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Tocopherols are essential nutrients for human health known as vitamin E. Vitamin
E deficiency can have a profound effect on human health, including the central
nervous system and cardiovascular and immune protection. Multiple enzymatic steps
are involved in the conversion between different forms of tocopherols. Among them,
γ-tocopherol methyltransferase encoded by gene VTE4 catalyzes the conversion
of γ- to α-tocopherol or δ- to β-tocopherol isoforms. However, the gene copies
and their functional contribution of VTE4 homologs in Brassica napus were not
elucidated. To this end, different mutation combinations of four putative BnVTE4
homologous copies were generated by using CRISPR/Cas9 genome editing technology.
Editing of those BnVTE4 homologs led to a significant change of the α-tocopherol
content and the ratio between α- and γ-tocopherol compared with wide-type control.
Analysis of the different combinations of BnVTE4-edited homologs revealed that the
contribution of the BnVTE4 individual gene displayed obvious functional differentiation
in α-tocopherol biosynthesis. Their contribution could be in order of VTE4.C02-
2 (BnaC02G0331100ZS) > VTE4.A02-1 (BnaA02G0247300ZS) > VTE4.A02-2
(BnaA02G0154300ZS). Moreover, the VTE4.A02-1 and VTE4.A02-2 copies might
have severe functional redundancies in α-tocopherol biosynthesis. Overall, this study
systemically studied the different effects of BnVTE4 homologs, which provided a
theoretical basis for breeding high α-tocopherol content oilseed rape.

Keywords: α-tocopherol, BnVTE4, homologous copies, functional diversification, CRISPR/Cas9

INTRODUCTION

Tocopherols and tocotrienols are also called vitamin E. In this study, we focus on the analysis
of tocopherols only. Tocopherols are lipid-soluble strong antioxidants that are involved in the
protection of oxidative damage of membrane lipids by scavenging singlet oxygen and other reactive
oxygen species (ROS) (Trebst et al., 2002; Schneider, 2005; Fritsche et al., 2017). Thus, tocopherols
are presumed to be key scavengers of senescence or stress-induced lipid radicals and ROS in plants.
Their strong antioxidant capacity can reduce lipid peroxy radicals to corresponding hydrogen
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peroxide to avoid lipid peroxidation of polyunsaturated fatty
acids. The high antioxidative property exerts a protective role
in multiple plant stress responses such as cold and drought
stress (Janeczko et al., 2018; Ma et al., 2020). Most importantly,
this effect can also be extended to human health. Vitamin E
is an essential nutrient in the human daily diet. Vitamin E
deficiency primarily causes muscle atrophy and reproductive
and neurologic dysfunctions (Martin et al., 2013; Kumar
et al., 2018), whereas the adequate intake of vitamin E can
prevent neurological diseases, cataracts, coronary heart disease,
atherosclerosis, diabetes, Parkinson’s disease, Alzheimer’s disease,
and vision diseases (Lloret et al., 2019; Rozanowska et al., 2019).
Thus, biofortification of vitamin E in crop plants is not only
beneficial for human health but also for plant stress response.

Based on the different numbers and positions of methyl
substituents on the aromatic ring, tocopherols are defined as
four isoforms, namely α-, β-, γ-, and δ-tocopherol (α-T, β-T,
γ-T, and δ-T in short). Although those tocopherols have similar
antioxidant activities in vitro, the vitamin E activity in vivo is
significantly different. Among them, α-T possesses the highest
vitamin E activity in vivo and is also a common type of tocopherol
in the European diet (Galmés et al., 2018). It has been proven
that α-T supplementation can improve cell-mediated immunity,
and only α-T is selected to set the recommended dietary
allowance (RDA) of vitamin E for Americans (Meydani et al.,
1990; Meydani et al., 1997; Institute of Medicine (US) Panel on
Dietary Antioxidants and Related Compounds, 2000; Ranard and
Erdman, 2018). Tocopherols are only synthesized on the inner
chloroplast membrane of photosynthetic organisms, including
plants, green algae, and some cyanobacteria. Undoubtedly, a daily
supplement of α-T derived from plant-based food is a safe and
natural way to ensure human health.

Oilseed rape (Brassica napus L., AACC, 2n = 38) is one
of the most important resources of edible vegetable oil in
the world, accounting for about 16% of the total global
vegetable oil production (Cheng et al., 2019). High-quality
rapeseed oil, containing multiple beneficial nutrients including
vitamin E, is the dominant edible vegetable oil in China,
Europe, and Canada. A daily supplement of vitamin E via
rapeseed oil is the safest and most effective way to keep the
nutritional requirement for the human body. Therefore, genetic
improvement of vitamin E content has been considered a key
breeding objective (Cheng et al., 2019; Yan et al., 2021). However,
oilseed rape is a typical allotetraploid crop, and most of the genes
have multiple homologous copies with redundant or diverse
functions (Chalhoub et al., 2014; Braatz et al., 2017; Zaman
et al., 2019, 2021; Li et al., 2021). Clarification of the detailed
roles of each homologous copy is the basis of the further
breeding application.

The biosynthesis pathway of tocopherols has been extensively
studied in the model plant Arabidopsis thaliana (Valentin
et al., 2006; Vom Dorp et al., 2015). Tocopherol biosynthesis
begins with the formation of homogentisic acid (HGA),
which is catalyzed by p-hydroxyphenylpyruvic acid dioxygenase
(HPPD/PDS1) and is derived from the deamination of tyrosine
(Norris et al., 1995, 1998; Tsegaye et al., 2002). Phytyldiphosphate
(PDP) is formed by phytol kinase, and phytyl—P kinase catalyzes

the formation of phytol (Valentin et al., 2006; Vom Dorp
et al., 2015). HGA and PDP are condensed to 2-methyl-
6-phytyl-1,4-benzoquinol (MPBQ) catalyzed by the enzyme
homogentisatephytyltransferase (HPT), which is encoded by
VTE2 gene (Venkatesh et al., 2006). The 2-methyl-6-phyty-1,4-
benzoquinol methyltransferase (MPBQ MT) methylates MPBQ
to 2,3-dimethyl-6-phytyl-1,4-benzoquinone (DMPBQ), while
MPBQ and DMPBQ are transformed into γ- and δ-tocopherol,
respectively, by tocopherol cyclase (TC). TC is encoded by the
VTE1 gene, and MPBQ MT is encoded by VTE3 gene (Porfirova
et al., 2002; Semchuk et al., 2009). Then, the γ-Tmethyltransferase
(γ-TMT) encoded by VTE4 gene catalyzes the conversion of δ-
to β-T and γ- to α-T (Porfirova et al., 2002; Bergmüller et al.,
2003; DellaPenna and Pogson, 2006; Hunter and Cahoon, 2007;
Figure 1). Thus, VTE4 directly affects the content of α-T and γ-T.
However, the putative functional differentiation of the VTE4 gene
in B. napus is still unclear.

In this study, four putative copies of the BnVTE4 gene have
been identified from the latest oilseed rape genome database.
The functional contribution of BnVTE4 homologs in the α-T
biosynthesis is studied by generating different mutation types
using CRISPR/Cas9 genome editing technology. This study will
shed new light on the breeding application of high α-T content
in oilseed rape.

MATERIALS AND METHODS

sgRNA Design and Vector Construction
Four homologous copies of the BnVTE4 gene were
retrieved in the B. napus genome database,1 namely
BnaC02G0197500ZS (VTE4.C02-1), BnaC02G0331100ZS
(VTE4.C02-2), BnaA02G0247300ZS (VTE4.A02-1), and
BnaA02G015430ZS (VTE4.A02-2). Two sgRNAs with minimal
off-target effects were designed using CRISPR-P 2.02 at
the conserved sequence positions of the third and fourth
exons, namely S1 (GGTGAGCATATGCCTGACA) and S2
(CCATGGGAGCAGAACCTCT). The sgRNA assembly and
vector construction were performed as a previous report (Xing
et al., 2014; Ma et al., 2015).

Plant Material and Genetic
Transformation of Oilseed Rape
The qualified genome editing vector was transferred into
Agrobacterium tumefaciens strain (GV3101) by the heat shock
method. The vector containing two sgRNAs was introduced into
B. napus L. variety “Zhongshuang 6” by the Agrobacterium-
mediated transformation (Li et al., 2018). The selection marker
was Kanamycin. The T0 generation mutants were planted in
the artificial climate room and grown under a photoperiod of
the 16 h light/8 h dark at a temperature of 22◦C, and the T1
generation was planted in the field of the Hanchuan transgenic
base, Hubei, China.

1http://cbi.hzau.edu.cn/bnapus/
2http://crispr.hzau.edu.cn/cgi-bin/CRISPR2/CRISPR
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Identification of Positive Mutants
Plant genomic DNA was extracted from leaves by
the CTAB (hexadecyltriethyl ammonium bromide)
method. We used NPTII gene-specific primers NPTII-F
(5′-GATGGATTGCACGCAGGT-3′) and NPTII-R (5′-
TCGTCAAGAAGGCGATAGA-3′) for PCR reaction to identify
positive transgenic plants.

To identify whether the BnVTE4 gene of the positive
transgenic plants had been edited, gene-specific primers
(Supplementary Table 1) were used to amplify the DNA
sequence containing the target site by PCR, and then Sanger
sequencing was used to identify the mutants. The heterozygous
mutants were determined by the Hi-TOM platform (Liu et al.,
2019). Hi-TOM sequencing consists of two rounds of PCR. In
the first round of PCR, gene-specific primers (Supplementary
Table 1) were used to amplify the genomic sequence of about
500–2,000 bp around the 4 copies of the target site. In the
second round of PCR, gene-specific primers containing Hi-TOM
adaptor primers (Supplementary Table 1) were used to amplify
the 80–300 bp genomic region around the target site. The
products of the second round were sequenced by the company.3

Tocopherol Extraction and Analysis
Tocopherol extraction was performed according to the reported
method with slight modification (Yu et al., 2016; Xu et al., 2019).
A total of 200 mg seeds were placed in a 2 ml centrifuge tube
with 1 steel bead of a 5-mm diameter and grounded for 5 min
at 60 Hz using a rapid grinder. An accurate 60 mg aliquot was
weighed from the ground seeds. Three biological replicates were
set up. Tocopherols were extracted by adding 1.5-ml hexane.
The mixture was sealed and shaken for 4 h in the dark and
then extracted at 4◦C for 12 h. The mixture was centrifuged at
10,000 rpm for 10 min, and the supernatant was filtered through
a.22-µm organic membrane.

Determination of tocopherols was carried out on high-
performance liquid chromatography (HPLC, Waters).
Agilent liquid chromatography column ZORBAX RX-SIL
(4.6 mm × 250 mm) was used, and the temperature was set at
30◦C. The mobile phase was n-Hexane:isopropanol (99:1, v/v) at
a flow rate of 1 ml/min. The sample composition was determined
qualitatively and quantitatively by UV light at 292 nm. Standards
(95%, pure HPLC) for α- and γ-T were purchased from Merck,
and all the standards and samples were in 5 µl injection volumes.

Statistical software SPSS v22.0 was used to analyze the data,
and one-way ANOVA was employed to comparatively analyze
the differences between α- and γ-T of different copy mutation
combination materials and wild-type rape seeds (p< 0.05).

RESULTS

Sequence Analysis and Vector
Construction for BnVTE4 Gene
Genomic sequence analysis showed that the BnVTE4 gene
possesses four homologous copies in B. napus, each of which

3http://121.40.237.174/Hi-TOM/

is composed of six exons and five introns. Two sgRNAs
(named S1 and S2) were designed in their conserved sequence
regions located in the third and fourth exons, respectively
(Figures 2A,B).

Generation of Different BnVTE4 Mutation
Types in Oilseed Rape
In order to elucidate the possible functional differentiation of
different homologous copies of the BnVTE4 gene during α-T
synthesis, we screened different mutation types of BnVTE4
editing in the T1 generation. Five editing types with different
mutation combinations were obtained, named bnvte4-1, bnvte4-
2, bnvte4-3, bnvte4-4, and bnvte4-5, respectively. Sequencing
results indicated that VTE4.C02-1 and VTE4.C02-2 copies were
homozygous mutations or wild type (WT) (Figure 3A). All five
editing types had a homozygous mutation in the VTE4.C02-
1 copy with a single base insertion leading to a frame shift.
The VTE4.C02-2 copy also had homozygous mutations with
single-base insertions leading to a frame shift in bnvte4-1,
bnvte4-3, bnvte4-4, and bnvte4-5, except for bnvte4-2 that was
not mutated (Figure 3). VTE4.A02-1 and VTE4.A02-2 copies
had heterozygous mutations in some editing types, and Hi-
TOM high-throughput sequencing was employed to verify the
editing frequency and amino acid changes at the targeted sites
(Figures 3B–F and Supplementary Figures 1, 2). VTE4.A02-1
in bnvte4-1 and bnvte4-4 was unmutated (WT). One nucleotide
deletion in the VTE4.A02-1 copy of bnvte4-2 caused 64% of
the frame shifts (Figures 3A,C). Both bnvte4-3 and bnvte4-
5 had one or several nucleotide deletions and one nucleotide
insertion in the VTE4.A02-1 copy, 78 and 83%, respectively
(Figures 3A,D,F), resulting in frame shifts or amino acid
deletions. The VTE4.A02-2 copies of bnvte4-1 had a deletion
of one nucleotide, resulting in frame shifts (Figures 3A,B).
The VTE4.A02-2 copies of bnvte4-2 had a deletion of one
nucleotide, resulting in frame shifts that accounted for only
6%, and the one nucleotide substitution without amino acid
change accounted for only 1% (Figures 3A,C). Both bnvte4-3 and
bnvte4-5 had one or more nucleotide deletion and one nucleotide
insertion in the VTE4.A02-2 copy, accounting for 88 and 90%,
respectively (Figures 3A,D,F), resulting in frame shifts or amino
acid deletions. The VTE4.A02-2 copy of bnvte4-4 had one or
more nucleotide deletions, resulting in frame shifts of just 12%
(Figures 3A,E).

Determination of Tocopherol Content in
BnVTE4 Mutant Types
The five BnVTE4 T1-mutated lines and WT control were grown
and harvested under the same condition with good growth
and no significant difference from the control (Supplementary
Figure 3), and mature seeds were used to determine the content
and composition of tocopherols. HPLC results showed that the
contents of α-T and γ-T were successfully detected in both WT
control and T1 seeds (Figure 4). Consistent with a previous
report (Zhang et al., 2007), the β- and δ-tocopherol contents were
extremely low, which were neglected in the subsequence analysis.
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FIGURE 1 | A simplified pathway of vitamin E isoform conversion. HGA, homogentisic acid; PDP, phytyldiphosphate; MPBQ, 2-methyl-6-phytyl-1,4-benzoquinol;
DMPBQ, 2,3-dimethyl-6-phytyl-1,4-benzoquinone; α-T, β-T, γ-T, and δ-T are α, β, γ, and δ isoforms of tocopherol. VTE genes are described in the text.
γ-Tocopherol methyltransferase (γ-TMT) gene VTE4 (bold) is the target gene to be edited in this study.

As shown in Figure 4, α-T content in BnVTE4 mutant lines
was substantially decreased and significantly lower than that in
WT (p < 0.05, Figure 5A). The reduction of α-T content in
the bnvte4-2 mutant type was the lowest one among these five
mutant types. The reduced α-T content was accompanied by a
significant increase in γ-T content compared to the WT (p< 0.05,
Figure 5B), except for the bnvte4-2 mutant type, which had a
similar level of γ-T compared to WT. Nevertheless, the ratios of
α- to γ-T (α-/γ-T) in all five BnVTE4 mutant types were only 0.1–
0.5, which were significantly lower than 0.67 in WT oilseed rape
(p < 0.05, Figure 5C). This result confirmed that the mutations
in the BnVTE4 gene can significantly affect the conversion of γ-T
to α-T.

Comparing the mutations in individual copies of the BnVTE4
gene (Figure 3A) with the change in tocopherol composition
(Figure 5), we found that the homologous copies of the
BnVTE4 gene had different contributions in α-T biosynthesis.
bnvte4-3 and bnvte4-5 lines had both homozygous mutations in
VTE4.C02-1 and VTE4.C02-2 copies, and the editing efficiency in
VTE4.A02-1 and VTE4.A02-2 copies were both more than 50%.
There was no significant difference in α-T and γ-T content, as
well as the α-/γ-T ratio between these two lines. The bnvte4-1

and bnvte4-5 differed in the mutation of the VTE4.A02-1 copy.
The bnvte4-1 had no mutation in VTE4.A02-1, while bnvte4-5
had 83% editing efficiency in this gene. The bnvte4-1 showed
significant differences in α- and γ-T contents and the α-/γ-T
ratio compared with bnvte4-5, implying the contribution of the
VTE4.A02-1 copy to α-T synthesis.

The bnvte4-1 and bnvte4-4 were only different at the mutation
in the VTE4.A02-2 copy. The VTE4.A02-2 copy in bnvte4-1 was
completely mutated, while the editing efficiency of bnvte4-4 was
only 12%, but the α-T and γ-T contents and the α-/γ-T ratio were
not significantly different. This suggested that the contribution
of the VTE4.A02-2 copy might be low. Alternatively, the wild-
type copy of VTE4 in bnvte4-1 and bnvte4-4 might dominate
the contribution, leading to the effect of the VTE4.A02-2 mutant
being insignificant.

VTE4.C02-1 and VTE4.A02-2 copies in bnvte4-2 and bnvte4-4
had similar mutation patterns, while the other two VTE4 genes
had different mutation profiles. The VTE4.C02-2 copy in bnvte4-
2 was WT, and its VTE4.A02-1 copy had an editing efficiency
of 64%, while VTE4.C02-2 in bnvte4-4 was completely mutated,
and its VTE4.A02-1 copy was not mutated. The α-T and γ-T
contents and the α-/γ-T ratio between bnvte4-2 and bnvte4-4
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FIGURE 2 | A schematic diagram of BnVTE4 gene editing vector construction. (A) Rectangular boxes indicate exons of VTE4.C02-1, VTE4.C02-2, VTE4.A02-1, and
VTE4.A02-2 copies; black horizontal lines represent introns; thickened black vertical lines show sgRNA1 (S1) targeting Exon3; thickened dashed lines indicate
sgRNA2 (S2) targeting Exon4. (B) A schematic diagram of the BnVTE4 gene editing vector. sgRNA1 is initiated and terminated by U6-26p and U6-26t, respectively,
sgRNA2 is initiated and terminated by U6-29p and U6-26t, respectively.

FIGURE 3 | Mutation type, mutation efficiency, and amino acid alterations in homologous copies of the BnVTE4 gene in the T1 generation. (A) Mutation efficiency of
each copy of the BnVTE4 mutant. (B) Mutation types and amino acid alterations in homologous copies in the BnVTE4 gene of bnvte4-1. (C) Mutation types and
amino acid alterations in homologous copies in the BnVTE4 gene of bnvte4-2. (D) Mutation types and amino acid alterations in homologous copies in the BnVTE4
gene of bnvte4-3. (E) Mutation types and amino acid alterations in homologous copies in the BnVTE4 gene of bnvte4-4. (F) Mutation types and amino acid
alterations in homologous copies in the BnVTE4 gene of bnvte4-5.
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FIGURE 4 | Determination of the components and content of tocopherol by HPLC. The peak at 5.2 min indicated α-T, the peak at 8.5 min indicated γ -T and the
peak area indicated the content of tocopherol. (A) Two types of tocopherols in the wild type control (WT) were determined by HPLC. (B) Two types of tocopherols in
bnvte4-1 were determined. (C) Two types of tocopherols in bnvte4-2 were determined. (D) Two types of tocopherols in bnvte4-3 were determined. (E) Two types of
tocopherols in bnvte4-4 were determined. (F) Two types of tocopherols in bnvte4-5 were determined.

FIGURE 5 | The α-and γ-T content and the ratio in T1 transgenic mutants. (A) The α-T content of the mutants. (B) The γ-T content of the mutants. (C) The α-/γ-T
ratios of mutants.

were significantly different. The α-/γ-T ratio of bnvte4-2 was
higher than that of bnvte4-4, suggesting that the contribution of
VTE4.C02-2 might be greater than that of VTE4.A02-1.

The α-T and γ-T contents, and the α-/γ-T ratio of bnvte4-
3, bnvte4-4, and bnvte4-5 were not significantly different. In
terms of mutation type, bnvte4-3 and bnvte4-5 were similar.
VTE4.C02-1 and VTE4.C02-2 copies in bnvte4-4 were fully
mutated, same as in bnvte4-3 and bnvte4-5. However, VTE4.A02-
1 and VTE4.A02-2 copies did not exhibit mutation type, which
again demonstrated that VTE4.A02-1 and VTE4.A02-2 copies
might have a minor contribution.

It is particularly worth mentioning the obviously different
tocopherol profile of bnvte4-2 to other mutant types. bnvte4-2
had similar mutations to other lines except for the VTE4.C02-
2 copy that was WT other than homozygous mutation in other
lines. Considering the lowest reduction of α-T in bnvte4-2 (from

185 mg/kg in WT to 123 mg/kg), while other lines had reduced
α-T to ∼60 mg/kg, the key difference was the WT copy of
VTE4.C02-2 compared to a homozygous mutation in other lines.
This again suggested the great contribution of VTE4.C02-2 in
α-T synthesis.

DISCUSSION

Tocopherol, especially α-tocopherol, is not only an important
scavenger of stress-induced oxidative damage but an essential
nutrient for human health. Genetic improvement of high-quality
rapeseed oil with multiple vitamins such as α-tocopherol is an
effective way to ensure the daily nutritional requirement of the
human body. However, the complex genomic structure of oilseed
rape that most of the genes have multiple homologous gene
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copies with putative redundant or diverse gene functions is one
of the open questions for breeding application.

CRISPR/Cas9 technology has several inherent advantages in
the precisely studying gene functions and subsequent application
in crop plants (Lee et al., 2018; Hirohata et al., 2019; Zhai et al.,
2019), especially polyploidy crops such as oilseed rape. In our
previous studies, the highly efficient genome editing platform has
been established to dissect the functional diversity of different
homologs in oilseed rape (Li et al., 2018; Zaman et al., 2019;
Cheng et al., 2021). Many independent case studies suggested that
the homologous gene copies, although possess similar genomic
information, often exert different effects in a particular trait
(Okuzaki et al., 2018; Zhai et al., 2019, 2020; Ahmar et al., 2021;
Chen et al., 2021).

To elucidate the contribution of the BnVTE4 gene in α-T
biosynthesis, its four homologous gene copies were studied in
detail by using CRISPR/Cas9 genome technology. To generate
different mutation combinations of BnVTE4 homologs, two
sgRNAs were designed to target their conserved regions in
exon 3 and exon 4 of the coding sequences. Sequencing data
demonstrated that the majority of BnVTE4-mutated lines showed
homozygous mutation types in VTE4.C02-1 and VTE4.C02-
2 homologous copies (Figure 3A), which suggested that our
designed sgRNA1 had high mutation capacity on the genomic
region of BnVTE4 homologs. However, it was very difficult
to obtain homozygous mutation types in VTE4.A02-1 and
VTE4.A02-2 homologs, even dozens of positive transgenic T0
lines and plenty of T2 plants had been performed by mutation
screening. One of our hypotheses is that those four homologous
copies probably have functional diversification in α-tocopherol
biosynthesis or other key developmental processes such as seed
vigor. Similar to this result, simultaneous mutation of five BnJAG
homologs drastically affected the seed development, and its seeds
are hard to survive, whereas the single mutation of BnJAG.A08-
NUB homologous copy displays a pod-shattering resistance
phenotype (Zaman et al., 2019).

To further evaluate the contribution of BnVTE4 homologs in
α-tocopherol biosynthesis, the mutation frequency of VTE4.A02-
1 and VTE4.A02-2 homologs was quantified by the Hi-TOM
high-throughput sequencing method. Hi-TOM data suggested
that the mutation frequency of VTE4.A02-1 and VTE4.A02-2
homologous copies exhibited a significant difference in bnvte4-
1 and bnvte4-5 mutation lines. In addition, sequencing data
showed that the most common mutation types were –1/+1 bp
indels, and the amino acid sequence was completely changed
due to a frame shift (Figures 3B–F). Thus, the designed
sgRNAs can effectively generate targeted mutagenesis in all
BnVTE4 homologous copies. This result was further verified by
subsequence analysis of tocopherols content using HPLC, which
demonstrated that the α- and γ-tocopherol contents and α-
/γ-tocopherol ratios of these mutated lines showed significant
alteration compared to WT control.

However, the effect of different mutation combinations on
α-T content was a significant difference among five mutated
lines. Similar mutation types (bnvte4-3 and bnvte4-5) showed no
significant difference in α-T content. There was no significant
difference in the content of α-T when the mutation types of

the other copies except VTE4.A02-2 were similar (bnvte4-1
and bnvte4-4), indicating that the VTE4.A02-2 copy did not
play a major role in α-tocopherol biosynthesis. This conclusion
was supported by comparing bnvte4-3 and bnvte4-5. The
content of α-T was significantly different when the mutation
types were similar for other copies except for VTE4.A02-1
(bnvte4-1 and bnvte4-5), indicating the VTE4.A02-1 copy was
important. VTE4.C02-2 and VTE4.A02-2 mutation types of
bnvte4-2 and bnvte4-3 were different, and the content of α-T
was significantly varied. The functionality of the VTE4.C02-
2 copy was revealed in BnVTE4-2 by comparing it to other
lines. The significant difference in the content of α-T when
the mutation types of other copies except VTE4.C02-2 are
similar (bnvte4-2 and bnvte4-4) indicates that VTE4.C02-2 played
an important role. Taken together, those data demonstrated
that the four BnVTE4 gene homologs might have functional
differentiation in α-T biosynthesis, and their contribution
was likely VTE4.C02-2 (BnaC02G0331100ZS) > VTE4.A02-
1 (BnaA02G0247300ZS) > VTE4.A02-2 (BnaA02G0154300ZS).
This knowledge will shed new light on the cultivation of high
α-T-content oilseed rape.
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