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Super hybrid rice genotypes have transformed the rate of genetic yield gain primarily due
to intersubspecific heterosis, although the physiological basis underpinning this yield
transformation has not been well quantified. We assessed the radiation use efficiency
(RUE) and nitrogen use efficiency (NUE) of novel hybrid rice genotypes under four
management practices representative of rice cropping systems in China. Y-liangyou
900 (YLY900), a new super hybrid rice widely adopted in China, was examined in field
experiments conducted in Jingzhou and Suizhou, Hubei Province, China, from 2017
to 2020. Four management practices were conducted: nil fertilizer (CK), conventional
farmer practice (FP), optimized cultivation with reduced nitrogen (OPT−N), and optimized
cultivation with increased nitrogen (OPT+N). Yield differences across the treatment
regimens were significant (p < 0.05). Grain yield of OPT+N in Jingzhou and Suizhou were
11 and 12 t ha−1, which was 14 and 27% greater than yields obtained under OPT−N

and FP, respectively. Relative to OPT−N and FP, OPT+N had greater panicle numbers (9
and 18%), spikelets per panicle (7 and 12%), spikelets per unit area (17 and 32%), and
total dry weight (9 and 19%). The average RUE of OPT+N was 2.7 g MJ−1, which was
5 and 9% greater than that of OPT−N and FP, respectively, due to higher intercepted
photosynthetically active radiation (IPAR). The agronomic efficiency of applied N (AEN) of
OPT+N was 17 kg grain kg−1 N, which was 9 and 68% higher than that of OPT−N and
FP. These results show that close correlations exist between yield and both the panicles
number (R2 = 0.91) and spikelets per panicle (R2 = 0.83) in OPT+N. We conclude that
grain yields of OPT+N were associated with greater IPAR, RUE, and total dry matter.
We suggest that integrated cropping systems management practices are conducive
to higher grain yield and resource use efficiency through expansion of sink potential in
super hybrid rice production.
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INTRODUCTION

Rice represents a staple food for nearly two-thirds of the Chinese
population (Fahad et al., 2021). To match the rising dietary needs
of China in the 21st century, total grain production must rise to
at least 7 × 105 t per year (Zhu et al., 2010). Assuming that total
global arable productive land used for rice production remains
unchanged (Faridvand et al., 2021; Raza et al., 2021; Rezaei-
Chiyaneh et al., 2021a,b), intensification of rice yields must be
achieved to ensure food security. Such intensification must occur
in sustainable, profitable, and socially-acceptable ways, without
degrading natural resources, causing excessive nutrient losses
or eutrophication, loss of biodiversity, or increasing greenhouse
gas emissions (Alcock et al., 2015; Liu et al., 2020a; Harrison
et al., 2021). It is also likely that climate change will incite more
frequent extreme events such as droughts and flash flooding,
which in many regions will seriously challenge the consistency of
agricultural productivity from year to year (Harrison et al., 2011,
2012a,b; Phelan et al., 2015). While the climate crisis will have
global implications (Harrison, 2021), the Arctic, Africa, Australia,
small islands, and Asian megadeltas are likely to be among the
most severely impacted by increasing frequencies of extreme
climatic events.

In 1996, a program for breeding super hybrid rice was
established by the Ministry of Agriculture and Rural Affairs of the
People’s Republic of China to meet the burgeoning food demand
of the nation (Yuan, 2018). By 2019, 132 rice genotypes had
met the criteria of super rice cultivars; they were defined as elite
cultivars with high yield potential, larger sink capacity, higher
photosynthetic rate, stronger and more vigorous root systems,
and greater dry matter production (Ai et al., 2011). Yield gain
over the time was clear: in 2000, the cultivar Liangyoupeijiu
yielded 10.6 t ha−1; in 2004, Y-liangyou 1 attained 12.1 t ha−1;
in 2011, Y-liangyou two yielded 13.9 t ha−1; in 2014, Y-liangyou
900 reached 15.4 t ha−1; and in 2018, Xiangliangyou 900 smashed
the world record, reaching a yield of 17 t ha−1 (Ma and
Yuan, 2015; Yuan, 2017). China’s research and development of
rice with superior yields have won global accolades. However,
continual genetic yield gains and improvement of resource use
efficiency are paramount, if the demand of the growing global
population is to be sustained. While much research has been done
on individual agronomic interventions (e.g. effects of fertilizer
treatments on yields), there is much less systems research that
integrates and assesses the benefits of multiple management
practices across multiple metrics (e.g. Harrison et al., 2016). We
address this gap in the present paper.

At the time of writing, the rice cropping area in China
accounts for 20% of the world’s rice plantation, while associated
N fertilizer usage accounts for 37% of global rice N use
(Liu et al., 2009). Average N application rates in Chinese
rice cropping systems of 180 kg ha−1 are 75% higher than
fertilization rates used elsewhere (Zhou et al., 2010). To achieve
higher yields, farmers generally adopt a “more fertilizer and
much water” management practice, in which more nitrogen
fertilizer is often applied in the early growth stages, while the
importance of N for the later crop development stages was
largely ignored. Supraoptimal N fertilizer application during
the early crop life cycle not only inhibits potential yield and

nitrogen use efficiency (NUE) but also increases the risk of
water waste and environmental pollution (Adeyemi et al.,
2020; Diatta et al., 2020). Excessive N fertilizer application
may result in N losses through many avenues, including N
leaching, runoff in surface water, and potent greenhouse gas
emissions, including nitrous oxide (Rawnsley et al., 2019;
Christie et al., 2020). When applied in early crop development,
excessive N fertilizer stimulates tillering, resulting in dense
rice canopies with reduced ventilation and light penetration
and, thus, reduced solar radiation interception at lower canopy
layers and increased incidence of pest and disease (Zhang
and Gong, 2014; Liu et al., 2019a). The culmination of these
factors tends to severely constrain potential yields (Harrison
et al., 2014a). Conducting late-season N fertilization maintains
the photosynthetic capacity of younger rice leaves prolongs
green area duration, improves solar radiation interception, and
increases dry matter accumulation, these factors typically lead to
greater rice yields (Fu et al., 2019).

Plant density is a key management tool enabling manipulation
of crop canopies, physiological activity, fertilizer uptake and use,
weed control, and crop yield (Harrison et al., 2012a,b). Planting
density may also influence phenology in some contexts (Ibrahim
et al., 2018). In recent years, super hybrid rice cultivation has
gravitated toward lower plant populations to enable greater yields
(Yuan, 2017). Although rice crops with lower plant density are
beneficial to individual plant growth, in some contexts, this may
lead to insufficient panicle numbers and lower yields (Yang et al.,
2009). Relatively dense planting can optimize the population
structure, increase radiation interception and panicle numbers,
leading to greater dry matter, thus improving yield. Dense plant
densities can also improve light interception in the early stage
of rice, increasing water use efficiency, light interception, and N
fertilizer use efficiency (Ibrahim et al., 2019; Liu et al., 2020b).

With increasing water scarcity, contemporary research has
transitioned toward the investigation of systematic water-saving
management options for rice, such as alternating wet and dry and
intermittent irrigation (Pan et al., 2017; Liu et al., 2021). These
techniques have been shown to have favorable effects on rice
growth and development as well as yield formation. Therefore,
optimization of management by the interaction of environment
and genotype increases the likelihood of reaching yield potential
and maximum resource use efficiency (Harrison et al., 2017;
Ibrahim et al., 2019; Liu et al., 2020c).

To improve the resource use efficiency of rice, previous
research has investigated integrated management techniques of
high-yielding genotypes, including effects of cultivation (Liu
et al., 2009; Harrison et al., 2014b; Shah et al., 2017a,b). For
example, N management techniques combining N fertilizer
application limit soil fertility and precision and field nutrient
management techniques have been examined (Liu et al., 2009;
Shah et al., 2021). Soil water management, such as alternating
wet and dry, intermittent wetting, and controlled irrigation,
can significantly improve water use efficiency while promoting
rice growth, rice development, and yield formation (Harrison
et al., 2014b; Liu et al., 2020c). Variation in phenology is
also important since crop development determines the life
cycle duration, flowering time, and growing season duration
(Liu et al., 2020d).
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As for most agronomic experiments, field experiments
tend to be limited to strategically planned management
events that, once passed, are cemented in time and can no
longer be changed. Outcomes from such strategic decisions
have ensuing implications for growth for the remainder of
the crop life cycle (Harrison et al., 2012a,b). For example,
although increasing N fertilizer improves rice yield within a
certain range, the efficiency of N fertilizer decreases above
a certain threshold of N fertilization. Similarly, increasing
plant density can improve panicle number, but excessive
planting densities stifle light interception and encourage
pest and disease infection, as mentioned above. Moreover,
excessive or deficient water availability affects plant growth
and development and, potentially, rice yield (Peng et al.,
2002; Zhou et al., 2010). These insights suggest that holistic,
integrated, and strategic consideration of multifaceted
management factors such as N fertilizer, transplanting
density, and soil moisture are conducive to greater resource
use efficiency and yield potential of modern rice hybrids:
the highest yields can only be attained with careful and
deliberate programming of crop management throughout the
crop life cycle.

To improve yields through resource-use efficiency gains,
here we pioneer and test novel and integrated cropping
systems practices. To address this aim, we conducted a field
experiment using Y-liangyou 900 (YLY900), the representative
high-yield super hybrid rice variety in Jingzhou and Suizhou,
China, from 2017 to 2020. We aimed to (1) compare
differences in radiation use efficiency (RUE), nitrogen use
efficiency (NUE), growth, and grain yield of super hybrid
rice under four representative management systems and (2)
elicit relationships between NUE and RUE with dry matter
accumulation of grain yield in super hybrid rice to better
understand the reasons of high yield and resource use efficiency
of super hybrid rice.

MATERIALS AND METHODS

Study Site
Field experiments were conducted at the experimental farm of
Yangtze University (112◦31′E, 30◦21′N) in Jingzhou from 2017
to 2020 and in Suizhou (113◦35′E, 28◦39′N) from 2017 to 2019,
Hubei Province, China. Daily maximum temperatures were 38,
38, 38, and 37◦C and the daily minimum temperatures were
16, 15, 18, and 16◦C. Total cumulative solar radiation during
crop growth duration was 1,911, 2,124, 2,168, and 1,807 MJ
m−2 in 2017, 2018, 2019, and 2020 in Jingzhou (Supplementary
Figure 1), respectively. Daily maximum temperature, daily
minimum temperature, and total solar radiation during the rice
growth duration in 2017 were 38, 15◦C, and 2,025 MJ m−2; in
2018, were 38, 12◦C, and 2,221 MJ m−2; and in 2019, 39, 13◦C,
and 2,102 MJ m−2 in Suizhou, respectively (Supplementary
Figure 2). The average maximum temperature in Suizhou was
0.8–1.4◦C higher, while the minimum temperature was 2.4–3.4◦C
lower than that in Jingzhou. Total solar radiation in Suizhou was
7% higher than that in Jingzhou.

Test Material
Y-liangyou 900, super hybrid rice with Y58S (♀) and R900 (♂),
was used in this study. YLY900 is widely planted in southern
China and is recommended by the China National Hybrid Rice
Research and Development Center in China.

Experimental Design and Site Details
Soil samples were taken from the upper 20 cm of the soil, with soil
property data averaged across the 4 years. The soil in Jingzhou
was a calcareous alluvial having pH 6.8, 18.5 g kg−1 organic
matter, 110.5 mg kg−1 alkali-hydrolyzable N, 25.0 mg kg−1

available P, and 105.5 mg kg−1 available K. The soil in Suizhou
was clay with pH 6.52, 20.3 g kg−1 organic matter, 135 mg kg−1

alkali-hydrolyzable N, 27.2 mg kg−1 available P, and 145.5 mg
kg−1 available K.

Pregerminated seeds were sown in a seedbed. Seedlings were
transplanted between 28 and 32 days after planting to field plots
with two seedlings per hill. The transplantation dates were June 3,
2017, June 1, 2018, June 10, 2019, and June 10, 2020, in Jingzhou;
the transplantation dates were May 20, 2017, May 28, 2018, and
May 29, 2019, in Suizhou.

Experiments were conducted for four continuous years in
the two sites using four treatment regimens (Table 1). The
total N applied in the four treatments in Jingzhou was 0 kg
N ha−1 [no fertilizer (CK)], 210 kg N ha−1 [conventional
farmer practice (FP)], 195 kg N ha−1 [optimized cultivation with
reduced nitrogen compared to FP (OPT−N)], and 270 kg N ha−1

[optimized cultivation with increased nitrogen compared to FP
(OPT+N)]; in Suizhou, we applied 0 kg N ha−1 (CK), 250 kg
N ha−1 (FP), 210 kg N ha−1 (OPT−N), and 270 kg N ha−1

(OPT+N). Urea, potassium chloride, as well as superphosphate
and zinc sulfate, were also used. Fertilizer N applied relative to
phenology was also varied for each treatment: for FP, 70% was
applied a basal treatment and 30% at tillering; under OPT−N,
50% was applied as a basal treatment, 20% at tillering, and
30% at panicle initiation (PI); under OPT+N , N application at
basic, midtillering, PI, and topdressing phases were 50, 20, 20,
and 10%, respectively. Application of phosphate fertilizer for all
the treatments was applied in one time as a basal treatment
and the potassium fertilizer was applied in one time under FP,
two applications of 50% each for a basal treatment, and PI
under OPT−N and OPT+N . Additional treatments are shown in
Table 1.

All the plots were flooded for 5 days after transplanting
and continuously submerged with shallow water until 5 days
before PI. Plots were then drained for 5 days, irrigated at PI,
and continuously flooded thereafter until the start of flowering.
Then, the combined shallow water depth with wetting and
drying (SWD) approach (Qing et al., 2013) was followed in
all the treatments except in FP, which did not receive any
irrigation after flowering. For treatments subject to SWD water
management, fields were irrigated to a depth of 3.0 cm, allowed
to dry, and then reirrigated to a depth of 3.0 cm before
any visible cracks developed on the soil surface. Insect and
disease infestation were chemically controlled throughout the
crop growth cycle.
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TABLE 1 | Treatments imposed in 2017, 2018, 2019, and 2020 at the sites of Jingzhou and Suizhou.

Site Treatment Fertilizer N splits (kg N ha−1) Spacing (cm) Water management

N–P–K–Zn–Si (B-MT-PI-FL)

JZ CK 0–0–0–0–0 30 × 18 Continuous flooding; shallow wetting and drying (SWD)

FP 210–100–220–0 147–63–0–0 30 × 18 Continuous flooding; field drained after flowering

OPT−N 195–100–180–5–0 97.5–39–58.5 30 × 16 Continuous flooding; SWD; Dehydrate 1 week before harvest

OPT+N 270–120–240–5–150 135–54–54–27 30 × 16 Continuous flooding; SWD; Dehydrate 1 week before harvest

SZ CK 0–0–0–0–0 20 × 20 Continuous flooding; SWD

FP 250–125–250 175–75–0–0 20 × 20 Continuous flooding; field drained after flowering

OPT−N 210–105–210–5–0 105–42–63–0 20 × 16.7 Continuous flooding; SWD; Dehydrate 1 week before harvest

OPT+N 270–135–270–5–150 135–54–54–27 20 × 16.7 Continuous flooding; SWD; Dehydrate 1 week before harvest

B, basic fertilizer; MT, midtillering; PI, panicle initiation; FL, flowering.

This experimental design was consistently applied across
six experiments over 4 years. Daily minimum and maximum
temperature and solar radiation were recorded using a Vantage
Pro2 Weather Station (Davis Instruments Corporation, Hayward,
CA, United States) for all the experiments across 4 years.

Metrics Measured and Calculated
Green leaf area was measured with a leaf area meter (LI-3000,
LI-COR, Lincoln, NE, United States) at flowering, and leaf area
index (LAI) was calculated as the dividend of leaf area and
ground area. Canopy light interception was measured between
1,100 and 1,300 at middle tillering (MT), PI, and physiological
maturity (MA) using a SunScan Canopy Analysis System (Delta-
T Devices Ltd., Burwell, Cambridge, United Kingdom). In each
plot, light intensity at the base of the canopy was measured by
placing the light bar halfway between two rows and proximal to
the water surface. Three incoming light intensity readings were
undertaken each within rows and between rows. Canopy light
interception was calculated as the percentage of incoming light
intensity that was intercepted by the canopy [100 × (incoming
light intensity less light intensity inside canopy)/incoming light
intensity]. Intercepted photosynthetically active radiation (IPAR)
was calculated as 0.45 of total solar radiation above the canopy
(Meek et al., 1984). IPAR during each growth stage was calculated
using the average canopy light interception and accumulated
seasonal incoming solar radiation during this growth stage
[0.5 × (canopy light interception at the beginning of the growth
stage + canopy light interception at the end of the growth
stage)/accumulated incoming radiation during the growth stage].
IPAR across the entire growing season was calculated as the sum
of IPAR during each growth stage. RUE was calculated as the ratio
of total aboveground dry weight to cumulative IPAR.

Six plants were measured with three replications at flowering
to determine the average tiller number. Sampled plants were
divided into stem sheath, leaf, and spike before being oven dried
at 105◦C for 30 min and then dried at 70◦C until constant weight,
weighed, and ground into a powder with a grinder. Total plant
tissue N content was determined using a concentrated sulfuric
acid-hydrogen peroxide (H2SO4–H2O2) disinfection continuous
flow analyzer. Nitrogen (N) concentrations in stems, leaves, rachi,
and spikelets were determined using micro-Kjeldahl digestion,
distillation, and titration (Bremmer and Mulvaney, 1982). Total
N content in each plant part was calculated as the product of

tissue N concentration and corresponding dry weight. The N
content of all the plant parts was cumulated to obtain the total
N content per plant. Nitrogen fertilizer efficiency indices were
calculated as follows:

Partial factor productivity of applied N (PFPN) = GY+N/FN
(1)

Agronomic efficiency of applied N (AEN) =

(GY+N − GY−N) /FN (2)

Crop recovery efficiency of applied N (REN) (%) =

(TN+N − TN−N)
/

FN× 100 (3)

Where TN+N = total aboveground plant N accumulation in
the plot that received N fertilizer; TN−N = total aboveground
plant N accumulation in the zero-N control; FN, N fertilizer
applied; GY+N, grain yield in the plot that received N fertilizer;
and GY−N, grain yield in the zero-N control.

Destructive sampling of six hills from the inner rows from
each plot was carried out at midtillering (MT), PI, flowering
(FL), and MA. Plant samples were separated into green leaf
blades, stems (including sheath), and panicles (at flowering and
MA). Separated plant parts were oven-dried at 70◦C until a
constant weight was obtained. The panicle number for each hill
was calculated to determine the panicle number per m2. Panicles
were hand threshed; filled spikelets were separated from unfilled
spikelets by submerging in tap water. Three 30-g subsamples
of filled spikelets and three 3-g subsamples of unfilled spikelets
were taken to enumerate spikelet numbers. Dry weights of
the rachis and spikelets were determined after oven drying at
70◦C to a constant weight. Total aboveground dry weight was
calculated as the total dry matter of straw, rachis, and filled
and unfilled spikelets. Spikelets per panicle and grain filling
percentage (100 × filled spikelet number/total spikelet number)
were also calculated. Grain yield was determined from a 5-m2

area in each plot and standardized to a moisture content of 0.14 g
H2O g−1.

Data Analysis
Data were analyzed using ANOVA (Statistix 8, Analytical
Software, Tallahassee, FL, United States); genotypic means were
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TABLE 2 | Grain yield (GY) and yield components at Jingzhou.

Year (Y) Treatment (T) GY (t ha−1) P (m2) SP GF (%) GW (mg) HI (%)

2017 CK 6.93 d 180 d 191.0 d 85.4 a 22.2 a 51.4 a

FP 9.47 c 227 c 219.8 c 82.9 b 22.3 a 47.4 b

OPT−N 10.07 b 233 b 230.1 b 80.7 c 21.8 b 47.9 b

OPT+N 11.15 a 256 a 244.3 a 78.2 d 21.7 b 46.5 c

Mean 9.4 224 221.3 81.8 22.0 48.3

2018 CK 7.01 d 221 c 191.3 c 84.5 a 20.9 b 46.8 b

FP 9.29 c 245 b 218.7 b 82.6 bc 21.4 a 50.5 a

OPT−N 10.10 b 258 ab 226.6 b 82.5 c 21.7 a 50.9 a

OPT+N 11.22 a 277 a 241.9 a 82.4 ab 21.5 a 49.5 a

Mean 9.4 250 219.6 83.0 21.4 49.4

2019 CK 6.27 d 190 c 196.8 d 81.1 a 20.2 b 45.8 b

FP 7.57 c 230 b 241.1 c 75.2 c 20.4 ab 46.9 ab

OPT−N 9.37 b 263 a 259.8 b 76.6 c 20.9 4 a 45.6 b

OPT+N 10.97 a 271 a 272.1 a 79.3 b 20.4 ab 48.5 a

Mean 8.5 238 242.5 78.0 20.5 46.7

2020 CK 6.16 d 168 d 246.7 c 79.6 a 19.3 c 47.3 a

FP 8.17 c 216 c 263.2 bc 74.3 b 20.0 b 45.5 c

OPT−N 9.11 b 231 b 276.4 ab 75.1 b 20.7 a 46.3 b

OPT+N 10.85 a 275 a 306.7 a 74.3 b 20.6 a 45.7 c

Mean 8.6 222 273.3 75.8 20.1 46.2

Analysis of variance Year (Y) 0.97 19** 98.45** 22.37** 54.01** 9.51**

Treatment (T) 147.73** 59** 13.25** 1.08 4.03* 0.04

Y × T 16.27** 12** 4.15** 6.05** 10.15** 12.84**

P, panicles; SP, spikelets per panicle; GF, grain filling; GW, grain weight; HI, harvest index; ns, not significant. Lowercase letters within columns indicate significant
differences at P < 0.05; *P < 0.05; **P < 0.01.

TABLE 3 | Yield and yield components from 2017, 2018, and 2019 in Suizhou.

Year (Y) Treatment (T) GY (t ha−1) P (m2) SP GF (%) GW (mg) HI (%)

2017 CK 8.14 d 177 d 201.5 d 88.2 a 22.8 a 51.3 a

FP 9.36 c 231 c 226.9 c 86.7 b 22.5 b 48.4 b

OPT−N 10.65 b 240 b 235.9 b 86.2 b 22.7 a 47.4 b

OPT+N 12.23 a 270 a 260.3 a 84.5 c 22.5 b 46.3 c

Mean 10.7 238 206.8 86.4 22.6 48.4

2018 CK 7.77 d 225 d 200.6 d 83.8 a 20.9 d 50.4 a

FP 8.99 c 242 c 217.1 c 83.7 a 21.1 c 49.8 b

OPT−N 10.00 b 255 b 226.0 b 83.3 a 21.6 b 47.8 c

OPT+N 11.08 a 273 a 235.8 a 82.6 b 21.8 a 47.0 d

Mean 9.5 249 219.9 83.4 21.3 48.8

2019 CK 7.70 d 225 d 235.7 c 78.2 a 21.8 a 47.3 c

FP 9.63 c 263 c 242.6 bc 75.8 b 21.6 ab 47.9 b

OPT−N 10.07 b 312 b 251.6 b 76.2 ab 21.4 ab 50.2 a

OPT+N 11.60 a 330 a 265.5 a 76.3 ab 21.1 b 47.1 c

Mean 9.75 283 248.9 76.6 21.5 48.1

Analysis of variance Year (Y) 15.64** 7** 8.74** 378.68** 61.96** 0.42

Treatment (T) 53.90** 15** 14.53** 0.41 0.12 5.28**

Y × T 88.90** 24** 769** 3.03* 11.44** 14.29**

P, panicles; SP, spikelets per panicle; GF, grain-filling; GW, grain weight; HI, harvest index; ns, not significant. Different lowercase letters within columns indicate significant
differences at P < 0.05; *P < 0.05; **P < 0.01.
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TABLE 4 | Leaf area index (LAI) at flowering (FL), aboveground total dry weight (TDW), radiation use efficiency (RUE), and related parameters at maturity for four
treatments at Jingzhou.

Year (Y) Treatment (T) LAI at FL IR (MJ m−2) IPAR (MJ m−2) LIP (%) TDW (g m−2) RUE (g MJ−1)

2017 CK 3.49 c 1,820 487.7 d 78.4 d 1,153.5 d 2.37 d

FP 6.45 b 1,836 639.0 c 81.5 c 1,580.0 c 2.47 c

OPT−N 6.60 b 1,836 661.8 b 84.5 b 1,675.2 b 2.53 b

OPT+N 7.08 a 1,847 722.3 a 87.4 a 1,876.6 a 2.60 a

Mean 5.9 1,835 627.7 83 1571.3 2.49

2018 CK 3.71 c 1,753 723.7 d 68.5 d 1,516.0 d 2.09 c

FP 5.90 b 1,755 788.1 c 76.8 c 2,013.8 c 2.56 b

OPT−N 6.63 b 1,795 822.4 b 84.3 b 2,134.8 b 2.60 ab

OPT+N 8.49 a 1,847 853.3 a 87.9 a 2,288.6 a 2.68 a

Mean 6.18 1,509 796.9 79.4 1,988.3 2.48

2019 CK 2.52 d 1,943 554.3 c 51.1 d 1,201.4 d 2.17 c

FP 5.52 c 1,962 743.7 b 75.2 c 2,039.0 c 2.74 b

OPT−N 7.34 b 1,987 764.2 ab 82.8 b 2,155.5 b 2.82 a

OPT+N 8.66 a 2,163 783.3 a 86.2 a 2,240.5 a 2.86 a

Mean 6.01 2,000 711.4 73.8 1,909.1 2.65

2020 CK 2.72 c 1,630 533.1 d 59.0 d 1,193.2 d 2.24 c

FP 4.79 b 1,716 650.2 c 77.6 c 1,700.0 c 2.61 b

OPT−N 5.78 a 1,741 737.0 b 83.5 b 1,993.2 b 2.70 ab

OPT+N 6.10 a 1,763 770.4 a 86.5 a 2,147.5 a 2.79 a

Mean 4.85 1,711 672.6 76.7 1,758.5 2.59

Analysis of variance Year (Y) 1.82* – 8.48** 5.88* 3.22* 7.85**

Treatment (T) 12.33** – 20.55** 12.54** 51.21** 61.77**

Y × T 21.01* – 55.88** 28.20** 11.24** 32.34**

IR, total solar radiation; IPAR, intercepted photosynthetically active radiation; LIP, light interception percentage; ns, not significant. Different lowercase letters within columns
indicate significant differences at P < 0.05; *P < 0.05; **P < 0.01.

TABLE 5 | Leaf area index at FL, aboveground TDW, RUE, and related parameters at maturity for four treatments at Suizhou.

Year (Y) Treatment (T) LAI at FL IR (MJ m−2) IPAR (MJ m−2) LIP (%) TDW (g m−2) RUE (g MJ−1)

2017 CK 3.76 c 1,982 722 c 72 c 1,629 d 2.2 c

FP 6.31 b 2,062 879 b 85 b 2,043 c 2.3 c

OPT−N 7 a 2,104 929 a 88 a 2,261 c 2.4 b

OPT+N 7.63 a 2,119 948 a 89 a 2,461 a 2.6 a

Mean 6.2 2,067 872 84 2,099 2.4

2018 CK 3.82 c 2,009 725 c 74 c 1,538 c 2.1 c

FP 6.88 b 2,131 819 b 84 b 2,073 b 2.5 b

OPT−N 7.14 b 2,036 848 ab 85 b 2,133 b 2.5 b

OPT+N 8.14 a 2,064.1 922.8 a 89.5 a 2,421.1 a 2.62 a

Mean 6.5 2,060 829 86 2,041 2.4

2019 CK 6.68 d 1,979 731 c 77 c 1,441 d 1.9 c

FP 7.29 c 2,036 856 b 84 b 1,823 c 2.1 c

OPT−N 8.29 b 2,131 877 b 85 b 2,174.2 b 2.4 b

OPT+N 10.93 a 2,175 899 a 90 a 2,348 a 2.6 a

Mean 8.3 2,080 841 84 1,946 2.3

Analysis of variance Year (Y) 11.81* – 0 0 0 3.8*

Treatment (T) 2.39** – 120** 25** 250** 24.1**

Y × T 15.27* – 5** 9** 4** 20.6**

IR, total solar radiation; IPAR, intercepted photosynthetically active radiation; LIP, light interception percentage; ns, not significant. Different lowercase letters within columns
indicate significant differences at P < 0.05; *P < 0.05; **P < 0.01.
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TABLE 6 | Agronomic efficiency of applied N (AEN), partial factor productivity of applied N (PFPN), and crop recovery efficiency of applied N (REN) in
Jingzhou and Suizhou.

Year (Y) Treatment (T) AEN (kg/kg) PFPN (kg/kg) REN (%)

Jingzhou Suizhou Jingzhou Suizhou Jingzhou Suizhou

2017 FP 12.12 c 18.88 b 45.11 b 59.56 a 50.98 a 66.09 a

OPT−N 16.11 a 22.95 a 51.64 a 60.51 a 57.46 b 63.39 b

OPT+N 15.64 a 22.76 a 41.30 c 51.48 b 39.60 c 22.65 c

Mean 14.62 21.53 46.02 57.18 49.35 50.71

2018 FP 10.83 c 4.89 c 41.54 c 37.37 c 31.18 c 59.45 c

OPT−N 15.81 b 11.98 b 51.79 a 50.72 a 54.19 b 90.89 b

OPT+N 17.56 a 15.16 a 44.23 b 45.29 b 66.63 a 95.22 a

Mean 14.73 10.68 45.85 44.46 50.67 81.85

2019 FP 9.19 c 4.90 c 36.03 c 35.90 c 34.24 c 61.23 c

OPT−N 15.90 b 10.66 b 48.03 a 47.64 a 51.16 b 109.13 b

OPT+N 17.41 a 12.29 a 40.62 b 41.05 b 65.48 a 123.14 a

Mean 14.17 9.28 41.56 41.53 50.29 97.83

2020 FP 9.56 c – 38.89 c – 29.15 c –

OPT−N 15.11 b – 46.70 a – 41.86 b –

OPT+N 17.38 a – 40.20 b – 48.73 a –

Mean 14.02 – 41.93 – 33.91 –

Analysis of variance Year (Y) 0.25 140.42** 15.03** 268.94** 2.33 8.88**

Treatment (T) 55.36 7.52** 81.00** 16.13** 11.02 2.69

Y × T 12.83** 15.26** 24.02** 14.22** 24.13** 128.07**

Different lowercase letters within columns indicate significant differences at P < 0.05; *P < 0.05; **P < 0.01. ns, not significant.

compared using least significant differences (LSDs) with a
significance level of 0.05 unless stated otherwise.

RESULTS

Grain Yield and Yield Components
Grain yields differed significantly between treatments in Jingzhou
and Suizhou. Treatment yields at both the sites were ranked in
OPT+N > OPT−N > FP > CK (Tables 2, 3). Average yields across
treatments at Jingzhou of OPT+N , OPT−N, FP, and CK were 11,
10, 9, and 7 t ha−1, respectively. Average yields across 3 years at
Suizhou of OPT+N , OPT−N, FP, and CK were 12, 10, 9, and 8 t
ha−1, respectively.

Panicle number and spikelets per panicle were the highest
under OPT+N , while there were significant differences across
treatment systems at the two sites. Grain yields of treatments at
both the sites were ranked in OPT+N > OPT−N > FP > CK.
The average panicles number of OPT+N was the highest (279),
which was around 9 and 18% higher than that of OPT−N and FP,
respectively. Average spikelets per panicle of OPT+N were 7 and
12% greater than that of OPT−N and FP, respectively. Differences
in grain filling rates and grain weight across the sites or between
treatments were not significant.

Leaf Area Index and Dry Matter
Accumulation
A significant disparity was observed in LAI at the flowering
stage (OPT+N > OPT−N > FP > CK; Tables 4, 5). OPT+N
had the highest mean LAI of 8, 17, and 32% higher than that of

OPT−N and FP, respectively. The aboveground total dry weight
(TDW) of OPT+N in Jingzhou and Suizhou at MA was 2,255 g
m−2, which was around 9 and 19% greater than that of OPT−N
and FP, respectively, while OPT−N was 10% greater than FP.
Differences in harvest indices across the treatments and sites were
not significant.

Radiation Use Efficiency
The average IPAR of OPT+N was 843 MJ m−2, 5 and 10% higher
than that of OPT−N and FP, respectively (Tables 4, 5). The
average light interception percentage (LIP) of OPT+N was 88,
4, and 9% higher than that of OPT−N and FP, respectively. The
average RUE of OPT+N was 2.7 g MJ−1, 5 and 9% greater than the
RUE of OPT−N and FP, respectively, while the RUE of OPT−N
was 4% higher than that of FP.

Nitrogen Use Efficiency
The agronomic use efficiency of nitrogen fertilizer (AEN) differed
significantly across treatments and trends were mostly consistent
across years and sites, with OPT+N > OPT−N > FP (Table 6).
The average AEN of OPT+N was 17 kg grain kg−1 N, 9 and 68%
higher than OPT−N and FP, respectively. The REN in Jingzhou
and Suizhou sites showed generally steady trends.

Correlation Analysis of Grain Yield and
Yield Components
Grain yield was positively correlated with panicle number
and spikelets per panicle within treatments and within sites
(Figure 1). Panicle number and spikelets per panicle of OPT+N
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FIGURE 1 | Relationships between grain yield and panicle number (A), spikelets per panicle (B), grain filling (C), and grain weight (D). Colors and point symbols
represent different years and sites, respectively.

were tightly coupled with yield, with R2 of 0.91 and 0.88,
respectively. Relationships between grain yield and grain filling
or grain weight of OPT+N were not significant. Panicle number
and spikelets per panicle of OPT−N were correlated with yield,
with R2 values of 0.83 and 0.70, respectively.

Radiation Interception, Radiation Use
Efficiency, and Correlation With Dry
Matter and Yield
A significant correlation was observed between each of LIP, IPAR,
TDW, and RUE with yield (Figure 2). IPAR had the highest
correlation with yield under OPT+N and OPT−N, with R2 values
of 0.88 and 0.77, respectively. The R2 values of LIP, TDW,
and RUE with yield were 0.70, 0.82, and 0.83 under OPT+N ,
respectively; the R2 values of LIP, TDW, and RUE with yield were
0.59, 0.73, and 0.71 under OPT−N, respectively.

DISCUSSION

Higher sink potential is a prerequisite for achieving higher
rice yields (Huang et al., 2021). In the 1990s, medium-spike
varieties (about 200 spikelets per panicle) were widely planted

across China, while the large-spike varieties (more than 250
spikelets per panicle) were planted more sparingly (Ma and Yuan,
2015; Yuan, 2017). By 1996, Liangyoupeijiu met the criteria
for defining super rice cultivars, having a strong source and
sink and total spikelets of above 4.5 × 108 ha−1; recently, the
sink potential of genotypes Y-liangyou 1 and Y-liangyou 2 have
reached 5.2 × 108 spikelets ha−1, while that for Y-liangyou 900
and Xiangliangyou 900 have reached 6.0–7.5 × 108 spikelets
ha−1 (Li et al., 2009; Yuan, 2017). In this study, the average sink
potential of the super rice variety YLY900 attained 7.2 × 108

and 7.4 × 108 spikelets ha−1 under OPT+N . Average yields
were 11 t ha−1 in Jingzhou and 12 t ha−1 in Suizhou.
The OPT+N had higher N fertilizer application (270 kg N
ha−1) and moderate dense planting (Jingzhou: 21 plants m−2;
Suizhou: 30 plants m−2), which correspondingly expanded sink
potential by improving panicle number and spikelets per panicle.
Meanwhile, the OPT+N improved N translocation patterns,
which postponed N application to late season phenology, delayed
leaf senescence, extended the filling period, and promoted the
formation of high sink potential. This finding is similar to
previous studies, which have shown that practices enabling
extension of crop green area duration tend to raise yields
(Harrison et al., 2012a,b). As a consequence of insufficient
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FIGURE 2 | Relationship between grain yield and intercepted photosynthetically active radiation (IPAR) (A), light interception percentage (LIP) (B), aboveground total
dry weight (TDW) (C), and radiation use efficiency (RUE) (D). Colors and point symbols represent different years and sites, respectively.

transplanting density (Jingzhou: 19 plants m−2; Suizhou: 25
plants m−2), panicle numbers of FP enabling potential yields
were not realized. The results showed that an increase in N
application (within reasonable levels) could increase the dry
matter accumulation. Farmers in this region typically focused on
the application of fertilizers at transplanting and early tillering
stages but neglected N applications at PI and topdressing stages.
Such management practices severely constrained potential yields
of large-spike super rice genotypes because plant N demand
in the later stage has not been met. Further, excessive N
application in early crop life as well as improper N management
in later stages could result in early leaf senescence and poor
grain filling. We suggest that N fertilizer distributed and
moderately dense planting should improve N use efficiency in
super hybrid rice.

Grain yield was determined by biomass and harvest
index. Thus, grain yield could be increased by the
improvement of biomass production, harvest indices, or

both (Battaglia et al., 2018; Thomason and Battaglia, 2020).
However, previous studies have revealed that the yield of hybrid
rice depends mainly on biomass, but there is little scope for
increasing rice yield by improving the harvest index (Yang et al.,
2009; Lu et al., 2021). In this study, harvest index differences
across treatments were small, while variation in dry matter
accumulation across treatments was significant, as the amount
of dry matter accumulated after flowering accounts for 70–80%
during the whole rice growing season (Venkateswarlu and
Visperas, 1987). Maintaining adequate LAI through grain filling
could ensure sufficient dry matter accumulation after flowering
and, then, higher grain yields could be achieved (Huang et al.,
2013). In this study, the TDW of OPT+N was increased by 9 and
19% compared with OPT−N and FP. The LAI of OPT+N (8.2) at
flowering was significantly higher than that of OPT−N (7.0) and
FP (6.2). It is worth noting that moderate dense planting and
seasonal N fertilizer distribution management increased LAI,
which improved light interception and dry matter accumulation
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(Saito et al., 2010). Postponing N application is conducive to a
higher photosynthetic capacity of leaves in the grain filling stage
as well as greater radiation interception (Yang and Zhang, 2010).
Higher LAI of OPT+N promoted accumulation of dry matter and
more biomass was the main reason for high yield in this study.

Crop RUE is defined as the volume of biomass accumulated
per unit solar radiation intercepted (Meek et al., 1984; Sinclair
and Muchow, 1999). With morphological and intersubspecific
heterosis improvement, significant yield advancement has
occurred in super hybrid rice in the past few decades in
China (Yuan, 2017). Further yield potential improvement mainly
depends on greater RUE. Super hybrid rice populations have
higher RUE and IPAR, resulting in higher biomass and yield
(Zhang et al., 2009; Liu et al., 2019b). It has been proposed
that the yield potential of hybrid rice varieties and RUE could
further be increased at high N levels (Liu et al., 2019a). We found
that the RUE of OPT+N was increased by 5 and 9% compared
with OPT−N and FP, respectively, and that equal seasonal
N application with moderate dense planting improves light
interception and RUE. Optimization of nitrogen retranslocation
patterns could delay the senescence of leaves and improve
radiation interception during the late grain filling stage. Our
results showed that the yield of OPT+N was clearly correlated
with IPAR, IP, and RUE, with R2 values of 0.88, 0.70, and
0.83, respectively. This study suggested that increasing IP at
midtillering and IPAR at the grain filling stage significantly
improved RUE (Chen et al., 2019; Lu et al., 2020). These
findings demonstrate that optimizing cultivation and nutrient
management considerably increases the RUE of super hybrid
rice and emphasizing appropriate practice is favorable to
the environment.

Nitrogen fertilization is of great importance for rice growth
and yield formation. It has been demonstrated that N application
has a significant effect on the yield of super hybrid rice
and appropriate seasonal management of N applications could
improve TDW, yield, and NUE of rice (Wang et al., 2001). Super
hybrid rice could achieve higher yield at both the low and high
N levels, but the physiological and yield advantages were more
favorable under high N conditions (Huang et al., 2016). The total
N uptake per unit area of ultra-high yielding rice was high and
the agronomic and partial productivity of N fertilizer was higher
(Peng et al., 2002). In this study, the average AEN of OPT+N
and OPT−N was 68 and 54% higher than FP, respectively. The
NUE of OPT+N and OPT−N improved because (1) improved
management for OPT+N and OPT−N (i.e., later season N
applications and moderate dense planting) increased panicle
number and spikelets per panicle and raised NUE and yield
and (2) in the early stage of rice crop life cycle, seedlings were
generally too weak to fully utilize N fertilizer, so that superfluous
N fertilizer at this stage increased the number of invalid tillers,
resulting in poor yield and NUE (Liu et al., 2009). Meanwhile, we
showed that alternative wet and dry cycles during the critical rice
fertility period improved NUE. Our results also suggested that
more equal seasonal N distribution, adoption of alternative wet-
dry cyclical management, and moderate planting density could
synergistically improve resource use efficiency and yields.

CONCLUSION

Here, we investigated the TDW, RUE, NUE, and yield
components of super hybrid rice using several treatment
regimens over two sites and 4 years. We discovered that (1)
appropriate increases to applied nitrogen fertilizer increased
panicle number and spikelets per panicle, which expanded sink
potential and raised grain yield, (2) equi-seasonal N fertilizer
application in concert with moderate density planting were
instrumental to enhancing dry matter accumulation and yields in
super hybrid rice, (3) higher LAI, IP, and IPAR of super hybrid
rice underpinned the higher RUE observed for these hybrids,
and (4) super hybrid rice has compared with historical and
non-hybrid genotypes, super hybrid rice generally has greater
agronomic efficiency and crop recovery of N, leading to higher
nitrogen-use efficiencies and higher radiation-use efficiency.
Collectively, these factors are conducive to higher yields.
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