (OSCAs), and the MID1-complementing activity
(MCA) (Romola, 2002; Kurusu et al., 2013; Jha et al.,
2016; Liu X. et al., 2018). Several other Ca2+ channels
are localized in organelles, such as endoplasmic reticulum,
mitochondria, golgi body, and plant vacuole (Costa et al.,
2018; Thor, 2019; He et al., 2021; Pandey and Sanyal, 2021).
These include autoinhibited Ca2+-ATPases (ACAs), ER-type
Ca2+-ATPases (ECAs), mitochondrial Ca2+ uniporter (MCU),
P1-ATPases (e.g., HMA1), Ca2+ exchangers (CAX), two-
pore channel (TPC), 1,4,5-trisphosphate receptor-like channel
(InsP3R), 1,4,5-trisphosphate (IP3), cyclic ADP-ribose (cADPR)-
activator ryanodine receptor-like channel (RyR), slow-activating
vacuolar channel (SV), and sodium–calcium exchanger (NCX).

The stimuli triggered by environmental or developmental
signals generates discrete Ca2+ signatures that are sensed and
recognized by specific Ca2+ sensors. This cascade of events
eventually results in transcriptional and metabolic responses
(Perochon et al., 2011). Ca2+ signals are recognized by most
of the Ca2+ sensors via the elongation factor hand (EF-hand)
motif. Multiple EF-hand containing proteins are present in
plants, and Ca2+ sensors represent just one of the many
that translate chemical signals into an appropriate biochemical
response. The EF-hand motif is represented by a conserved
helix–loop–helix structure that binds to one Ca2+ ion. They
occur in pairs as distinct domain, hence, the majority of Ca2+

sensors harbor two, four, or six EF-hands (Gifford et al.,
2007; Perochon et al., 2011). The pairing in certain cases is
generally co-operative, consequently minimizing the required
Ca2+ signal for protein saturation. Conformational changes
occur upon binding of Ca2+ ion to appropriate Ca2+ sensor.
These structural changes prompt the interaction between the
sensor and its target protein (TP). Three major classes of Ca2+

sensor families have been recognized in plants, namely, (i)
Calmodulins (CaMs) and calmodulin-like proteins (CMLs), (ii)
calcineurin B-like proteins (CBLs), and (iii) Ca2+-dependent
protein kinases (CDPKs) (Hrabak et al., 2003; Batistič and Kudla,
2012). CaMs are highly conserved in eukaryotes, while CMLs,
CBLs, and CDPKs had only been reported in plants and protists
(Day et al., 2002; Reddy and Reddy, 2004). CaMs, CMLs, and
CBLs are small protein molecules possessing a Ca2+ sensing
domain, thereby, acting as sensor relays. They tend to bind to
the downstream effector molecules in a Ca2+ concentration-
dependent manner (Luan et al., 2002). Different from the afore-
mentioned Ca2+ sensors, CDPKs possess an effector domain
(serine/threonine protein kinase catalytic domain) along with
the Ca2+ sensing domain. Accordingly, CDPKs act as sensor
responders to directly activate and regulate their TPs upon
sensing Ca2+ signals (Hashimoto and Kudla, 2011). Thus, the
series of events: perception of stress, the opening of Ca2+

channels, transient changes in Ca2+ levels, sensing of Ca2+

signals by appropriate Ca2+ sensor, and subsequent activation
of TFs for downstream molecular and biochemical outputs
generates specific responses by the plant to combat the cold
stress condition. One such TF is CAMTA that regulates plant
responses toward cold stress in a Ca2+ dependent manner (Iqbal
et al., 2020b). The CAMTA protein is characterized by the
presence of five functional domains: CG- DNA binding motif,
TAD- transcriptional activation domain, TIG- for non-specific
DNA interaction, Ankyrin repeats- protein–protein interaction,
CAMBD- for CaM binding. Concisely, when a plant is exposed
to cold stress, the Ca2+ channels are opened leading to a rapid
and transient influx of Ca2+ inside the cell. This results in
an increase in ([Ca2+]cyt), which is sensed by Ca2+ sensor—
CaM. Eventually, CaM in a Ca2+ dependent manner regulates
the transcriptional activity of the CAMTA gene, withdrawing
an appropriate response by the plant against cold stress. The
present review summarizes the progress made in the recent years
to comprehend the involvement of Ca2+signaling in cold stress
tolerance (Figure 1).

CALCIUM SENSING NETWORK UNDER
COLD STRESS

Low temperatures lead to intricate cellular and molecular
mechanisms inside plant cells via key components of Ca2+

signaling (Yuan et al., 2018b). Ca2+ channels play critical
roles in low-temperature acclimatization of chilling-tolerant
A. thaliana and root hair development (Hong-Bo et al., 2008).
It has been proposed that Ca2+-permeable mechanosensitive
channels MCA1 and MCA2 regulate cold-induced [Ca2+]cyt
increase, cold tolerance, and CBF/DREB1-independent cold
signaling. The cold-induced [Ca2+]cyt was lower in mca1 and
mca2 mutants than control plants. The mca1 mca2 double
mutant compared to control were more sensitive to chilling and
freezing stress (Mori et al., 2018). Additionally, vesicle membrane
Ca2+/H+ antiporter, A. thaliana calcium exchanger 1 (AtCAX1)
is implicated in an accurate development of the cold-acclimation
response by regulating the induction of CBF/DREB1 and
downstream genes (Catalá et al., 2003). Recently, Ca2+/cation
antiporter (CaCA) superfamily proteins have been identified
in Saccharum to play pivotal roles in environmental stresses,
including cold (Su et al., 2021). Likewise, CNGC is a family of
non-selective cation-conducting channels primarily localized to
the plasma membrane (Zelman et al., 2012). They are implicated
in thermal sensing and thermotolerance in Arabidopsis thaliana
and mosses (Finka et al., 2012). CNGCs have been reported to
play crucial roles in regulating cold tolerance in plants. Oryza
sativa OsCNGC9 transcriptional activation and phosphorylation
confers enhanced chilling tolerance in rice (Wang et al., 2021).
OsCNGC9 overexpression provides increased cold tolerance,
while its mutation leads to defects in cold-induced Ca2+

influx. Rice OsDREB1A TF is responsible for the activation of
OsCNGC9 transcription. In crux, OsCNGC9 increases chilling
tolerance by regulating cold-induced Ca2+ influx and [Ca2+]cyt
elevation (Wang et al., 2021). Additionally, CNGC family has
been characterized in Chinese jujube (Ziziphus jujuba Mill.),
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FIGURE 1 | Cold stress signaling in a plant cell. The plasma membrane is considered as one of the primary target for cold sensing and eventual transmission of
Ca2+ signals into the plant cell nuclei. Cyclic nucleotide-gated channels (CNGCs), glutamate receptor-like channels (GLRs), and the MID1-complementing activity
(MCA) channels are the main plasma membrane Ca2+ channels that allow the entry of Ca2+ ions into the cytoplasm. Once the Ca2+ ion enters the plant cell, they
are sensed by Calmodulins (CaMs) and Calmodulin-like proteins (CMLs), Calcineurin B-like proteins (CBLs), and Ca2+-dependent protein kinases (CDPKs). Upon
cold exposure, plasma membrane associated cold sensor chilling-tolerance divergence 1 (COLD1) interacts with G protein a subunit (RGA). Ca2+/CaM regulated
receptor-like kinase (CRLK) positively regulate cold triggered gene expression by inducing the MEKK1–MKK2–MPK4 pathway. CRLK suppress cold-induced
activation of MPK3/6 and is necessary for inducer of CBF expression (ICE) accumulation. ICE proteins are stabilized by either phosphorylation (P) or sumolyation (S).
Calmodulin binding transcription activators (CAMTAs) activate C-repeat binding factor (CBF) expression through the CM2 (CCGCGT) promoter motif. CBF proteins
eventually activate the expression of various cold-responsive (COR) genes which confers cold tolerance in plants.

and ZjCNGC2 was reported to regulate signaling cascades
in response to cold stress (Wang et al., 2020b). Further, it
was shown that rice CNGC14 and CNGC16 are involved in
promoting tolerance toward heat and chilling stresses, and are
regulators of Ca2+ signals in response to temperature stress
(Cui et al., 2020). Their homologs in A. thaliana (AtCNGC2
and AtCNGC4) are also implicated in tolerance toward low
temperature (Cui et al., 2020). CNGCs had also been implicated
in modulating cold stress responses along with other biological
stresses via Ca2+ signals in Brassica oleracea (Kakar et al.,
2017), O. sativa (Nawaz et al., 2014), and Nicotiana tabacum
(Nawaz et al., 2019).

The endoplasmic reticulum and plasma-membrane localized
G-protein regulator CHILLING TOLERANCE DIVERGENCE1
(COLD1) coupled with RICE G-PROTEIN α SUBUNIT1 (RGA1)
was reported in cold stress signaling via Ca2+ signals and
electrophysiological responses in O. sativa (Ma Y. et al., 2015).
The COLD1-RGA1 complex regulates the cold stress-driven
influx of intracellular Ca2+, eventually resulting in the activation
of COR (cold regulated) genes. It remains a subject of further
evaluation whether COLD1 plays a role as a Ca2+-permeable
channel or as a mediator promoting Ca2+-permeable channel
activity. Taking into account another plasma membrane-bound
Ca2+ channel—GLR—mediate Ca2+ fluxes across membranes
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and is responsive to an array of exogenous and endogenous
signals in plants. AtGLR3.4 localizes to the plasma membrane
and is stimulated by cold stress in a Ca2+-dependent manner
(Meyerhoff et al., 2005; Weiland et al., 2015). AtGLR1.2 and
AtGLR1.3 were reported to positively regulate cold tolerance by
modulating jasmonate signaling in A. thaliana (Zheng et al.,
2018). The cold sensitivity of glr1.2 and glr1.3 mutants was
attenuated by exogenous jasmonate treatment, while the over-
expression of GLR1.2 or GLR1.3 led to elevated cold tolerance
by enhancing endogenous jasmonate levels. Additionally, under
cold stress, the expression of genes in the CBF/DREB1 signaling
pathway were lowered in glr1.2 and glr1.3 mutants, whereas
higher in GLR1.2 and GLR1.3 over-expression lines (Zheng
et al., 2018). Similar to the above finding, tomato GLR3.3
and GLR3.5 were reported to regulate cold acclimation-induced
chilling tolerance by modulating apoplastic H2O2 production
and redox homeostasis (Li H. et al., 2019). Next, annexins are
Ca2+ permeable transporters that mediate the accumulation
of [Ca2+]cyt in responses to abiotic stresses (Lee et al.,
2004; Laohavisit et al., 2012; Richards et al., 2014). Recently,
ANNEXIN1 was reported to regulate cold-induced Ca2+ influx
and freezing tolerance in A. thaliana (Liu et al., 2021). The
mutation of AtANN1 decreased freeing tolerance, impaired cold
triggered [Ca2+]cyt increase, and upregulated cold-responsive
CBF and COR genes. The study revealed that AtANN1 acts
downstream of OST1 in responses to cold stress (Liu et al., 2021).
Furthermore, the organellar Ca2+ channel, GhCAX3 gene from
Gossypium hirsutum was characterized under various abiotic
stresses, including cold. Transgenics compared to control plants
were more sensitive to cold stress during seed germination. Over-
expression of GhCAX3 led to the transcript enrichment of some
of the abscisic acid (ABA)-and cold-responsive genes. The study
concluded that GhCAX3 plays an imperative part in the cross-talk
of cold and ABA signal transduction (Xu et al., 2013). Likewise,
IP3 was reported to mediate nitric oxide (NO) triggered chilling
tolerance in postharvest peach fruit (Jiao et al., 2019).

ROLE OF CALCIUM SENSORS IN COLD
STRESS

Calmodulin and Calmodulin-Like Protein
Mediated Responses Toward Cold Stress
Calmodulins and calmodulin-like protein are widely studied
Ca2+ sensors that sense and decode rapid and transient
fluctuations in the intracellular Ca2+ levels in response to
environmental cues. In plants, CaMs and CMLs have been
reported to play pivotal roles in developmental and stress biology
(Zeng et al., 2015; Ranty et al., 2016; Aldon et al., 2018;
Gao et al., 2019). CaMs and CMLs transcripts are induced or
suppressed in response to a variety of abiotic stresses (Zeng
et al., 2017; Li C. et al., 2019). Initial studies revealed that
CaM3 overexpressing lines had reduced levels ofCOR transcripts,
suggestive of the fact that CaM might act as a negative regulator
of cold stress (Townley and Knight, 2002). In a similar vein,
AtCaM4 had been reported to negatively regulate freezing

tolerance in A. thaliana. The cam4 mutants exhibited increased
tolerance to freezing stress. AtCaM4 might regulate freezing
tolerance in a CBF-independent manner (Chu et al., 2018). In
an interesting study, the germination of developing immature
cml39 seeds in comparison to control seeds was not sensitive
to cold-stratification. Hence, it was reported that CML39 has a
role in stratification-dependant seed dormancy (Midhat et al.,
2018). Lately, the effect of cold stress along with other abiotic
stresses was assessed for the expression of CaMs and CMLs in
wild-growing grapevine Vitis amurensis. VaCaM8 and VaCaM10
showed significant differential expression under cold stress
(4◦C). Incubation at 4◦C or 10◦C induced the expression of
six CML genes (VaCML21, VaCML44, VaCML61, VaCML78,
VaCML86, and VaCML89; while reduced the expression of
eight CML genes (VaCML9a, VaCML48, VaCML57, VaCML75,
VaCML82, VaCML85, VaCML92, and VaCML107) (Dubrovina
et al., 2019). The same group reported four alternatively
spliced mRNA forms of the grapevine CML21 gene (CML21v1,
CML21v2, CML21v3, and CML21v4). All the four splice
variants were highly induced under cold stress. Heterologous
expression of CML21v2 and VaCML21v4 in A. thaliana increased
the survival percentage of the transgenics upon freezing.
Cold stress-responsive marker genes: dehydration-responsive
element-binding, AtDREB1A and AtDREB2A were induced in
VaCML21v2 overexpression lines, while AtCOR47, AtRD29A,
AtRD29B, and AtKIN1 genes were induced in VaCML21v4
overexpression lines after freezing stress in the transgenic
Arabidopsis plants. Thus, it was established that CML21 acts
as a positive regulator of cold stress (Aleynova et al., 2020).
Likewise, Medicago sativa, MsCML46 gene encoding calmodulin-
like protein confers tolerance to cold and other abiotic stress
in tobacco. The MsCML46 was upregulated in the leaves and
roots after exposure to cold stress. The expression peaked after
1 h in leaves, while in roots, the expression peaked at 3 h
(Du et al., 2021). In a similar vein, five Camellia sinensis-
CsCML genes (CsCML16, CsCML18-1, CsCML18-2, CsCML38,
and CsCML42) were functionally characterized under various
environmental stresses. The transcript levels of CsCML16, 18-
2, and 42 were significantly induced by low temperature and
salt stress (Ma Q. et al., 2019). Previously, Solanum habrochaites
(cold-tolerant wild tomato) ShCML44 gene was functionally
characterized under a variety of environmental stresses, including
cold stress. The ShCML44 overexpressed plants had higher
antioxidant enzymes activity, better gas exchange and water
retention capacity, lower malondialdehyde (MDA) accumulation
and membrane damage, reduced reactive oxygen species (ROS),
and higher relative water contents (Munir et al., 2016). Very
recently, Solanum lycopersicum SlCML37 has been shown to
interact with proteasome maturation factor SlUMP1 and has
been reported in tomato fruit chilling stress tolerance (Tang
et al., 2021). Additionally, Medicago truncatula MtCML42 has
been reported to regulate cold tolerance and flowering time (Sun
et al., 2021). Further, in rice, six new putative interacting partners
of OsCML16 were identified (OsLRK5a, OsDCNL2, OsWD40-
139, OsGDH1, OsCIP, and OsERD2). The in vitro peptide-
binding assays suggested that OsERD2 could bind both OsCaM1
and OsCML16, while the other five TPs specifically binded
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to OsCML16. Moreover, Ca2+ and trifluoperazine (TFP)—
CaM antagonist were involved in ABA-induced transcription of
OsCML16 and its target genes. OsCML16 and its target genes
were triggered by salt, drought, and low-temperature stress
(Yang et al., 2020).

Calcium/Calmodulins-regulated receptor-like kinases
1 (CRLK1) encoding a plasma membrane-associated
serine/threonine kinase has been reported to play a crucial
role in cold stress responses (Yang et al., 2010a,b; Furuya
et al., 2013, 2014). The crlk1 mutants compared to control
plants are sensitive to freezing temperatures. The expression
of cold-responsive genes, such as, CBF1, RD29A, and COR15a
was suppressed in crlk1 mutants, making them more susceptible
to cold stress than control plants. CRLK1 protein expression is
induced upon low temperature (4◦C) exposures and oxidative
stress (H2O2). Thus, CRLK1 is considered a positive regulator of
cold stress responses in A. thaliana. Additionally, the Ca2+/CaM
complex is a requisite for triggering CRLK1 kinase. It has
been reported previously that an increase in CaM levels in the
presence of Ca2+ elevates the activity of CRLK1 kinase. On
the contrary, chlorpromazine (CPZ)—CaM antagonist blocked
the CaM mediated CRLK1 kinase activity (Yang et al., 2010a).
Explicitly, the presence of CaM-binding domain at the C-termini
of CRLK1 is essential for CaM-modulated kinase activity (Yang
et al., 2010a). Besides, the inducer of CBF expression 1 (ICE1)
is a transcription activator and a major component of the cold
response pathway as it binds with the promoters of the C-repeat
binding factor (CBF) and COR genes (Tang et al., 2020). CRLK1
and CRLK2 suppress cold-induced activation of MPK3/6 and
are necessary for ICE1 accumulation (Zhao et al., 2017). Hence,
there exists a Ca2+ signaling-mediated cold-responsive pathway
which is regulated by CRLK1 (Yang et al., 2010a,b).

Calcineurin B-Like Proteins Mediated
Responses Toward Cold Stress
Calcineurin B-like proteins represent a major class of Ca2+

binding proteins and are considered imperative relays in plant
Ca2+ signaling pathways. CBL and CBL-interacting protein
kinase (CIPK) complex are central to Ca2+ signaling. This
complex had been reported to be implicated in a plethora
of external stress signals (Kolukisaoglu et al., 2004; Yu et al.,
2014; Mohanta et al., 2015). In this context, CBL9 had been
shown to negatively regulate cold tolerance via Ca2+ signaling
in A. thaliana (Gao and Zhang, 2019). cbl9 mutants showed
enhanced freezing tolerance under cold-acclimating and non-
acclimating conditions. Exposure to cold stress increased
[Ca2+]cyt in cbl9 mutants compared to wild type. Contrarily,
ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic
acid (EGTA)—Ca2+ chelator and lanthanum chloride—Ca2+

channel blocker significantly altered [Ca2+]cyt in cbl9 mutants
(Gao and Zhang, 2019). Lately, in Camellia sinensis (tea plant),
it was shown that CsCBL9 and CsCIPK4/6a/6b/7/11/14b/19/20
were upregulated in both mature leaves and young shoots upon
cold stress. Results of yeast two-hybrid assay demonstrated
that CsCBL1 potentially interacted with CsCIPK1/10b/12 but
not with CsCIPK6a/7/11/14b/20. Similarly, CsCBL9 interacted

with CsCIPK1/10b/12/14b but not with CsCIPK6a/7/11/20.
Thus, the study proposed distinct responses to cold stress
mediated by CBL–CIPK complexes (Wang et al., 2020a). In
addition, CIPKs had also been functionally characterized in
Triticum aestivum (Deng et al., 2013), Capsicum annuum (Ma
X. et al., 2019), Manihot esculenta (Mo et al., 2018), Malus
domestica (Wang et al., 2012; Niu et al., 2018), and Brachypodium
distachyon (Luo et al., 2018) under different environmental
cues, including cold stress. TaCIPK29 transcript increased after
cold treatment (Deng et al., 2013), while CaCIPK1 expression
changed in response to cold stress (Ma X. et al., 2019). The
expression of MeCIPK7 significantly increased in roots upon
cold treatment. The transcript levels of MeCIPK10 and 13 in
roots, whereas transcript levels MeCIPK12 and 16 in leaves were
also altered upon cold treatment (Mo et al., 2018). This study
by Mo et al. (2018) suggested that cassava (Manihot esculenta)
CBL–CIPK signal networks function in responses to abiotic
stresses. MdCIPK6L ectopic expression significantly enhanced
chilling tolerance in transgenic tomatoes (Wang et al., 2012),
whereas the ectopic expression of BdCIPK31 renders increased
low-temperature tolerance in transgenic tobacco (Luo et al.,
2018). Likewise, CBLs had been molecularly characterized under
a variety of environmental stresses, including cold in Brassica
napus (Zhang H. et al., 2014), Brassica rapa (Jung et al., 2017),
Stipa purpurea (Zhou et al., 2016), and Pyrus betulifolia Bunge
(Xu Y. et al., 2015). For Brassica napus, BnaCBL1 transcripts
significantly increased at 6 h of cold treatment; however, it
was downregulated at 24 h. At 24 h of cold treatment, only
BnaCBL10 was slightly upregulated, and transcripts of BnaCBL2,
-3, -4 were downregulated (Zhang H. et al., 2014). For Brassica
rapa, BrCBL1-1 transcript levels were highly elevated (∼30-fold
upregulation) after 4 h of cold treatment in one of the in-bred
lines of Brassica rapa (Chiifu) (Jung et al., 2017). Further,
overexpression of SpCBL6 from Stipa purpurea increased
cold tolerance and decreased drought tolerance in transgenic
A. thaliana (Zhou et al., 2016). On similar grounds, PbCBL1
responded to alterations in the intracellular Ca2+ concentrations
and was induced by cold stress (Xu Y. et al., 2015).

Calcium-Dependent Protein Kinases
Mediated Responses Toward Cold Stress
Calcium-dependent protein kinases comprise a multi-gene
kinase family in plants and are major regulators of developmental
and stress responses in plants (Cheng et al., 2002; Valmonte
et al., 2014). As already stated, CDPKs function as direct sensor
responders to decode the Ca2+ signals (Hashimoto and Kudla,
2011). Upon sensing Ca2+ signals, CDPKs activate and regulate
the TPs directly. Several CDPK-encoding genes are differentially
expressed upon cold stress; however, their underlying molecular
mechanisms remain elusive. In rice, OsCPK17 targets the
sucrose–phosphate synthase and plasma membrane intrinsic
proteins and was reported in cold stress response (Almadanim
et al., 2017). Additionally, OsCPK24 inhibits glutaredoxin
(OsGrx10), thereby, sustaining higher glutathione levels and
phosphorylation. OsCPK24 has been shown to positively regulate
cold stress tolerance (Liu Y. et al., 2018). In yet another
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monocot plant—banana, MaCDPK7 was shown to regulate
the fruit ripening process and chilling resistance induced by
heat treatment (Wang et al., 2017). Later, the CDPK gene
family was characterized in banana for their involvement in
the development, fruit ripening, and abiotic stress responses,
including cold (Li et al., 2020). Genome-wide identification of
the CDPK gene family in Medicago truncatula also revealed that
MtCDPK4, 8, 15, 16, and 22 transcripts were quickly elevated
after 2 h of cold treatment (Zhao et al., 2021). Previously,
the CDPK gene family had been identified and assessed for
its involvement under abiotic stress conditions, including cold
in Solanum lycopersicum (tomato; Hu et al., 2016), Cucumis
melo (melon; Zhang et al., 2017), Cucumis sativus (cucumber;
Xu X. et al., 2015), zea mays (maize; Kong et al., 2013).
Moreover, in Populus euphratica, PeCPK10 confers cold and
drought stress tolerance. Precisely, overexpression of PeCPK10
increased freezing tolerance in the transgenics. The expression of
ABA and stress-responsive genes such as RD29B and COR15A
were induced by constitutive expression of PeCPK10 (Chen
et al., 2013). In an interesting study, the roles of VaCPK16,
VaCPK25, VaCPK30, and VaCPK32 in secondary metabolites
biosynthesis and stress resistance was studied in V. amurensis
(grapevine) (Dubrovina et al., 2018). Overexpressing the
VaCPK30 gene conferred enhanced resistance to cold and
salt stress in transgenics, whereas overexpressing VaCPK16,
VaCPK25, and VaCPK32 did not influence temperature and salt
stress tolerance. Instead, the overexpression of VaCPK16 and
VaCPK32 enhanced stilbene accumulation in V. amurensis cell
cultures (Dubrovina et al., 2018). Earlier the same group had
reported the involvement of VaCPK20 in cold and drought stress
response pathways (Dubrovina et al., 2015). On similar lines
in Zea mays, ZmCPK1 was reported as a negative regulator
of cold stress signaling in maize (Weckwerth et al., 2015).
ZmCPK1 displayed Ca2+-independent protein kinase activity.
The expression of ZmCPK1 increased, while the expression
of ZmCPK25 decreased upon cold stress (Weckwerth et al.,
2015). Recently, Malus domestica (apple) MdCPK1a gene was
reported to enhance tobacco cold resistance via scavenging ROS
accumulation (Dong et al., 2020). The underlying mechanism
of cold resistance through the involvement of MdCPK1a was
further investigated. The MdCPK1a tobacco transgenics had a
better survival ratio and root length when subjected to cold
stress. The superoxide dismutase (SOD), peroxidase (POD),
and catalase (CAT) activities were higher, while electrolyte
leakages (EL), MDA content, and ROS were lower. This was
suggestive of the fact that the transgenics underwent less
chilling injury than control plants (Dong et al., 2020). Thus,
Ca2+ signaling plays a pivotal part in cold acclimation in
plants (Table 1).

AtSR/CAMTA Regulated Transcription
Under Cold Stress
Upon perception of cold stress, Ca2+ signals are elevated, which
might direct Ca2+ to either repress or activate the activity of
Ca2+ responding protein. Similarly, the interaction of Ca2+ with
Ca2+ sensors either suppresses or enhances the binding to a

TF. Depending upon whether the TF itself is a repressor or
activator, the transcription of the target gene is repressed or
activated. Ca2+/CaM dependent TFs relay cold-induced Ca2+

transients to transcriptional reprograming. CAMTAs are one
such group of TFs that regulate plant cold stress responses
in a Ca2+-dependent manner. CAMTA proteins have been
stipulated to play a direct link between Ca2+ signals and cold
acclimation (Eckardt, 2009). CAMTAs also known as signal
responsive (SR) protein (Yang and Poovaiah, 2000) or EICBP
(ethylene-induced CaM-binding proteins) (Reddy et al., 2000)
is a well-characterized CaM dependent TF that regulates gene
expression by binding to the signature “CGCG” DNA motif
(Galon et al., 2008; Du et al., 2009; Yuan et al., 2018a).
Furthermore, CBF cold response pathway plays a pivotal role in
cold acclimation (Shi et al., 2018). It is characterized by rapid
cold induction of genes encoding the CBF1-3 TFs, followed by
the expression of the CBF gene regulon. The CRT/DRE cis-
element is recognized by the CBF protein and is characterized
by the presence of a conserved CCGAC sequence. The CCGAC
sequence is present in the 1000 bp upstream region of a subset
of COR genes (Stockinger et al., 1997; Gilmour et al., 1998;
Shi et al., 2018; Liu et al., 2019). The cis and trans-acting
factors implicated in the expression of CBF2 were studied by
Doherty et al. (2009). Seven conserved DNA motifs (CM1
to 7) were identified in the promoters of CBF2 and ZAT12
(cold-induced genes). CM4 and CM6 have negative regulatory
activity, while CM2 has both negative and positive activity.
The study also revealed that CAMTA3 binds to the CM2
motif and is a positive regulator of CBF2 expression. Moreover,
camta1 camta3 double mutant plants were impaired in freezing
tolerance. This study exhibited a novel role of CAMTA in cold
acclimation and provided a plausible link of low-temperature
Ca2+ and CaM signaling with cold-regulated gene expression
(Doherty et al., 2009). Later, CAMTA3 and CAMTA5 were
reported to respond to a rapid decrease in temperature and
induce the expression of DREB1s (Kidokoro et al., 2017).
Additionally, contrary to circadian clock associated1 and late
elongated hypocotyl genes that modulate DREB1 expression only
during the day, CAMTA3 and CAMTA5 function both during the
day and night (Kidokoro et al., 2017).

Salicylic acid (SA) has a central role in transcriptional
machinery at low temperatures (Scott et al., 2004). However,
accumulated SA did not influence cold tolerance in atsr1
(also referred as CAMTA3) (Kim et al., 2013). CAMTA1 and
CAMTA2 in combination with CAMTA3 induced transcripts
of CBF1, CBF2, and CBF3 at 2 h and enhanced plant freezing
tolerance. Additionally, CAMTA1, CAMTA2, and CAMTA3
work simultaneously to inhibit SA biosynthesis at warm
temperatures (22◦C). However, the SA levels increased in plants
exposed to low-temperatures for more than one week. The
study revealed that the isochorismate synthase (ICS) pathway is
involved in chilling-induced SA biosynthesis. The accumulation
of ICS1, CBP60g, and SARD1 transcripts were suppressed at
warm temperatures by these three CAMTAs, but not at low
temperatures (Kim et al., 2013). The analysis of upstream regions
to the transcription start site (TSS) in wound-induced genes
indicated the presence of rapid stress response DNA element
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TABLE 1 | Calcium signaling components in cold stress acclimation in plants.

Gene Ca2+ component Species References

MCA1 and MCA2 Ca2+ channel Arabidopsis thaliana Mori et al., 2018

AtCAX1 Ca2+ channel Arabidopsis thaliana Catalá et al., 2003

Ca2+/cation antiporter Ca2+ channel Saccharum Su et al., 2021

CNGC9 Ca2+ channel Oryza sativa Wang et al., 2021

ZjCNGC2 Ca2+ channel Ziziphus jujuba Mill Wang et al., 2020b

CNGC14 and CNGC16 Ca2+ channel Oryza sativa Cui et al., 2020

AtCNGC2 and AtCNGC4 Ca2+ channel Arabidopsis thaliana Cui et al., 2020

AtGLR3.4 Ca2+ channel Arabidopsis thaliana Meyerhoff et al., 2005; Weiland et al., 2015

AtGLR1.2 and AtGLR1.3 Ca2+ channel Arabidopsis thaliana Zheng et al., 2018

GLR3.3 and GLR3.5 Ca2+ channel Solanum Li H. et al., 2019

ANNEXIN1 Ca2+ channel Arabidopsis thaliana Liu et al., 2021

GhCAX3 Ca2+ channel Gossypium hirsutum Xu et al., 2013

CaM3 Ca2+ sensor Arabidopsis thaliana Townley and Knight, 2002

CaM4 Ca2+ sensor Arabidopsis thaliana Chu et al., 2018

CML39 Ca2+ sensor Arabidopsis thaliana Midhat et al., 2018

VaCaM8 and VaCaM10 Ca2+ sensor Vitis amurensis Dubrovina et al., 2019

VaCML21, VaCML44, VaCML61, VaCML78,
VaCML86, and VaCML89

Ca2+ sensor Vitis amurensis Dubrovina et al., 2019

CML21v1, CML21v2, CML21v3, and CML21v4 Ca2+ sensor Vitis amurensis Aleynova et al., 2020

MsCML46 Ca2+ sensor Medicago sativa Du et al., 2021

CsCML16, 18-2, and 42 Ca2+ sensor Camellia sinensis Ma Q. et al., 2019

ShCML44 Ca2+ sensor Solanum habrochaites Munir et al., 2016

SlCML37 Ca2+ sensor Solanum lycopersicum Tang et al., 2021

MtCML42 Ca2+ sensor Medicago truncatula Sun et al., 2021

CRLK1 Ca2+ sensor Arabidopsis thaliana Yang et al., 2010a,b

CBL9 Ca2+ sensor Arabidopsis thaliana Gao and Zhang, 2019

CsCBL9 and CsCIPK4/6a/6b/7/11/14b/19/20 Ca2+ sensor Camellia sinensis Wang et al., 2020a

TaCIPK29 Ca2+ sensor Triticum aestivum Deng et al., 2013

CaCIPK1 Ca2+ sensor Capsicum annuum Ma X. et al., 2019

MeCIPK7 Ca2+ sensor Manihot esculenta Mo et al., 2018

MdCIPK6L Ca2+ sensor Malus domestica Wang et al., 2012

BdCIPK31 Ca2+ sensor Brachypodium distachyon Luo et al., 2018

BnaCBL Ca2+ sensor Brassica napus Zhang H. et al., 2014

BrCBL1-1 Ca2+ sensor Brassica rapa Jung et al., 2017

SpCBL6 Ca2+ sensor Stipa purpurea Zhou et al., 2016

PbCBL1 Ca2+ sensor Pyrus betulifolia Bunge Xu Y. et al., 2015

OsCPK17 Ca2+ sensor Oryza sativa Almadanim et al., 2017

OsCPK24 Ca2+ sensor Oryza sativa Liu Y. et al., 2018

MaCDPK7 Ca2+ sensor Musa acuminata cv.Cavendish Wang et al., 2017; Li et al., 2020

MtCDPK4, 8, 15, 16, and 22 Ca2+ sensor Medicago truncatula Zhao et al., 2021

PeCPK10 Ca2+ sensor Populus euphratica Chen et al., 2013

VaCPK30 Ca2+ sensor Vitis amurensis Dubrovina et al., 2018

VaCPK20 Ca2+ sensor Vitis amurensis Dubrovina et al., 2015

ZmCPK1 Ca2+ sensor Zea mays Weckwerth et al., 2015

MdCPK1a Ca2+ sensor Malus domestica Dong et al., 2020

CAMTA3 TF Arabidopsis thaliana Doherty et al., 2009; Kim et al., 2013,
Kidokoro et al., 2017; Kim et al., 2017

CAMTA5 TF Arabidopsis thaliana Kidokoro et al., 2017

(RSRE), CGCGTT. Moreover, promoter activity assay depicted
that luciferase activity level induced by cold stress was lower
in camta3 mutants than control plants (Benn et al., 2014).
The study revealed that CAMTA3 modulates cold tolerance in
A. thaliana via the regulation of genes that harbor RSRE elements

in their promoters (Benn et al., 2014). Another interesting study
found that heptahelical protein 2 (HHP2) interacts with CBF
upstream regulators, such as ICE1, ICE2, and CAMTA3 (Lee
and Seo, 2015). At low-temperatures, MYB96 (R2R3-type MYB
TF) induced the HHP genes (Lee and Seo, 2015). This suggests
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that a cross-wired mesh of pathways exist that incorporates
Ca2+ signaling to regulate cold stress tolerance through
CAMTA3. Kim et al. (2017) revealed that the IQ motifs in
AtCAMTA3 (residues 850–875) are necessary for its activity (Kim
et al., 2017). Post-translational modifications (phosphorylation
or dephosphorylation) play imperative part in AtCAMTA3
mediated response to environmental cues. S454 and S964 were
identified as two putative phosphorylation sites in AtCAMTA3
protein (Jones et al., 2009). The camta1 camta3 double mutants
complemented with mutated AtCAMTA3 protein, S454A and
S964A (phosphorylation sites of AtCAMTA3) were partially
restored to control plants. Moreso, the suppression of SA
biosynthesis in the mutants was compromised, suggestive of the
fact that phosphorylation is necessary for the full functionality of
AtCAMTA3 (Kim et al., 2017). It is well reported that CAMTA3
is a defense repressor. CAMTA3 is degraded to trigger SA-
mediated immune response during pathogen incursion (Galon
et al., 2008; Poovaiah et al., 2013; Zhang L. et al., 2014; Fromm
and Finkler, 2015; Kim et al., 2017). Intriguingly, SA-mediated
signaling pathways also cross-talk with pathways implicated in
long-term cold treatments (4◦C, 2 weeks) (Kurepin et al., 2013;
Miura and Tada, 2014). Nonetheless, AtCAMTA3 protein is
also accumulated at low temperatures (Kim et al., 2017). These
observations suggest that a complex mesh of networks intersect
with each other to overcome the AtCAMTA3 suppression of
the SA signaling pathway. Very recently, evolution analyses of
CAMTA genes in 112 plant species were performed to study
its enhancing effect on cold tolerance (Xiao et al., 2021). Thus,
CAMTAs via Ca2+/CaM signaling has an intersecting role in
imparting cold tolerance to plants.

CONCLUSION AND FUTURE
PERSPECTIVE

The underpinning mechanisms of cold signaling pathways and
genes implicated in cold stress have been extensively studied
in the past few years. Different signaling pathways converge
to allow plants cope with cold stress. Perception of cold stress
by the plant is contemplated to be the first event for the
induction of Ca2+ transients (Ma Y. et al., 2015). The cold
stress-triggered Ca2+ transients are generated via a number
of Ca2+ channels and/or Ca2+ pumps. These Ca2+ transients
are relayed and decoded by a variety of Ca2+ sensors to

regulate gene expression and subsequently confer cold tolerance
to plants (Ma Y. et al., 2015; Mori et al., 2018). Considerable
advancements have been made to comprehend the underlying
components of the Ca2+ signaling network, such as, Ca2+–
CBL–CIPK, CDPK, and Ca2+–CaM–CAMTA (Weckwerth et al.,
2015; Kidokoro et al., 2017; Wang et al., 2020a). Moreover,
plant cold tolerance is an intricate process involving dissecting
signal transduction pathways. It remains elusive how other
signaling pathways intersect with Ca2+ signaling pathways
to confer cold tolerance in plants. It is still a challenge to
deeply decipher the role of Ca2+ signals in the cold stress
tolerance mechanism and to ascertain whether cold stress-
triggered Ca2+ transients exist in the cell nucleus. Cutting
edge techniques such as multi-omics (Iqbal et al., 2021b),
CRISPR/cas9 gene-editing systems (Iqbal et al., 2020a), and
sensitive Ca2+ imaging (Grenzi et al., 2021) can prove to be
potent tools to determine the un-discovered aspects of Ca2+

signaling pathways. Thus, future research should focus on
deciphering the key converging and diverging pathways pivotal
to Ca2+ mediated cold signaling. Further, gaining in-depth
insights as to how Ca2+ signatures are induced and decoded
in response to cold stress can help better comprehend the
involvement of Ca2+ ion in cold stress signaling. Nonetheless,
efforts should be made to identify low-temperature sensors
using biological methods in combination with biochemical and
biophysical approaches.
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