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Editorial on the Research Topic

Genome-Wide Analyses of Pectobacterium andDickeya Species

Pectobacterium and Dickeya, emerging pathogens and key genera included in the Soft Rot
Pectobacteriaceae family (SRP; formerly known as pectinolytic Erwinia spp.) (Adeolu et al., 2016),
are among the top 10 bacterial plant pathogens that limit crop yields and threaten global food
security worldwide (Mansfield et al., 2012). Species within both genera are globally distributed
(Mansfield et al., 2012; Ma et al., 2019; Boluk et al., 2021) and cause significant damage to both
monocots and dicots, particularly to potato with potential global losses in production (Agrios,
2006), and an estimated cost of US$50–100 million annually in vegetables, fruits, and ornamental
plants (Perombelon and Kelman, 1980; Pérombelon, 2002; Ma et al., 2007). Species in both genera
have been isolated from infected plant tissues, soil, and water (Glasner et al., 2008; Hugouvieux-
Cotte-Pattat et al., 2019; Oulghazi et al., 2019) as well as from alternative non-agricultural plant
hosts (Fikowicz-Krosko et al., 2017; Fikowicz-Krosko and Czajkowski, 2018). The pectinolytic
bacteria rapidly adapt to new hosts, raising serious concerns for potential damage to new crops
(Boluk et al., 2020, 2021; Klair et al., 2021).

Recently, several new Pectobacterium and Dickeya species were reported; Pectobacterium is
currently divided into 19 recognized species with the addition of P. parvum in 2020 (Pasanen et al.,
2020), and Dickeya is divided into 12 species, including the recent addition of D. oryzae (Wang
et al., 2020).

High levels of virulence associated with these SRPs involves the secretion of plant cell wall
degrading enzymes (PCWDEs) primarily through a type II secretion system (T2SS), enabling
them to digest their hosts more extensively than any other microbes in both field and storage
conditions (Hugouvieux-Cotte-Pattat et al., 2014; Li et al., 2018; Arizala and Arif, 2019; Fan et al.,
2020). Pathogenicity determinants play a significant role in host adaptation and virulence (Boluk
et al., 2021). PCWDEs and other virulence factors, such as the type III effector protein DspE
and necrosis inducing protein Nip, are used to macerate plant tissue and promote plant cell
death, providing nutrients for the multiplication and colonization of these necrotrophic pathogens
(Kim et al., 2011; Babujee et al., 2012; Charkowski et al., 2012; Haque et al., 2017; Fan et al.,
2020). The T1SS, T2SS, T6SS, some PCWDEs and proteases, the ECA cluster, achromobactin,
flagellar genes, single virulence locus, the pilW and pilABC genes, Flp/Tad, carotovoricin, DsbA
oxidoreductase, and the majority of virulence regulators were anticipated critical genes/gene
clusters for all Pectobacterium species, while T3SS, T4SS, T5SS, phytotoxins, type IV pilus,
capsular polysaccharide, lipopolysaccharides, exopolysaccharides, iron uptake systems, phenazine,
carbapenem, and colicin-like bacteriocins were observed in some species. Differences among
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antimicrobial compounds and toxin and antitoxin systems
surrounding the CRISPR-Cas systems were observed in others
(Glasner et al., 2008; Charkowski et al., 2012; Arizala and Arif,
2019; Przepiora et al., 2022).

Despite the severe disease impact of Pectobacterium and
Dickeya species, not many comprehensive studies of SRPs have
been conducted to ascertain evolutionary relationships among
strains or the role of horizontal gene transfer (HGT) in speciation
and adaptation to a new niche. Likewise, the impact of phages and
prophages on the ecology and virulence of Pectobacterium and
Dickeya still needs to be assessed in detail to understand the role
of these virus-bacteria interactions in natural and agricultural
settings (Czajkowski, 2016, 2019).

Rapidly developing sequencing technology (Illumina, Ion
Torrent, Pacific Biosciences and Oxford Nanopore) has led
to a sharp decrease in sequencing costs and has enabled
genome sequencing of plant bacterial strains on a vast scale.
Genomics analyses play a dominant role in elucidating bacterial
taxonomy, phylogeny, and evolutionary biology and provide
insights into distinct niche adaptation (McAdam et al., 2014;
Cai et al., 2018; Arizala and Arif, 2019). Comparative genomics
of recently evolved or emerging pathogens provide insights
into the regions/islands acquired by closely related strains,
enabling them to adapt to a new host/environment (Zhang et al.,
2020). The number of new “omics datasets—such as genome
sequencing, RNA-seq, pan-genomics, and metabolomics—are
increasing rapidly. New bioinformatics pipelines and software
have also become available, and with the increasing numbers
of datasets and bioinformatics pipelines and software, we can
accelerate the progress made in comparative and functional
bacterial genomics (Chen et al., 2017; Karp et al., 2019).

In this special issue, six articles were published. Czajkowski
et al. in their article “Genome-wide identification of Dickeya
solani transcriptional units upregulated in response to plant
tissues from a crop-host Solanum tuberosum and a weed-host
Solanum dulcamara”, identified 210 mutant ofD. solani IPO2222
exhibited plant tissue-dependent expression. The selected
13 genes were differentially expressed in potato (Solanum
tuberosum) and/or Solanum dulcamara (bittersweet nightshade)
stem, leaf, and root tissues. These results imply that necrotrophic
bacteriumD. solani can recognize its hosts during the early stages
of infection and modify its behavior accordingly. In the next
article “The PhoPQ two-component system is themajor regulator
of cell surface properties, stress responses, and plant-derived
substrate utilization during development of Pectobacterium
versatile-host plant pathosystems” by Kravchenko et al. it
was revealed that PhoP, part of PhoPQ two compartment
system, regulates at least 115 genes involved in degradation,
transport, and metabolism of plant-derived carbon sources,
bacterial cell envelope, and stress resistance, and concluded
that PhoPQ is a crucial system regulating multiple virulence-
related genes controlling the development of P. versatile-
host plant pathosystem. Article “Pectobacterium brasiliense
1692 chemotactic responses and the role of methyl-accepting
chemotactic proteins in ecological fitness” by Tanui et al.

identified 34 methyl-accepting chemotactic proteins (MCPs) in
P. brasiliense Pb 1692. Four out of 34 MCPs were further
characterized and found that these MCPs contribute toward the
biology and fitness of Pb 1692 during potato infection. Pun et
al. in their article “Phloretin, an apple phytoalexin, affects the
virulence and fitness of P. brasiliense by interfering with quorum-
sensing” described that biofilm formation, secretion of plant
cell wall-degrading enzymes, and production of acyl–homoserine
lactone (AHL) signaling molecules were significantly inhibited
by exposing P. brasiliense to phloretin, and impaired virulence
mechanisms. The results support that phloretin inhibits Expl
activity. Genomic biology of two unique strains of Dickeya zeae
was described in the article “Genomic and phenotypic biology
of novel strains of D. zeae isolated from pineapple and taro
in Hawaii: insights into genome plasticity, pathogenicity, and
virulence determinants” by Boluk et al.. The analyses revealed
truncated type III and IV secretion systems (T3SS and T4SS) in
the taro strain. Both strains, from pineapple and taro, however,
were pathogenic, lacking the zeamine biosynthesis gene cluster,
a key player in virulence in other Dickeya spescies. In the last
article “Transcriptome analysis revealed overlapping and special
regulatory roles oVf RpoN1 and RpoN2 in motility, virulence,
and growth of Xanthomonas oryzae pv. oryzae” by Yu et al. it
was found that deletion of rpoN1 or rpoN2 in X. oyzae pv. oryzae
led to significant disfunction of bacterial swimming motility,
flagellar assembly, and virulence, and identified 127 overlapping
differentially expressed genes (DEGs) regulated by both RpoN1
and RpoN2.

In conclusion, this special issue compiled research articles
covering comparative and functional genomics analysis of
SRP bacteria. The articles published in this issue added
scientific knowledge to fill information gaps related to
pathogenicity determinants, genetic exchange, and evolution
of this devastating group of pathogens, and enhanced our
ability to combat soft rot diseases that unequivocally impact
food security.
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