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BoGDB: An integrative genomic 
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Brassica oleracea is an important species due to its high economic and 

nutritional value. Moreover, it is an ideal model for studies of morphology 

and genome evolution. In the genomic era, with massive “omics” data being 

generated, a high-efficiency platform is crucial to deepen our understanding 

of this important species. In this study, we developed the B. oleracea Genome 

Database (BoGDB) to consolidate genome, transcriptome, and metabolome 

data of B. oleracea cultivars, providing the first cross-omics platform for 

B. oleracea. In order to make full use of the multi-omics data, BoGDB integrates 

multiple functional modules, including “Gene Search,” “Heatmap,” “Genome 

Browser,” “Genome,” “Tools,” “Metabolic,” and “Variation,” which provides a 

user-friendly platform for genomic and genetic research and molecular design 

breeding of B. oleracea crops. In addition, BoGDB will continue to collect new 

genomic data of B. oleracea and integrate them into BoGDB when higher-

quality genomic data are released.
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Introduction

Brassica oleracea is an economically essential cruciferous species, with about 100 
million tons worldwide production in 2018.1 B. oleracea shows extreme morphological 
diversity, with various crop cultivars such as cabbage (B. oleracea var. capitata), broccoli 
(B. oleracea var. italica), cauliflower (B. oleracea var. botrytis), kale (B. oleracea var. 
acephala), Brussels sprouts (B. oleracea var. gemmifera), and kohlrabi (B. oleracea var. 
gongylodes), which are grown for their leaves, flowers, and stems.

Brassica oleracea cultivars have contributed to human health for hundreds of years and 
are popular for their high nutrition from carotenoids, dietary fibers and vitamins, and 
unique anticancer phytochemicals like indole-3-carbinol and sulforaphane. In addition, 
B. oleracea (CC genome, 2n = 18) is a unique model for evolution studies, as it experienced 
multiple polyploidy events and provides ancestor genomes of the two most important 
Brassica oil crops, B. napus (AACC) and B. carinata (BBCC).

1 http://faostat.fao.org/
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Significant progress has been made in the field of B. oleracea 
genetics and genomics in the last decade. Liu et al. (2014) first 
published the draft genome of cabbage line 02-12, which has 
excellent agronomic traits. In the same year, Parkin et al. (2014) 
published the draft genome of TO1000, a doubled haploid kale-
like variety. The assembly of these two genomes is done by next-
generation genome assembly. Recently, third-generation 
sequencing technology has been used to complete the assembly 
and generate high-quality genomes of cabbage lines with different 
shapes (D134, JZS, and OX-heart), broccoli (HDEM), and 
cauliflower (Korso; Belser et al., 2018; Sun et al., 2019; Cai et al., 
2020; Lv et al., 2020; Guo et al., 2021).

In addition to genome sequencing and assembly, research on 
transcriptomics, proteomics, and metabolomics in B. oleracea has 
revealed the gene expression, protein, and metabolite abundance 
profiles in various varieties (Liu et al., 2014; Parkin et al., 2014; 
Zhao et  al., 2020; Wei et  al., 2021). However, an integrated 
functional genomics database of multiple B. oleracea cultivars, 
enabling users to explore and use relevant omics data conjointly, 
is absent. Although the recently released BRAD V3.0 database 
(Chen et al., 2022) contains genomic data for many cruciferous 
species, there are only two species of B. oleracea, which could not 
satisfy our genomic analysis of B. oleracea. We thus designed the 
first integrative functional genomic database for B. oleracea 
(BoGDB),2 which integrates genome, transcriptome, and 

2 http://www.bogdb.com

metabolome data of B. oleracea, providing a user-friendly platform 
for the study of B. oleracea (Figure 1).

Construction of the BoGDB

Acquisition of genomic, transcriptomic 
and metabolic data

Genome sequences of B. oleracea cultivar 02-12 were 
downloaded from DDBJ/EMBL/GenBank under the accession 
code AOIX00000000. Genome sequences of B. oleracea cultivar 
JZS (PRJCA001832) were downloaded from the Genome 
Warehouse database. Genome sequences of B. oleracea cultivars 
OX-heart 923 (PRJNA546441) and Korso (PRJNA548819) were 
downloaded from the National Center for Biotechnology 
Information (NCBI) database. Genome sequences of B. oleracea 
cultivar HDEM (PRJEB26621) were downloaded from the 
European Nucleotide Archive. Genome sequences of B. oleracea 
cultivars TO1000 were downloaded from the Ensembl Plants. 
Genome sequences of B. oleracea cultivars D134 (CNP0000469) 
were downloaded from the China National GeneBank (CNGB) 
database. Gene expression data (GSE42891) from different tissues 
of line 02-12, generated by next-generation sequencing, were 
acquired from the Gene Expression Omnibus (GEO) database. 
The full-length transcriptome data (CNP0001459) of five different 
organs of D134, obtained using Single-Molecule Real-Time 
(SMRT) sequencing, were downloaded from the CNGB database. 
The expression patterns of genes in response to Fusarium wilt and 

FIGURE 1

The flow diagram showing design and construction of BoGDB.
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clubroot are displayed on BoGDB based on RNA-seq data 
(PRJNA548392, SRP144315) from the NCBI Sequence Read 
Archive. In addition, we  collected cabbage metabolic data, 
including primary and secondary metabolites (Zhao et al., 2020) 
and volatile components (Wei et  al., 2021), into BoGDB. The 
Omics data information in the BoGDB is shown in Table 1.

Brassica oleracea genomes annotation

InterProScan (Finn et al., 2017) was applied to localize large-
scale protein function annotations of the gene-encoded protein 
sequences of seven B. oleracea genomes. The conserved domain 
feature data resources of the protein gene family included in Pfam 
(El-Gebali et  al., 2019) and the hmmerscan command in the 
HMMER software (Finn et al., 2011) were used to identify the 
gene family to which the whole genome protein sequences belong. 
KEGG Mapper (Kanehisa et al., 2021) was used to annotate genes 
in batches to the KEGG pathway and obtained the visualized color 
pathway maps. The BlastKOALA (Kanehisa et  al., 2016) 
annotation tool was used to analyze and obtain the corresponding 
KO annotation of the whole genome protein sequences. Use iTAK 
(Zheng et  al., 2016) software to identify genome-wide 
transcription factors and protein kinases. All comment 
information is stored in tab-separated value TSV files.

Transcriptome data analysis

Use the fastq-dump tool in the sratoolkit to further convert the 
original sequencing data into the standard fastq format. Fastp (Chen 
et  al., 2018) was used for quality control filtering of data. 
Trimmomatic (Bolger et al., 2014) software was used to further filter 

the data that was still not ideal after fastp quality control filtering. 
After the quality control and filtering of the original sequencing data 
were completed, the sequencing data were compared to the 
corresponding genome using STAR (Sahraeian et al., 2011; Au et al., 
2017). Then use RSEM software (Li and Dewey, 2011; Au et al., 2017) 
to construct the quantitative expression of all genes in the reference 
genome and stitch the corresponding expression matrix.

Data integration and website 
construction

This research used Huawei Cloud Linux server as the basic 
environment for database development and deployment. After the 
above-mentioned data was standardized, it was stored in the 
relational database MySQL in the Linux cloud server (Figure 1). 
Then the database was built under the Linux development 
environment and the flask development framework based on the 
Python programming language. The front-end webpage 
development technology of the database is composed of HTML, 
CSS, and JavaScript language, supplemented by the Echarts 
package for data visualization, the Bootstrap front-end template 
development framework that can quickly write webpage modules, 
and the jQuery library that simplifies the JavaScript language. An 
online platform for BLAST sequence similarity retrieval was 
established using SequenceServer software (Priyam et al., 2019). 
Using JBrowse software (Buels et al., 2016) and Nginx reverse 
proxy server to integrate B. oleracea genome data, a high-
performance genome browser was deployed to visually display 
genome sequences and corresponding annotation information. A 
high-performance FTP download station was deployed using 
vsftpd. Finally, in order to make the B. oleracea genomics 
information database accessible to the majority of researchers 

TABLE 1 Omics data information in the BoGDB.

Data type Cultivar Description

Genome 02-12 Genome sequences of round cabbage cultivar 02-12

Genome D134 Genome sequences of round cabbage cultivar D134

Genome JZS Genome sequences of round cabbage cultivar JZS

Genome OX-heart 923 Genome sequences of pointed cabbage cultivar OX-heart 923

Genome Korso Genome sequences of cauliflower cultivar Korso

Genome HDEM Genome sequences of broccoli cultivar HDEM

Genome TO1000 Genome sequences of Chinese kale cultivar TO1000

Transcriptome 02-12 Gene expression data from seven different tissues of cabbage cultivar 02-12

Transcriptome D134 Full-length transcriptome data of five different tissues of cabbage cultivar D134

Transcriptome 96–100, 01–20 RNA-seq data of cabbage resistant cultivar 96–100 and susceptible cultivar 01–20 after 

Fusarium oxysporum f. sp. conglutinans infection

Transcriptome Xiangan336, Jingfeng No.1 RNA-seq data of cabbage resistant cultivar Xiangan336 and susceptible cultivar 

Jingfeng No. 1 after Plasmodiophora brassicae infection

Metabolome DY2A, ZGF1 Metabolic data of primary and secondary metabolites

Metabolome Guanjun, Jiuxing, Lvyu, Jindinghaoyue, Lixin285, Ziguang, 

Xinhonglu, Zijinyu, Tianzi17, Luyizihong265

Metabolic data of volatile components
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FIGURE 2

The homepage of BoGDB. (A) Navigation bar and species atlas. (B) Commonly used tool set. (C) News, citations, and global access.

from the Internet, we  used Gunicorn and Nginx to share the 
developed information database on the Internet.

Utilization of the BoGDB

The homepage of BoGDB

The homepage of BoGDB is mainly divided into 4 main parts: 
navigation bar, species atlas, commonly used tool set, and other 
columns (Figure 2). The navigation bar located at the top of the 
homepage consists of 9 labels: Home, Gene Search, Heatmap, 
Genome Browser, Genome, Tools, Metabolic, Variation, Data 
Access and User Guide (Figure 2A). Below the navigation bar is 
the cultivar atlas. Users can view the cultivar description and 
genome information by clicking on the name below the image 
(Figure 3A). Three commonly used toolkits, Heatmap, Variation 
and KEGG Enrichment, are given below the cultivar atlas 

(Figure 2B). At the bottom of the web page are news, citations, and 
global access (Figure 2C).

The “Gene Search” and “Heatmap” 
modules

In the “gene search” module, users can view the detailed 
information of genes, including the coding sequence (CDS), 
peptide sequence, functional annotation information, and 
expression data by entering the ID of a gene of interest (GOI) in 
the ‘Gene ID Input’ area (Figures  3B–D). All sequences can 
be  downloaded by choosing “Copy Cds/Pep Sequence to the 
clipboard.” The dynamic, editable heatmap generated from the 
differential expression analysis in cabbage cultivars 02-12 and 
D134 can be viewed when uploading the GOI list (Figure 3E). 
Moreover, it allows users to export the visualizations and the 
transcriptome profile matrix data.

https://doi.org/10.3389/fpls.2022.852291
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The “Genome Browser” and “Genome” 
modules

The ‘Genome Browser’ module is an integrated tool for 
visualizing genomic data, which provides access to the gene 
structures, gene locations, as well as genomic and coding 
sequences (Figures  4A,B). Additionally, alternatively, spliced 
isoforms can be viewed based on an alignment with the full-length 
transcriptome data of D134. The ‘Genome’ module contains 
‘BLAST’, ‘JBrowse’, ‘Gene Search’, and ‘Download’ and provides an 
overview of the seven cultivars and their reference genome 
assembly information.

The “Tools” module

The “Tools” module is equipped with several popular 
bioinformatic tools for “BLAST,’” “Gene Family Search,” 
“Transcription Factor Search,” “Protein Kinase Search,” “Flanking 
Sequence Finder” “GO Enrichment,” and “KEGG Enrichment.” 

The “BLAST” tool supports pasting query DNA or protein 
sequences and dragging and dropping of fasta files; then, users can 
conduct a homology search in the preformatted genome database. 
“Gene Family Search,” “Transcription Factor Search,” and “Protein 
Kinase Search” are three search tools for searching gene family, 
transcription factor, and protein kinase by entering gene family 
name/PFAM ID, transcription factor name, and protein kinase 
name, respectively. Moreover, the ‘Flanking Sequence Finder’ is 
designed to assist users in finding the upstream and downstream 
sequence of GOIs, the length of which can be set up optionally. 
The ‘GO Enrichment’ and ‘KEGG Enrichment’ tools can identify 
the enriched or depleted Gene Ontology (GO) /KEGG Ontology 
(KO) terms within a query gene list and their corresponding 
p-values (Figures 4C–E).

The “Metabolic” and “Variation” modules

The ‘metabolic’ module displays the information of primary 
and secondary metabolites and volatile components such as 

A C

D

E

B

FIGURE 3

The “Gene search” and “Heatmap” modules. (A) The cultivar introduction and genome information. (B–D) The “Gene Search” module provides 
detailed gene information, including CDS, peptide sequence, annotation, and expression. (E) The dynamic, editable heatmap.
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FIGURE 4

The “Genome Browser” module and GO/KEGG tools. (A,B) The “Genome Browser” module provides genomic data, including gene structure, gene 
location, and genome and transcript sequences. (C,D) The “GO Enrichment” shows enriched GO terms within a query gene list. (E) The “KEGG 
Enrichment” shows enriched KO terms within a query gene list.

aldehydes, hydrocarbons, esters, alcohols, and ketones 
(Figure  5A). Users can easily obtain the genetic variations of 
desired genes with the ‘variation’ module. It displays the genetic 
loci of variations across the 254 B. oleracea accessions based on 
resequencing data from the NCBI database. The raw reads were 
aligned and mapped to the D134 reference genome using BWA 
and variants were called using BCFtools. Low-quality variants 
‘QUAL <20 and DP < 5’ were removed using BCFtools filter. In 
addition, variants were annotated using snpEff. In total, 
we identified 2,818,621 single nucleotide polymorphisms (SNPs) 
and 396,413 insertions/deletions (InDels) using the D134 genome 
as a reference (Figures 5B,C).

A case study for the application of 
BoGDB

Finally, we  present an ATP-binding cassette (ABC) 
transporter gene family analysis using the BoGDB platform 
(Figure 5D). ABC transporters are a large and ancient family of 
transmembrane transport proteins that participate in the 
transport and accumulation of various substances, detoxification 
of harmful substances, stoma regulation, plant defense, and 
other physiological activities in the organism. A total of 162 
ABC transporter genes were identified from the assembled 

genome of cabbage D134 by searching the PFAM ID ‘PF00005’ 
in the ‘Gene Family Search’ module. This result was consistent 
with the protein annotation information. A maximum-
likelihood phylogenetic tree was constructed based on the ABC 
transporter protein sequences of B. oleracea and Arabidopsis 
thaliana using the FastTree program. The results show that the 
ABC transporter genes had been divided into eight subfamilies 
(A-H), with ABCG transporters constituting the largest 
subfamily. Moreover, we analyzed the expression differences of 
the ABC transporter genes of cabbage in different tissues in 
response to fusarium wilt and clubroot and created a heatmap. 
We found that some ABC transporter genes are differentially 
expressed related to disease resistance in cabbage. For instance, 
the expression of Boc07g01045 and Boc03g04460 was 
significantly upregulated in susceptible tissues after inoculation 
with Fusarium oxysporum f. sp. Conglutinans, and 
Plasmodiophora brassicae, respectively.

Conclusion and future developments

Brassica oleracea is a unique species due to its high 
economic and nutritional value. Moreover, it is an ideal model 
for studies of morphology and genome evolution. In the 
genomic era, with massive “omics” data being generated, a 
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high-efficiency and user-friendly platform is crucial to deepen 
our understanding of this important species. In this study, 
we developed BoGDB to consolidate genome, transcriptome, 
and metabolome data of B. oleracea cultivars, providing the 
first cross-omics platform for B. oleracea, which will 

significantly boost genomic and genetic research and 
molecular design breeding of these essential vegetable crops. 
In addition, BoGDB will continue to collect new genomic data 
of B. oleracea and integrate them into BoGDB when higher-
quality genomic data are released.

A

D

B

C

FIGURE 5

“Metabolic” and “Variation” modules and a case study for the application of BoGDB. (A) The “Metabolic” module presents the information of 
primary and secondary metabolites and volatile components. (B) The “Variation” module displays the genetic loci of SNPs and InDels across the 
254 B. oleracea accessions. (C) Detailed information of variation sites. (D) A case study for the application of BoGDB.
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