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Wheat ears in unmanned aerial vehicles (UAV) orthophotos are characterized by occlusion, 
small targets, dense distribution, and complex backgrounds. Rapid identification of wheat 
ears in UAV orthophotos in a field environment is critical for wheat yield prediction. Three 
improvements were achieved based on YOLOX-m: mosaic optimized, using BiFPN 
structure, and attention mechanism, then ablation experiments were performed to verify 
the effect of each improvement. Three scene datasets were established: images were 
acquired during three different growing periods, at three planting densities, and under 
three scenarios of UAV flight heights. In ablation experiments, three improvements had 
increased recognition accuracies on the experimental dataset. Compared the accuracy 
of the standard model with our improved model on three scene datasets. Our improved 
model during three different periods, at three planting densities, and under three scenarios 
of the UAV flight height, obtaining 88.03%, 87.59%, and 87.93% accuracies, which were, 
respectively, 2.54%, 1.89%, and 2.15% better than the original model. The results of this 
study showed that the improved YOLOX-m model can achieve UAV orthophoto wheat 
recognition under different practical scenarios in large fields, and that the best combination 
were obtained images from the wheat milk stage, low planting density, and low flight altitude.

Keywords: small target, spike, YOLOX, UAV, Orthophoto, BiFPN

INTRODUCTION

Wheat yield is calculated from the number of spikes per unit area, the number of grains per 
spike, and the weight of grains. In agricultural production, especially in wheat cultivation and 
breeding, determination of the number of spikes per unit area still relies on manual work, 
which introduces human error during prolonged, intensive work. Therefore, a fast, accurate 
method for counting wheat spikes in a large field environment is essential.

Compared with the time-consuming and laborious manual counting, modern information 
tools such as machine-learning methods, image analysis techniques, and artificial intelligence 
technologies can significantly improve the efficiency of wheat spike counting (Xu et  al., 2020). 
Research on wheat-ear recognition has developed considerably in the last decade and can 
be broadly classified into traditional image processing methods, deep-learning network methods, 
and other methods. Using first-order and high-order methods, Frdric et  al. (2012) attempted 
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to extract wheat-ear texture features and used the K-means 
algorithm for ear segmentation and wheat-ear counting by 
setting thresholds. Cointault and Gouton (2007) combined color 
features based on texture features for wheat-ear segmentation 
and used the skeleton method to solve the problem of overlapping 
wheat ears during counting to improve the accuracy of wheat-ear 
recognition. Tao et al. (2014) used image processing techniques 
to complete the segmentation of wheat ears in a large field, 
and added the corner-point detection method to achieve 
automatic counting of wheat ears. Fernandez-Gallego et  al. 
(2020) utilized a drone to collect images of wheat fields and 
compared the effectiveness of eight machine learning methods 
on wheat-ear recognition. Their results showed that the random 
forest method had the highest accuracy.

Owing to broad applicability and high accuracy, deep-learning 
methods have become a new means to address the challenges 
encountered in wheat counting. Sadeghi-Tehran et  al. (2019) 
constructed wheat feature models and fed the models into 
convolutional neural networks to achieve semantic segmentation 
and automatic counting of wheat. In addition, TasselNetv2 
(Xiong et al., 2019), mobileNetV2 (Khaki et al., 2021), YOLOV4 
(Yang et  al., 2021), EfficientDet (Wang et  al., 2021), LPNet 
(Misra et  al., 2020), and other deep-learning networks have 
shown advantages in wheat counting.

The challenges to effective wheat detection have promoted 
the rapid development of machine learning algorithms in wheat-
head detection. Many wheat datasets have emerged, among 
which the most popular one is the Global Wheat Head Detection 
(GWHD) dataset (David et al., 2021). These developments have 
played a significant role in advancing wheat-detection algorithms. 
The equipment used to acquire wheat pictures in this dataset 
was a digital camera, shooting from a height between 1.8 and 
3 m above the ground and a ground sampling distance (GSD) 
of 0.10–0.62 mm/px.

Relative size is mainly used to define small targets in target 
detection. The relative size is defined according to the Society 
of Photo-Optical Instrumentation Engineers (SPIE), and a small 
target is defined as a target area of fewer than 80 pixels in 
a 256 × 256 image, i.e., less than 0.12% of 256 × 256 is a small 
target (Yang et  al., 2016). Most current research vehicles for 
wheat-ear detection are far beyond the small target range: 
high-definition images are obtained by high-definition cameras 
hand-held or mounted on a shelf and photographed at a closer 
distance, which makes the features of wheat ears clear and 
easy to be  extracted to more features by deep networks, and 
the recognition accuracy can reach 98% (Zhou et  al., 2018; 
Xiong et  al., 2019; Li et  al., 2021). However, this method does 
not apply to actual production practices and does not achieve 
field-wide or larger-scale wheat-ear detection. After wheat 
heading completed, clear images need to be  captured using 
unmanned aerial vehicles (UAV) and using orthophoto stitching 
technology, then detect wheat ears.

The ground sampling distance of wheat-ear images obtained 
by UAV is greatly affected by the flight height of the UAV. Taking 
DJI Inspire2 as an example, the experiment showed that after 
wheat head was presented, visible, and fully emerged. The 
UAV flight height was below 10 m, the wind generated by the 

propeller blew the ears of wheat about, making them shake 
and thus affecting the clarity of shooting and multi-photograph 
synthesis of orthophoto images. Flying the UAV too high made 
it impossible to extract wheat-ear features by a deep-learning 
network, yielding poor results. Therefore, a better method was 
needed for large-scale UAV orthophoto detection of small 
wheat-ear scenes with low GSD, high density, and small targets.

YOLOX is a series of YOLO improvement algorithms 
introduced by Kuang-Shi Technology (MEGVII) in 2021 (Ge 
et  al., 2021). YOLOX provides the following improvements 
over YOLOv3: (1) decoupled head (by decoupling the prediction 
branches, the convergence speed improves, as does AP by 4.2%, 
over the non-decoupled end-to-end method); (2) data 
augmentation (using Mosaic and Mixup and turning off data 
augmentation for the last 15 epochs to prevent excessive data 
augmentation); and (3) anchor improvement (using Anchor-
free, improving multi-positives and SimOTA, reducing training 
time, and improving prediction accuracy). This is a good new 
model. Currently it is not used much in articles. Panboonyuen 
et  al. (2021) utilizing pre-training Vision Transformer (ViT) 
as a backbone, apply Feature Pyramid Network (FPN) decoder 
detection of Road Assets, It significantly outperforms other 
state-of-the-art (SOTA) detectors. Zhang et  al. (2021) used the 
YOLOX algorithm to detect vehicle targets in UAV images, 
and through a self-made dataset, the detection results surpassed 
traditional algorithms. At present, there is no article using 
YOLOX to detect wheat ears.

In this paper, we  propose a method to obtain large-scale 
orthophotos of wheat fields using UAVs with telephoto lenses. 
We validate the algorithm for wheat-spike detection performance 
phenotypes under three periods, three densities, and three flight 
height scenarios using the improved You  Only Look Once 
(YOLOX) deep-learning network algorithm. The improved 
YOLOX-m model achieves a good effect on low-resolution 
images. Realize the identification of dense small target wheat 
ears in large size (1,280pixels × 1,280pixels) images, it’s favorable 
to the identification of wheat ears in large field orthophotos. 
And the best UAV orthophoto recognition is obtained from 
the wheat milky stage, low planting density, and low flight 
altitude. The improved YOLOX model exhibits the higher 
classification accuracy and the different scene adaptation capability.

MATERIALS AND METHODS

Experimental Designs
This study was conducted at the Fengling Experimental Base of 
Yangzhou University in Yangzhou City, Jiangsu Province, China 
(32° 30′ 7″, 119° 13′ 54″) using a 75 m × 25 m field size, with 
each plot measuring approximately 20 m2. Wheat plant 
conformation and spike morphology are influenced by variety. 
Yangmai 23, which has a large planting area, was selected as 
the experimental variety, with three densities: 1.2 × 106/ha (D1), 
1.8 × 106/ha (D2), and 2.7 × 106/ha (D3), and replicated three times 
(Figure  1). The sowing date was October 11, 2020, the planting 
method was mechanical strip sowing, fertilization was consistent, 
and other cultivation measures were consistent with local customs.
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Image Acquisition
This study used a DJI insprire2 (inspire2, from SZ DJI Technology 
Co. Ltd., Shenzhen, China) multi-rotor UAV equipped with a 
Zenmuse X5S (SZ DJI Technology Co. Ltd., Shenzhen, China) 
camera, an Olympus M. Zuiko 45 mm/1.8 (Olympus Co. Ltd., 
Tokyo, Japan) lens (Figure  2A), and DJI GS Pro (SZ DJI 
Technology Co. Ltd., Shenzhen, China) ground station software 
to conduct one UAV mission at the flowering (P1), milking 
(P2), and maturity (P3) stages of wheat. The flight parameters 
were set at 78% heading overlap, 80% bypass overlap, the flight 
height at 20 m (H1), 25 m (H2), and 30 m (H3). The orthophoto 
reconstruction of the acquired flight data was performed using 
DJI Terra (SZ DJI Technology Co. Ltd., Shenzhen, China), 
and orthophotos were exported for the next step (Figure  2B).

Scene Dataset Production
According to the experimental design, three wheat scenes were 
divided into different periods of wheat scenes (P series), different 

densities of wheat scenes (D series), and different resolutions 
of wheat scenes (H series):

P series: D2 image region orthophotos of three periods 
from P1 to P3 were selected as the image source,

D series: P2 period image orthophotos under three density 
treatments from D1 to D3 are selected as the image source,

H series: P2 period image orthophotos of three flight heights 
from H1 to H3 are selected as the image source.

To improve the efficiency of image cropping, a software 
“Crop Assistant” (Figure  2C) was developed to quickly crop 
the image to a specified size. The mouse is used to let the 
cross-auxiliary line move to the image area to be  cropped, 
followed by clicking at the center point. The image size of 
200 × 200 pixels can be  intercepted with the cross as the center 
point, and the image is automatically named and saved to a 
preselected folder according to the rules (Figure 2D). The user 
then manually labels the cropped images with wheat ears and 
generates the corresponding xml file, which contains information 

FIGURE 1 | Distribution of test sites and test fields.
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such as image size, label name, and target location (Figure 2E). 
The number of statistical images (Nimg) and the total number 
of labeled boxes (Nlab) are shown in Table 1. There were 3,171 
images labeled in three series of nine-scene datasets, with a 
total number of wheat ears of 82,873. The amount of data 
met the number of datasets required by a deep-learning network. 
Each dataset is randomly divided into a training set, a validation 
set, and a test set in a 7:2:1 ratio for model training.

YOLOX-m MODEL IMPROVEMENT AND 
EVALUATION METRICS

YOLOX has a good recognition effect on target in the existing 
model, but there is still room for improvement. Sun et  al. 
(2021) compared the performance of YOLOX and Deformable 
DETR (Deformable transformers for end-to-end object detection) 

models in the identification of bok choy seedlings from Weeds. 
The results showed that YOLOX was the optimal model, and 
got better average precision and identification speed. In order 
to better apply YOLOX to wheat ear detection, we  have made 
three improvements: (1) data augment: optimized mosaic, added 
image random brightness processing, and limited the scaling 
ratio to 1–3. (2) Added a channel attention mechanism in 
backbone. Extract information that is more important to the 
task objective from numerous feature information. The efficiency 
and accuracy of model processing can be improved. The channel 
attention mechanism has been proven to use more attention 
resources to acquire high-value information and compress 
useless information (Woo et  al., 2018). (3) The neck adopts 
the BiFPN (Bi-directional Convolutional Block Attention Module) 
structure. It uses learnable weights to learn the importance of 
different input features, repeatedly applying top-down and 
bottom-up multi-scale feature fusion (Tan et  al., 2020).

A B C

D E

FIGURE 2 | Image acquisition and dataset creation methods: (A) unmanned aerial vehicle (UAV) and sensor, (B) orthophoto, (C) image cropping, (D) image library, 
and (E) image annotations.

TABLE 1 | Dataset base information.

Dataset
P Series D Series H Series

Total
P1 P2 P3 D1 D2 D3 H1 H2 H3

Nimg 370 395 390 368 355 350 302 327 314 3,171

Nlab 8,547 9,717 9,321 7,544 8,591 10,640 7,399 9,810 11,304 82,873

Nimg , total number of images and Nlab , total number of label boxes.
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The YOLOX series includes YOLOX-s, YOLOX-m, YOLOX-l, 
YOLO-x and YOLOX-Darknet53, the model size (parameters) 
and accuracy (usually expressed in mean average precision, 
mAP) increase in turn under the same conditions. Larger size 
model, greater arithmetic power required. Floating point 
operations (FLOPs) can be  used to measure the complexity 
of the model, the larger FLOPs need more arithmetic power. 
The mAP (0.5) of YOLOX-m is 15.80% higher than that of 
YOLOX-s. YOLOX-l, YOLOX-x and YOLOX-Darknet53’ mAP 
are only 5.97%, 8.96%, and 1.71% higher than YOLOX-m, 
respectively, but the FLOPs and the parameters of them are 
much higher than YOLOX-m (Figure  3). Considering the task 
scenario and hardware requirements, combined with the 
determination of YOLOX accuracy, the number of parameters, 
and arithmetic power of each model, YOLOX-m has high 
prediction accuracy, small parameters, and low computational 
overhead compared with other YOLOX series model. Finally, 
we selected the YOLOX-m model for optimization and testing.

Based on YOLOX-m, this paper proposes the following 
improvements for low-resolution, dense target scenes (the 
improved YOLOX-m network framework is shown in Figure 4).

Data Augmentation and Mosaic 
Optimization
This paper describes a modified mosaic method for data 
augmentation and expansion. A mosaic is four images stitched 
together into a new image after random changes, such as 
flipping and scaling while processing the labels corresponding 
to the target objects (Yun et  al., 2019; Figure  5). Experiments 
have shown that mosaic enhancement in model training is 
easier to detect in small targets, such as wheat ears (Kisantal 
et  al., 2019). Considering the low resolution of our dataset 
and the small, dense nature of wheat targets, a light random 
variation code and a restricted mosaic scaling index were added 
to improve the network learning. We  made the following 
improvements to the algorithm: (1) by converting RGB to 
HSV, setting the boosted V-segment value, and then converting 
the result to RGB, we changed the image’s brightness to simulate 
random changes in lighting; and (2) we  limited the scale 
parameter for the mosaic in 1:3, i.e., instead of shrinking the 
image, we  randomly zoomed-in up to 3x. For low-resolution 
and small target objects, the input network improved considerably 
over the original image after zooming-in.

In addition, the mixup algorithm was also used, which first 
read an image to scale up to a 640 × 640 image while calculating 
the scaled annotation frame. Next, a randomly selected image 
was also filled and scaled to 640 × 640 pix, and the scaled 
label box was calculated. The fusion factor was set, and the 
two images after the change were weighted and fused to finally 
obtain a mixup image (Zhang et al., 2017), where the annotation 
frames of the two images exist superimposed.

Backbone Added the Channel Attention 
Mechanism
The innovation of the Squeeze-and-Excitation Layer (SElayer) 
network focuses on the relationship between channels, with the 

FIGURE 3 | Accuracy, number of parameters, and computational overhead 
of each YOLOX model.

FIGURE 4 | Improved YOLOX-m framework diagram.
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aim for the model to automatically learn the importance of 
different channel features (Hu et al., 2018). In essence, convolution 
is the fusion of features over a local region, including the spatial 
(H and W dimensions) and inter-channel (C dimension) fusion 
of features. Small targets have weak feature representation on 
their own, and detection in which more feature information 
needs to be  learned requires deepening the network structure. 
The channel attention mechanism allows the neural network 
to focus on the channels more relevant to the target task and 
achieve a reasonable weight distribution. Extract information 
that is more important to the task objective from numerous 
feature information, it can improve the efficiency and accuracy 
of model processing. The channel attention mechanism has been 
proven to use more attention resources to obtain high-value 
information and compress useless information.

Figure  4 shows the SElayer structure, which uses global 
average pooling. The feature map of c channels, H × W, is 
compressed into C channels, 1 × 1, by Equation (7); 1 × 1 × C 
contains global spatial information and is compressed into a 
channel descriptor (channel descriptor).

 
F u

H W
u i jsq c

i

H

j

W

c( ) =
´

( )
= =
åå1

1 1
,

 
(1)

The result of the global pooling of squeezed channels (which 
can be  considered a C-dimensional vector) is fully connected 
to obtain a C/r-dimensional vector, which Relu activates. It is 
then fully connected again to change the C/r-dimensional vector 
back to a C-dimensional vector and is finally activated by a 
sigmoid function so that values lie between 0 and 1. This is 
the obtained weight matrix.

 F z W g z W W W zex , ,( ) = ( )( ) = ( )( )s s d2 1  (2)

The SElayer is added to layers 1, 2, 3, and 4 after 
Conv + Bn + Leaky_relu (CBL). The SE module is designed 

mainly to improve the model’s sensitivity to channel features. 
The module is lightweight and can be  applied to existing 
network structures to improve performance, with only a small 
increase in computation.

The Neck Adopts the BiFPN Structure
YOLOX uses YOLOv3 with added SPP components as the 
benchmark network and Neck as the FPN structure. We added 
the BiFPN structure to the network, as shown in Figure  4. 
The target detection task for small objects is difficult because 
large objects occupy many pixel points, but small objects have 
few. In the convolution process, as the convolution goes deeper, 
the features of large objects are readily retained, while the 
features of small objects are easily ignored after multiple 
convolutions. Therefore, the FPN structure is generated, which 
fuses the detailed information of the lower layers and the 
semantic information of the higher layers, thus increasing the 
perceptual field of the lower layers and enabling the lower 
layers to obtain more contextual information when performing 
small object detection (Tan et  al., 2020). BiFPN is a weighted 
bi-directional feature pyramid network that allows fast, 
straightforward multi-scale feature fusion to pursue a more 
efficient multi-scale fusion.

Evaluation of the Model Performance
The validation set in the respective dataset is used as a reference 
to evaluate the accuracy of the model prediction. The following 
metrics are selected in this paper to measure the accuracy of 
the model.

IOU Loss
In the IOU evaluation criteria, the L1 loss and L2 loss are 
obtained by summing the four coordinates of the bounding 
box after finding the losses separately, which ignores any 
correlation between the coordinates. However, the evaluation 
does need to consider the correlation between the coordinates. 
The calculation formula is as follows:

FIGURE 5 | Schematic diagram of mosaic and mixup processing.
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where Ground truth is the true frame consisting of 
   , , ,andt b l rx x x x , and Prediction is the prediction frame consisting 

of x x x xt b l r, , ,and . The IOU loss is obtained by evaluating 
- ( )ln IOU  after determining the IOU. Relative to L2 loss, the 
IOU loss increases with the number of iterations with lower 
loss, and the prediction frame is more accurate (Yu et al., 2016).

Average Precision (AP50)
To assess the accuracy of the network, we  tested AP50. AP50 
is the average precision when the IOU of the prediction frame 
and that of the real frame are greater than 0.5. A higher AP 
means that the accuracy of the network is higher. The formula 
for AP is as follows:
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where P is the accuracy rate (Equation 5), and Re is the recall 
rate (Equation 6).
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True positive (TP) represents that the samples are predicted 
correctly and are actually positive. False-positive (FP) represents 
that the samples are predicted to be  positive but are actually 
negative. In addition, False-negative (FN) represents that the 
samples are predicted to be  negative but are actually positive.

Frame Per Second
The number of frames per second (FPS) is an important 
indicator to examine the real-time performance of the model. 
An adequate FPS can meet the demand in practical applications.

RMSE and R2

In addition, metrics such as root mean square error (RMSE) 
and coefficient of determination (R2) are used to evaluate the 
wheat head counting performances. The lower RMSE and higher 
R2, the better performance of the model. Their counting equations 
are as follows:
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For the improved model, we  conducted ablation tests and 
performed statistical analysis on three series of datasets. 
Performance tests were conducted using the improved YOLOX-m 
model for different periods of wheat-ear scenes (P1–P3), different 
density wheat-ear scenes (D1–D3), and different resolution 
scenes (H1–H3).

RESULTS AND ANALYSIS

Ablation Experiments With Improved 
YOLOX-m Model
We randomly selected 350 annotated datasets from all annotated 
images for the mixed dataset test and divided the training 
and validation sets in the ratio of 8:2. Using the original 
YOLOX version of YOLOX-m as the baseline, we  tested three 
optimization schemes: data augmentation to improve mosaic, 
adding SElayer, and using BiFPN. The platform configuration 
used for the ablation experiments used the Intel(R) Xeon(R) 
CPU E7-8880 v4 (2.20Ghz) × 4, RAM: 256 GB, GPU: Quadro 
RTX 5000 with 16 GB of video memory, CUDA version 10.0, 
and cudnn version 7.4. Other experiments in the following 
are also based on this platform. The training epoch for all 
models was 300 iterations, and the batch size was 6.

Compared with the standard YOLOX-m, the improved YOLOX-
m-based method had the highest accuracy with an AP50 of 
86.34% (Table  2), which was 2.74% higher than that of the 
standard YOLOX-m, and a speed of 40.16 FPS, which could 
achieve the task of wheat spike detection accurately. The standard 
YOLOX-m reached a high point and converged faster in the 
early stage. The model emerged with a larger fluctuation early 
after the data enhancement optimization was turned on. The 
fluctuation enhanced sequentially after the Attention and BiFPN 
were turned on, and both gradually converged after the 150th 
epoch (Figure  6). Finally, the models with standard YOLOX-m 
and data-enhanced optimization enabled maintained a flat trend 
until the end of the training. In contrast, the model with Attention 
enabled showed an upward change and then a downward change 
after the 250th epoch, and the model with BiFPN enabled 
showed a continuous upward trend after the 250th epoch.

Performance of the Improved Model on 
Different Scenario Datasets
The training results of the improved model on three series of 
datasets are shown in Figure  7. Comparing the test results 
on the original YOLOX-m network for a total of nine datasets 

TABLE 2 | Accuracy and performance of ablation experiments with the 
improved YOLOX-m model.

Model improvement AP50 (%) FPS

YOLOX-m 84.04 39.86
+AUG 84.69 (+0.65) 40.37
+Attention 85.89 (+1.20) 40.53
+BiFPN 86.34 (+0.45) 40.16

The bold values means the difference between this value and the previous value.
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in three series, the accuracy (AP50) of the improved model 
were all improved to different degrees (Table  3). The highest 
increase on the D2 dataset, which increased by 3.1%. P2 dataset 
increase 2.54% and the lowest increase on the H3 dataset, 
which increased by 0.78%. The improved YOLOX-m model 
can increase wheat recognition accuracy of UAV orthophotos 
under different practical scenarios in large fields. The following 
is a detailed analysis of three scenarios:

Scenario P: As shown in Figures 8A,D, the model performed 
best on the P2 dataset, with the AP50 quickly reaching the 
highest level and converging at the 180th epoch with a maximum 
AP of 88.03%. This is related to the strong contrast displayed 

by the wheat ears and leaves in the field during the P2 lactation 
period when the ears were grayish-white, differing significantly 
from the light green color presented by the leaves. Although 
slightly weaker than in the P1 flowering period, the P2 wheat-ear 
texture characteristics were significantly stronger than in the 
P3 maturity period (Figure  7A). The model showed a lower 
AP than P2  in the P1 flowering period, with a maximum AP 
of 80.70%, and the training curve was low at the beginning 
and then gradually increased, leveling off at 210 epochs, 7.33% 
lower than the best AP of P2. The color of wheat ears in the 
P1 flowering period was similar to that of the leaves, and the 
stacking of labeled boxes was slightly higher, indicating that 
the stacking of wheat ears in this period was more serious 
than in P2, which had an impact on the recognition of the 
model. The worst performance of the model was in the maturity 
period of P3, with the highest AP of 77.79%, 10.24% lower 
than the best AP of P2. The training curve started moderately, 
and the subsequent growth was slow, converging at 160 epochs 
and improving slightly, slowing down at the 270th epoch. The 
dataset statistics show that the wheat ears and leaves were 
green in this period. They are more similar, and the labeling 
frame stacking degree was up to 9.86%. The wheat ears are 
stacked to a high degree. These are the main reasons for the 
poor training accuracy of the model.

Scenario D: The higher the planting density, the denser the 
wheat ears in the same field of view of the camera, and the 
more severe the overlap. The model achieved 87.59% AP on 
the D1 dataset (Figures 8B,E), and the training curve converged 
early and fast. The D1 dataset had the lowest labeled frame 
overlap among all the datasets, at 2.98%, which is a more 
desirable dataset. Model training AP on the D2 dataset was 
84.94%. With the increase of wheat planting density, the overlap 
between wheat ears and leaf shading gradually increased 
(Figure  7B), 2.65% compared with D1. The highest AP was FIGURE 6 | Ablation test of YOLOX-m improved model on mixed dataset.

A B C

FIGURE 7 | Prediction effect of the improved model on the three series datasets: (A) P series, (B) D series, and (C) H series.
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only 76.23% in the D3 dataset with the highest test density, 
11.36% lower than D1. Thus, the difficulty of wheat-ear 
recognition by UAV images increased sharply in wheat fields 
planted at high density.

Scenario H: The different flying heights of the UAVs affected 
the resolution of the images and the size of the target. And 
the size of the images intercepted in the three datasets in the 
H series experiment was 200 × 200 pixels (Figure  7C). The 
difference in the target object size in the H series dataset affects 
the model’s accuracy for wheat ear’s feature extraction and 
recognition. The larger target object, the more pronounced the 
target features extracted by the model and the higher the training 

and recognition accuracy. As shown in Figures 8C,F, the accuracy 
of the training curves of H1, H2, and H3 decreases in order, 
and the model performs best on the H1 dataset with the highest 
AP50 of 87.93% and the smallest fluctuation of the pre-training 
curve among the three periods and starts to converge first 
(about the 150th epoch); H2 has the second-highest training 
accuracy with the highest AP of 73.35% and starts to converge 
at the 180th epoch attachment. H3 has the worst effect, with 
the highest AP50 of only 63.43% and the most drastic fluctuations, 
there is a decline at 210 epochs. Then a slight upturn, and 
more wheat sheaves failed to be  recognized by the model, as 
can be  seen in the prediction effect graph.

TABLE 3 | Comparison of accuracy and IOU loss between original and improved networks.

Dataset
Origin model Improved model

AP50 (%) IOU loss AP50 (%) IOU loss

P1 78.58 2.25 80.70 (+2.12) 1.18
P2 85.49 2.25 88.03 (+2.54) 1.24
P3 75.93 2.31 77.79 (+1.86) 1.33
D1 85.70 2.29 87.59 (+1.89) 1.42
D2 81.83 2.33 84.94 (+3.11) 1.59
D3 73.51 2.68 76.23 (+2.72) 1.26
H1 85.78 2.23 87.93 (+2.15) 1.28
H2 72.16 2.36 74.35 (+2.19) 1.27
H3 62.65 2.48 63.43 (+0.78) 1.33

A B C

D E F

FIGURE 8 | Performance of the improved model on the three series datasets: (A–C) are AP50 curves for the three series datasets; (D–F) are IOU loss curves for 
the three series datasets.
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Overall, combining the results of the three scenarios, the 
best UAV orthophoto recognition can be  obtained from the 
wheat milk stage (P2), low planting density (D2), and low 
flight altitude (H1).

Model Counting Accuracy Validation
In each validation set, 30 images were randomly selected for 
manual recognition of wheat ears and counting. The results 
of manual observation of wheat-ear number and the recognition 
of wheat-ear number by the improved model were compared. 
The R2 and RMSE were calculated by linear fitting (Figure  9). 
Our model showed excellent wheat-ear recognition ability on 
all except H2 and H3 datasets, with R2 greater than 0.8446 
and RMSE less than 1.4491. The best performance on the P2 
dataset with an R2 of 0.9249 and an RMSE of 0.6583. And 

the model performed poorly on the H2 and H3 datasets due 
to the effect of the UAV flight height on the image GSD, 
which resulted in the wheat ears occupying too few pixels in 
the image; the features were difficult to be  captured by the 
network, which also verifies that low GSD and small targets 
are difficult to identify with deep networks (Zhang et al., 2020).

DISCUSSION

Analysis of Dataset Metrics
We counted and compared several metrics of the P, D, and 
H series datasets, including the average number of labeled 
boxes per figure (Vlab), the stacking degree of labeled boxes 
(Dlab), the average pixel of labeled boxes (Vpix). Dlab can 

A B C

D E F

G H I

FIGURE 9 | Performance of the improved model on three wheat scenes datasets: (A–C) correspond to P1, P2, and P3; (D–F) correspond to D1, D2, and D3; 
(G–I) correspond to H1, H2, and H3.
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approximate the degree of wheat stacking in the dataset. The 
equations of Vlab, Dlab, and Vpix  are as follows:
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where labi and labj are any two annotation frames, and Spix 
is the sum of pixels occupied by all annotation frames.

Overall, as shown in Table  4, the number of images in 
each segmented scene dataset ranged from 255 to 395. The 
number of annotated boxes in each dataset was counted, with 
the least number of annotated boxes in the D1 dataset and 
the most in the P2 dataset. The average number of annotations 
reached a maximum of 36.0 and a minimum of 20.5.

In the P series scenes, the average number of labeled frames 
per image in the P1 dataset was 23.1, with 5.22% of the 
frames having a stacking degree greater than 0.25 and an 
overall dark green color. Labeled frames per image in the P2 
dataset were 24.6, with 3.97% of the frames having a stacking 
degree greater than 0.25 and an overall light green color. The 
average number of annotated frames per image in the P3 
dataset was 23.9, with 6.86% of the annotated frames having 
a stacking degree greater than 0.25; they too were yellow 
overall. To make the network more successful in detecting 
wheat ears, it was necessary to expose the ears fully. Hence, 
they were visible in the images, with minimal leaf shading 
and overlap between ears. For different genotypes and 
environmental conditions, we observed wheat ears with different 
morphologies, sizes, and strain distributions. For example, in 
the case of Yangmai23, we  observed that the wheat tended 
to bend during the seed filling stage, which increased the 
overlap between heads. However, in the stage between tasseling 
and flowering, some wheat spikes were not yet fully grown 
and were difficult to see. The wheat fertility stage affected the 
wheat plant morphology and thus the differences in the angle, 
overlap, and color of the wheat ears in the images taken by 
the UAV, and P2 was a period where better identification 

could be obtained. Therefore, we recommend acquiring images 
after flowering when the wheat ears are fully emerged and 
still upright.

Among the D series scenes, the average number of labeled 
frames per image in the low-density D1 scene was 20.5, 
and 2.68% of the labeled frames have a stacking degree 
greater than 0.25, with few labeled frames stacked. The 
average number of labeled frames per image in the D2 
dataset was 24.2, and 5.95% of the labeled frames have a 
stacking degree greater than 0.25. The D3 dataset was the 
densest, and the overlap of labeled frames greater than 0.25 
reached 7.47%. The density of wheat crop planting affected 
the recognition accuracy of the deep network; excessive 
density, serious stacking occurred, and the recognition 
effect decreased.

In the H series scenes, the average number of annotation 
frames per image increased with height, and the average size 
of wheat-ear annotation frames decreased with height, with 
1123.6 pixels for H1, 638.2 pixels for H2, and 357.6 pixels 
for H3. Thus, the too-small size of wheat-ear annotation frames, 
i.e., the size of the pixels occupied by wheat ears, affected the 
recognition accuracy of the depth network.

Constraint of Drone Flight Height
UAV orthophoto stitching needs to meet the synergy between 
parameters such as flight altitude, heading overlap rate, and 
side overlap rate. The UAV flight altitude is often set very 
low to obtain higher ground resolution (GSD) images. At too 
low a flight altitude, the strong wind from the UAV propeller 
blows the wheat plants about, making the wheat-ear tilt and 
swing and resulting in blurred photos and failed orthophoto 
stitching. This can prolong the mission time, and the data 
to be  stored grow exponentially, requiring high UAV range 
and storage space. From the formula for GSD (Equation 12), 
it can be  seen that the only condition that determines the 
GSD on a fixed focal length UAV is the UAV flight altitude, 
and too high a UAV flight altitude makes the GSD of the 
target object wheat ears too small for accurate identification. 
We  tested the flight time, the number of photos, and data 
size required for different UAV flight heights and measured 
the GSD at different heights, as shown in Table  5. Taking 
Insprie2 with X5S and 45 mm fixed focal length lens as an 
example, setting the same heading overlap rate and side overlap 
rate, the lowest height that can achieve the route shooting 
task is 16 m, the flight time required for this task is 1.5 times 
as much as that of 20 m flight height task. A higher flight 

TABLE 4 | Statistical table of dataset indicators.

Dataset
P Series D Series H Series

P1 P2 P3 D1 D2 D3 H1 H2 H3

Average number of annotations (pcs) 23.1 24.6 23.9 20.5 24.2 30.4 24.5 30.0 36.0
>0.25 Stacking degree share (%) 5.22 3.97 6.68 2.68 5.95 7.47 3.42 3.15 3.67
Average annotation frame pixels (pixels) 984.5 1096.4 1164.3 930.4 1013.5 1087.1 1123.6 638.2 357.6
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FIGURE 10 | Orthophoto cropping recognition effect.

altitude can significantly reduce the number of photos and 
data size, and shorten the task execution time, while reducing 
the GSD.

 
GSD =

´H a
f  

(12)

where H is the relative altitude, f is the focal length of the 
lens, and a is the image element size.

The experiment found that the ground station software 
could not generate operational tasks at 15 m altitudes. 
Combining the completed three height scenarios GSD, and 
the results in sections “Ablation Experiments With Improved 
YOLOX-m Model, Performance of the Improved Model 
on Different Scenario Datasets, and Model Counting 
Accuracy Validation” shows that the UAV flight height 
has a significant impact on the model results, and it is 
necessary to ensure that the wheat is not affected by the 
wind while maximizing the shooting of a large target of 
small wheat ears under the limitations of UAV hardware. 
Using a 45 mm telephoto lens, a clear image (H1) was 
captured at a UAV altitude of 20 m, and a better model 
effect was achieved. Optimizing the UAV image acquisition 

method in balancing the relationship between flight altitude, 
mission time, and GSD, we  found the best solution for 
the current hardware equipment conditions to improve the 
quality of UAV orthoimages, improve the characteristics 
of small wheat targets, and eliminate the imbalance of 
data by exhausting the construction of large-scale datasets 
and testing different sample distributions.

Improving the Efficiency of UAV 
Recognition of Wheat Ears Using Larger 
Size Images
Finally, we  tried to crop a random image of 1,280 × 1,280 
pix on the UAV orthophoto and feed it into the improved 
model for prediction, as shown in Figure  10. The wheat 
ears could be  recognized more accurately at this resolution, 
which indicates that the optimized network had a stronger 
perceptual ability and adapted to recognition at larger 
resolutions. The number of wheat ears in the manual statistics 
image was 1,689, and the network recognized 1,597, with 
an error of 5.45%. This method can reduce the segmentation 
of the UAV orthophoto processing into too many small images, 
which is very helpful in reducing the computation and image-
processing times.

TABLE 5 | Parameters corresponding to different flight altitudes of UAVs.

Flight altitude (m)
Heading overlap 

rate (%)
Sideways overlap 

rate (%)
GSD (cm) Flight time (s)

Number of photos 
(pcs)

Data size (Mb)

15 78 80 - - - -
20 78 80 0.3 569 241 2048.5
25 78 80 0.4 367 155 1317.3
30 78 80 0.5 263 110   935.7
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Future Trends
Recent years have seen the research on UAV detection of 
wheat sheaves develop rapidly. However, it is still in the research 
stage, and more cost is needed to make this technology applicable 
to practical production. In addition, it has been found that 
thermal infrared images have better contrast than RGB images. 
The difference in temperature between wheat ears and other 
parts of the plant is used to segment the ears and delineate 
the color threshold for counting (Fernandez-Gallego et  al., 
2019). With the development of 3D technology and the popularity 
of 3D devices, 3D technology has also been applied to wheat-ear 
identification (Velumani, 2017; Ghahremani et al., 2021), using 
3D laser point cloud segmentation technology to achieve 
wheat-ear identification, which provides another new idea for 
wheat-ear counting.

CONCLUSION

This paper improved the YOLOX network by optimizing mosaics, 
adopting the BiFPN structure, and adding an attention 
mechanism. The ablation test showed that the change improved 
the network performance. Tests in three periods, at three 
densities, and for three height scenarios showed that our model 
had excellent wheat ear recognition on P1–P3, D1–D3, and 
H1 datasets, with R2 greater than 0.8446 and RMSE less than 
1.4491, and the best performance on the P2 dataset with an 
R2 of 0.9249 and an RMSE of 0.6583. In comparison, H2 and 
H3 indicate that deep network recognition is difficult under 
the condition of low GSD. We  suggest acquiring images after 
flowering when the wheat ears have fully emerged and are 
still upright. This sets up the best UAV flight plan with hardware 

devices to improve the quality of UAV orthoimages for the 
best training and recognition results.
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