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A high resolution dataset is one of the prerequisites for tea chrysanthemum detection
with deep learning algorithms. This is crucial for further developing a selective
chrysanthemum harvesting robot. However, generating high resolution datasets of the
tea chrysanthemum with complex unstructured environments is a challenge. In this
context, we propose a novel tea chrysanthemum – generative adversarial network
(TC-GAN) that attempts to deal with this challenge. First, we designed a non-linear
mapping network for untangling the features of the underlying code. Then, a customized
regularization method was used to provide fine-grained control over the image details.
Finally, a gradient diversion design with multi-scale feature extraction capability was
adopted to optimize the training process. The proposed TC-GAN was compared with
12 state-of-the-art generative adversarial networks, showing that an optimal average
precision (AP) of 90.09% was achieved with the generated images (512 × 512) on
the developed TC-YOLO object detection model under the NVIDIA Tesla P100 GPU
environment. Moreover, the detection model was deployed into the embedded NVIDIA
Jetson TX2 platform with 0.1 s inference time, and this edge computing device could be
further developed into a perception system for selective chrysanthemum picking robots
in the future.

Keywords: tea chrysanthemum, generative adversarial network, deep learning, edge computing, NVIDIA Jetson
TX2

INTRODUCTION

Some researches indicated that tea chrysanthemum has great commercial value (Liu et al., 2019).
Besides, tea chrysanthemums offers a range of health benefits (Yue et al., 2018). For instance, it
can considerably suppress carcinogenic activity and has significant anti-aging effects (Zheng et al.,
2021). In the field, a tea chrysanthemum plant could present multiple flower heads, varying in
different growth stages and sizes. Normally, tea chrysanthemums at the early flowering stage hold
the best commercial value and health benefits, so they are mainly manually harvested at the early
flowering stage, and this is a labor-intensive and time-consuming process.

Rapid developments in artificial intelligence and robotics offer a new opportunity to automate
this harvesting task, dealing with the current scarcity of the skilled laborers (Dhaka et al., 2021;
Kundu et al., 2021; Liu et al., 2021; Wieczorek et al., 2021). Hence, it is urgent to develop a
selective harvesting robot. The perception system and manipulator are the two key components
for developing selective harvesting robot. Many studies have shown that a high resolution image
dataset has a profound impact on detection performance as it contains fine-grained features
for object recognition (Zhou et al., 2021). However, collecting a dataset of tea chrysanthemums
presents inherent difficulties. Tea chrysanthemums normally mature once a year and have to be
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picked at the early flowering stage to maximize commercial
values. Moreover, the early flowering stage is incredibly short,
typically from only 2 days to 1 week. Currently, there is no
publicly available dataset on tea chrysanthemums worldwide for
developing a detection algorithm, which is a hindrance to build
an intelligent selective harvesting robot and other intelligent
phytoprotection equipment (Ansari et al., 2020; Alsamhi et al.,
2021, 2022), e.g., Internet of Things based solar insecticidal
lamps. Therefore, it is important to have a good dataset of
tea chrysanthemums.

Using classical data augmentation to expand datasets and
balance categories were reported in Tran et al. (2021).
Nevertheless, classical data enhancement methods (rotation,
translation, flipping, and scaling, etc.) only allow for restricted
feature diversity, prompting the utilization of generated data.
Generated samples provide more variation and further enrich
the dataset to improve training accuracy. Recent approaches
address the data generation issues through utilizing generative
adversarial networks (GANs) (Wang et al., 2019). These methods
use an encoder-decoder strategy to generate fake images that
can be used to enrich the original dataset. GANs have shown
the impressive results by generating stunning fake images such
as human faces (Zhao et al., 2019). However, GANs still suffer
from non-negligible flaws. In our case, three issues need to be
further investigated.

Issue 1: In the current agricultural field, GAN generates
images with a maximum resolution of 256 × 256 pixels. This
is not suitable for the chrysanthemum detection task as the
low resolution images contain restricted information about
the environment related features, which somewhat affects the
robustness of the whole model. How to generate images that can
meet the detection task resolution of the tea chrysanthemum is
an issue requiring further exploration.

Issue 2: The traditional GAN directly provides the latent
code to the generative network, resulting in a massive feature
entanglement, thus directly influencing the diversity of the
generated chrysanthemum images. How to design a network
structure that could improve the diversity of the generated
chrysanthemum images is an issue to be further explored.

Issue 3: The alternating optimization of generators and
discriminators makes the GAN prone to pattern collapse and
gradient vanishing during training, so how to achieve stable
training is an issue to be further explored.

Based on these three issues, we propose a tea
chrysanthemum – generative adversarial network (TC-GAN)
that can generate images with diversity at 512 × 512 resolution,
as well as stable training. We decouple the latent code into
intermediate vectors via a Mapping Network, resulting in
controlling the diversity of chrysanthemum features. Also,
we apply path length regularization in the Mapping Network,
leading to more reliable and consistent behavior of the model
and making architectural exploration easier. In the generative
network, we add Stochastic variation after each convolutional
layer to increase the diversity of the chrysanthemum images.
Finally, we embed Res2Net into the generative network so that
we can better guide the gradient flow to alleviate pattern collapse
and gradient vanishing during the training process.

In this article, our goal is to generate datasets that can be used
for the tea chrysanthemum detection task. We tested the images
generated by TC-GAN on some state-of-the-art object detection
models, as well as our own proposed detection model (TC-
YOLO) (Qi et al., 2022). Moreover, for subsequent development
work on an automated selective chrysanthemum picking robot,
we chose to test the images generated by TC-GAN on a low-
power embedded GPU platform, the NVIDIA Jetson TX2, as
shown in Figure 1.

The contributions of this article are as follows:

1. High resolution (512 × 512) images of tea
chrysanthemums with complex unstructured
environments (illumination variations, occlusions,
overlaps) were generated using the proposed TC-
GAN model.

2. The images generated with TC-YOLO quantified the
impact of five aspects, i.e., (1) dataset size, (2) epoch
number, (3) different data enhancement methods,
(4) various object detection models, and (5) complex
unstructured environments on the TC-YOLO model,
and verified the superiority of the TC-GAN model by
comparing with some state-of-the-art GANs.

3. TC-YOLO, developed from images generated by TC-GAN,
was successfully deployed and tested in the edge device
NVIDIA Jetson TX2.

The rest of this article is organized as follows. Section “Related
Work” describes the research background. Section “Materials
and Methods” depicts the proposed TC-GAN structure. Section
“Results” presents the experimental details. Section “Discussion”
describes the contribution of this article and the limitations of the
research, as well as pointing out possible future solutions. Section
“Conclusion” gives a concise summary of this article.

RELATED WORK

Some GANs emerged to response the aforementioned Issue
3. Conditional Generative Adversarial Net (CGAN) (Liu
et al., 2020) can strengthen the robustness of the model by
applying conditional variables to the generator and discriminator
that alleviate pattern collapse. Deep convolutional generative
adversarial networks (DCGAN) (Jeon and Lee, 2021), the first
GAN architecture based on convolutional neural networks,
demonstrates a stable training process that effectively mitigates
pattern collapse and gradient vanishing, but suffers from low
quality and inadequate diversity of the generated images.
Wasserstein GAN (WGAN) (Zhou et al., 2022) uses Wasserstein
as an alternative to Jensen-Shannon (JS) divergence for
comparing distributions, producing better gradients and
improving training stability. Nevertheless, WGAN has difficulty
converging due to the use of weight clipping, which can lead to
sub-optimal performance.

Conditional Generative Adversarial Net, DCGAN, and
WGAN had a profound impact on the development of GAN.
Moreover, with the development of deep learning techniques,
some high-performance GANs emerged to mitigate pattern
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FIGURE 1 | The results of testing tea chrysanthemum – generative adversarial network (TC-GAN) on NVIDIA Jetson TX2. First, we used an HDMI cable to connect
the laptop with the Jetson TX2, and ensure that the laptop and Jetson TX2 were under the same wireless network. Then, the TC-YOLO model and the tea
chrysanthemum dataset were embedded in the flashed Jetson TX2 for testing.

TABLE 1 | Details of the twelve latest generative adversarial networks.

Algorithm Published year Characteristic Resolution

Progressive GAN (Collier et al., 2018) 2017 Grow the generator and discriminator progressively 64 × 64

LSGAN (Mao et al., 2019) 2017 Applying the least squares loss function 112 × 112

SN-GAN (Mufti et al., 2019) 2018 Applying spectral normalization 32 × 32

MGAN (He et al., 2019) 2018 Applying multi-channel gait templates 64 × 64

Dist-GAN (Tran et al., 2018) 2018 Applying a latent-data distance constraint 64 × 64

Rob-GAN (Liu and Hsieh, 2019) 2019 Jointly optimize generator and discriminator 128 × 128

AutoGAN (Gong et al., 2019) 2019 Applying NAS algorithm 64 × 64

BigGAN (Qiao et al., 2020) 2018 Applying orthogonal regularization 512 × 512

Improved WGAN (Yang et al., 2020) 2020 Injecting an instance noise 128 × 128

Improved WGAN-GP (Kim et al., 2021) 2021 Wasserstein GAN with gradient penalty 28 × 28

Improved DCGAN (Chao et al., 2021) 2021 Applying batch normalization 64 × 64

DAG (Tran et al., 2021) 2021 Improve learning of the original distribution 48 × 48

collapse and gradient vanishing, resulting in stable training.
Specific details are shown in Table 1. We will compare these
models with the proposed TC-GAN in section “Results.”

We collated the available literature on image recognition
using GANs in agriculture, with a particular focus on the
generated image resolution and the complex unstructured
environment in the generated images, as shown in Table 2. High-
resolution images contain better fine-grained features and more
complex unstructured environments, facilitating the extraction
of abundant image features for robust detection results. Also,
high resolution images make transfer learning easier, and current
object detection frameworks typically require datasets with a
resolution higher than 416 × 416 (Liu and Wang, 2020). Not
only that, to summarize the GANs in Tables 1, 2, several
structural improvements are needed. First, the latent codes (input
vectors) in the GANs in Tables 1, 2 are directly fed into the
generator network. Nevertheless, the design of using latent codes
to generate specific visual features is somewhat restricted so that
it has to consider the probability density of the input data. This
design can prevent some latent codes from being mapped to
features, resulting in feature entanglement. The proposed model
structure allows vectors to be generated without considering

the input data distribution through a custom mapping network,
as well as reducing the correlation between different features.
Second, multi-scale extraction and feature fusion can effectively
guide the gradient flow, but in the GANs in Tables 1, 2, the
structure is designed mainly for normalization approaches, loss
functions, control variables and mapping relationships between
generators and discriminators. Currently, the structure of GANs
lacks design for multi-scale extraction and feature fusion. The
generator structure of the proposed model focuses on the
combination of multi-scale extraction and feature fusion.

MATERIALS AND METHODS

Datasets
The tea chrysanthemum dataset utilized in this article was
collected from October 2019 to October 2020 in Sheyang County,
Dongzhi County and Nanjing Agricultural University, China.
The datasets were all collected using an Apple X phone with an
image resolution of 1080 × 1920. The datasets were captured in
natural light under three environments, including illumination
variation, overlap and occlusion. The chrysanthemums in the
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TABLE 2 | Available literature using GAN for image recognition in agriculture.

Algorithm Published year Task Accuracy (%) Resolution Test environment

DCGAN (Gandhi et al., 2018) 2018 Plant disease detection 88.6 64 × 64 Illumination

C-DCGAN (Hu et al., 2019) 2019 Tea leaf’s disease identification 90 64 × 64 Illumination

DCGAN (Douarre et al., 2019) 2019 Apple scab segmentation 60 28 × 28 Ideal

CycleGAN (Padilla-Medina et al., 2019) 2019 Detection of apple lesions in orchards 95.57 64 × 64 Ideal

DCGAN (Bian et al., 2019) 2019 Tea clones identifications 76 64 × 64 Ideal

Deep CORAL (Marino et al., 2020) 2020 Potato defects classification 90 64 × 64 Ideal

CAAE (Zhong et al., 2020) 2020 Citrus plant diseases recognition 53.4 64 × 64 Illumination

DCGAN (Nafi and Hsu, 2020) 2020 Plant disease detection 86.63 64 × 64 Ideal

BEGAN (Luo et al., 2020) 2020 Pine cone detection 95.3 64 × 64 Ideal

CGAN (Olatunji et al., 2020) 2020 Kiwi geometry reconstruction 75 28 × 28 Ideal

DCGAN (Talukdar, 2020) 2020 Plant disease classification 95.88 64 × 64 Ideal

DCGAN (Hu et al., 2020) 2020 Recognition of diseased pinus trees 78.6 64 × 64 Ideal

TasselGAN (Shete et al., 2020) 2020 Plant traits detection 94 128 × 128 Illumination

CycleGAN (Zhao et al., 2021a) 2021 Bale detection 93 64 × 64 Ideal

DCGAN (Espejo-Garcia et al., 2021) 2021 Weeds identification 93.23 64 × 64 Ideal

DoubleGAN (Zhao et al., 2021b) 2021 Plant disease detection 99.06 64 × 64 Ideal

AR-GAN (Nazki et al., 2020) 2020 Plant disease recognition 86.1 256 × 256 Illumination

FIGURE 2 | Examples of the collected original images.

dataset comprise three flowering stages: the bud stage, the early
flowering stage and the full bloom stage. The bud stage refers
to when the petals are not yet open. The early flowering stage
means when the petals are not fully open and the full bloom stage
denotes when the petals are fully open. The three examples of the
original images are shown in Figure 2.

NVIDIA Jetson TX2
There is no need to transmit all gathered image data back
to cloud for further processing since the communication
environment in countryside is generally not stable and the
long time delay for smart equipment, i.e., chrysanthemum
picking robot, is not acceptable. The NVIDIA Jetson TX2

has a 6-core ARMv8 64-bit CPU complex and a 256-core
NVIDIA Pascal architecture GPU. The CPU complex consists
of a dual-core Denver2 processor and a quad-core ARM
Cortex-A57, as well as 8 GB LPDDR4 memory and a 128-bit
interface, making it ideal for low power and high computational
performance applications. Thus, this edge computing device
was chosen to design and implement a real-time object
detection system. We introduced the NVIDIA Jetson TX2 in
Figure 3.

Architecture
The proposed TC-GAN comprises a generator and a
discriminator. In the generator, the non-linear mapping network
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FIGURE 3 | NVIDIA Jetson TX2 parameters.

f is implemented with a 4-layer multilayer perceptron (MLP),
as well as applying path length regularization to decorrelate
neighboring features for more fine-grained control of the
generated images. The learned affine transform then specializes
w to the style y = (ys, yb), controlling the Adaptive Instance
Normalization (AdaIN) operation after each convolutional layer
of the synthetic network g, followed by Res2Net to better guide
the gradient flow without increasing the network computational
workload. Finally, we introduce noisy inputs that enable the
generator to provide random detail. We inject a specialized noise
image into each layer (42–5122) of the generator network, these
are single channel images composed of Gaussian noise. The
noise images are used with a feature scaling factor broadcast
to all feature maps, and subsequently applied to the output
of the corresponding convolution. Leaky ReLU is employed
as the activation function throughout the generator. In the
discriminator, the generated 512 × 512 resolution image and the
real image of the same resolution are fed into the discriminator
network simultaneously and mapped to 4 × 4 via convolution.
In the whole convolution process, some diverse modules are
inserted, including CL (Convolution + Leaky ReLU) and CBL
(Convolution + Batch Normalization + Leaky ReLU). It is
worth noting that the GAN training tends to be unstable, and no
extra modules are inserted to guide the gradient flow and make
the overall discriminator network look as simple as possible.
Also, due to the lack of gradient flow in the underlying layer,
the BN module was not inserted in the convolution process.
Leaky ReLU is utilized as the activation function throughout the
discriminator. Moreover, the generator and discriminator both

employ the Wasserstein distance with gradient penalty as the loss
function. The structure of TC-GAN is shown in Figure 4.

Mapping Network
The mapping network consists of four fully connected layers
that map the latent space z to the intermediate latent space w
via affine transformations. Figure 4 depicts the structure of the
mapping network. To capture the location of latent codes with
rich features, this network encourages feature-based localization.
A mixed regularization strategy is adopted, where two random
latent codes are used instead of one latent code to generate
some images during the training process. When generating an
image, we simply switch from one latent code to another at a
randomly picked point in the generative network. Specifically,
the two latent codes z1, z2 are under control in the mapping
network, and the corresponding w1, w2 are allowed to fix
the features so that w1 works before the intersection point
and w2 works after the intersection point. This regularization
strategy prevents neighboring features from being correlated.
Furthermore, extracting potential vectors in a truncated or
reduced sample space helps to improve the quality of the
generated images, although a certain degree of diversity in the
generated images would be lost. Based on this, we can consider
a similar approach. First, after training, intermediate vectors
are generated in the mapping network by randomly selecting
different inputs and calculating the center of mass in these
vectors:

w̄ = Ez∼P(z) (1)
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FIGURE 4 | Structure of the proposed TC-GAN network. Mapping network can effectively capture the location of potential codes with rich features, benefiting the
generator network to accurately extract complex unstructured features. A represents the learned affine transformation. B denotes the learned per-channel scaling
factor applied to the noisy input. Discriminator network is designed to guide the training of the generator network, which is continuously confronted by alternating
training between the two networks, ultimately enabling the generator network to better execute the generation task.

where w̄ stands for the center of mass and z denotes
the latent space.

We can then scale the deviation of a given w from the center
as:

w
′

= w̄+ψ(w− w̄) (2)

where w
′

refers to the truncated w and ψ defines the
difference coefficient between the intermediate vector and
the center of mass.

Stochastic Variation
The sole input of traditional networks is through the input
layer, which generates spatially varying pseudo-random numbers
from earlier activations. This method consumes the capacity of
the network and thus makes it difficult to hide the periodicity
of the generated signal, causing the whole generation process
unstable. To address this challenge, we embed noise along
each convolutional layer. In a feature-based generator network,
the entire feature map is scaled and biased with the same
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values. As a result, global effects like shape, illumination or
background style could be controlled consistently. Moreover,
noise is applied to each pixel individually and thus is eminently
suitable for controlling random variations. Once the generative
network attempts to control the noise, this leads to spatially
inconsistent decisions that will be penalized by the discriminator.
Accordingly, TC-GAN can learn to use global and local channels
properly without clear guidance.

Path Length Regularization
Path length regularization makes the network more reliable and
makes architectural exploration easier. Specifically, we stimulate
fixed-size steps of W to generate non-zero fixed-size variations in
the image. The bias is measured by observing the corresponding
gradient of W in the random direction, which should have a
similar length regardless of w or the image space direction.
This indicates that the mapping from potential space to image
space is conditional.

At a single w ∈ W, the local metric scaling properties of the
generator mapping g (w): W → Y are fixed by the Jacobian
matrix Jw = ∂g (w) /∂w. Since we wish to preserve the expected
length of the vector regardless of its direction, we formulate the
regularizer as:

Ew,y∼N (0,I)(‖ JT
wy ‖2 −a)2 (3)

where y is a random image with normally distributed pixel
intensities, and w ∼ f (z), where z are normally distributed. In
higher dimensions, this prior is minimized when Jw is orthogonal
at any w. An orthogonal matrix retains length and does not
introduce squeezing across any dimension.

This prior is minimized when the expected value of y reaches
the minimum at each latent space point w, respectively, and we
start from the internal expectation:

Lw : = Ey

(
‖ JT

wy ‖2 −a
)2

(4)

We use the single-valued decomposition JT
w = U6̃VT

for analysis. Where U ∈ RL ×L and V ∈ RM ×M represent
orthogonal matrices. Since rotating a unit normal random
variable by an orthogonal matrix will make its distribution
invariant, the equation simplifies to:

Lw = Ey

(
‖ U6̃VTy ‖2 −a

)2
= Ey

(
‖ Ẽy ‖2 −a

)2 (5)

Moreover, the zero matrix effectively marginalizes its distribution
in dimension. Then, we simply consider the minimization of the
expression:

Lw = Eỹ
(
‖ 6ỹ ‖2 −a

)2 (6)

where ỹ is a unit-normal distribution in dimension L. All matrices
JT
W that share the same singular values as 6 generate the same raw

loss values. When each diagonal entry of the diagonal matrix 6
is given the specific same value, thus writing the expectation into
the integral of the probability density over ỹ:

Lw = ∫
(
‖ 6ỹ ‖2 −a

)2 pỹ(ỹ)dỹ

= (2π)−
L
2 ∫

(
‖ 6ỹ ‖2 −a

)2 exp

(
−

ỹT ỹ
2

)
dỹ (7)

To observe the radially symmetric form of the density, we alter to
polar coordinates ỹ = rφ. Such a variable change is replaced by
the Jacobian factor rL−1:

L̃w = (2π)−
L
2 ∫
S

∞

∫
0

(r ‖ 6φ ‖2 −a)2 rL−1exp
(
−

r2

2

)
drdφ (8)

where r represents the distance from the origin, and φ stands
for a unit vector. Thus, the (2π)−L/2rL−1exp

(
−

r2

2

)
denotes

the L-dimensional unit average density expressed in polar
coordinates. The Taylor approximation argument indicates that
when L is high, the density is well-approximated by density
(2πe/L)−

L
2 exp

(
−

1
2 (r − µ)2/σ2)for any φ. Replacing the density

into the integral, the loss is given by approximately:

Lw ≈ (2πe/L)−L/2
∫
S

∞

∫
0

(r ‖ 6φ ‖2 −a)2 exp

(
−

(r −
√

L)2

2σ2

)
drdφ

(9)

where the approximation turns out to be exact in the limit of
infinite dimension L.

By minimizing this loss, we set 6 to obtain a minimum of
the function (r ‖ 6φ ‖2 −a)2 over a spherical shell of radius

√
L.

According to this function becoming constant in φ, the equation
reducing to:

Lw ≈ (2πe/L)−L/2A(S)a2L−1∞
∫
0
(r −
√

L)2exp

(
−

(r −
√

L)2

2σ2

)
dr

(10)

where A(S) indicates the surface area of the unit sphere.
To summarize, we proved that, supposing a high

dimensionality L of the latent space, the path length prior
at each latent space point w is minimal if all the singular values
of the Jacobian matrix for the generator are equal to a global
constant, that is, they are orthogonal up to a global constant.
We avoid the explicit computation of the Jacobian matrix by
using the same JT

wy = ∇w (g (w) · y), and this could be efficiently
computed by standard back-propagation. The constant a is
dynamically set to a long-term exponential moving average
of length ‖ JT

wy ‖2, enabling the optimization to discover the
appropriate global scale on its own.

Res2Net
To alleviate pattern collapse and gradient vanishing, we use a
gradient diversion approach (Res2Net) with stronger multi-scale
feature extraction capabilities. In essence, a set of 3× 3 filters are
substituted with smaller filter groups, connected in a similar way
to the residual mechanism. Figure 5 illustrates Res2Net, we split
the feature map uniformly into s subsets of feature maps after
1 × 1 convolution, denoted by xi, where i ∈{1, 2, . . . s} . Each
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FIGURE 5 | Impact of dataset size and epoch time on TC-GAN.

subset of features xi has the same spatial size compared to the
input feature map, but with 1/s number of channels. Besides x1,
each xi has a corresponding 3 × 3 convolution, denoted by Ki ().
We denote the output of Ki () by yi. This feature subset is summed
with the output of Ki−1 () and fed into Ki (). To minimize the
parameters and increase s simultaneously, we skip the 3 × 3
convolution of x1. Hence, yi could be written as:

yi =


xi i = 1;
Ki (xi) i = 2;

Ki
(
xi + yi−1

)
2 < i ≤ s

(11)

Each 3 × 3 convolutional operator Ki () has the potential
to capture feature information from feature splits

{
xj, j ≤ i

}
.

When the feature slice xj is passed through the 3× 3 convolution
operator, the output may have a larger receptive field than xj . Due
to the combinatorial explosion effect, the output of the Res2Net
module contains varying amounts and various combinations of
receptive field sizes.

In Res2Net, the global and local information of the
chrysanthemum image is extracted through processing the splits
in a multi-scale approach. To better fuse feature information
at different scales, we tandem all the splits and compute them
by 1 × 1 convolution. The segmentation and tandem approach
allow for efficient convolution operations and feature processing.
To minimize the parameter capacity, we skip the convolution
of the first segmentation. In this article, we employ s to control
parameters for the scale dimension. Larger s has the potential to
allow learning features with richer perceptual field dimensions,
with negligible computation of tandem.

Evaluation Metrics
Average precision (AP) is a common evaluation metric in object
detection tasks. In this article, we calculate the average precision

(IoU = 0.5) of the tea chrysanthemum to test the performance of
the model. The equation is as follows:

AP =
N∑

k=1

P
(
k
)
1recall (k) (12)

where N represents the size of the test dataset, P(k) stands for
the precision value of the k tea chrysanthemum images, and
recall (k) denotes the change in recall between k and k-1 tea
chrysanthemum images.

In addition, error and miss rates were introduced in section
“Impact of Different Unstructured Environments on the TC-
YOLO” to investigate the ability of TC-GAN to generate
unstructured environments. error rate indicates a ratio of
the number of falsely detected samples to the total samples.
miss rate refers to the ratio of undetected samples to the
total samples.

Experimental Setup
The experiments were conducted on a server with an NVIDIA
Tesla P100, CUDA 11.2. We built the proposed model using
python with the pytorch framework. During training, the key
hyperparameters were set as follows: epoch = 500; learning
rate = 0.001; and the optimizer used was Adam.

RESULTS

Performance of Tea Chrysanthemum –
Generative Adversarial Network in
Datasets of Different Sizes
To verify the effect of the generated dataset size and the
number of training epochs on the chrysanthemum detection
task, we randomly selected the datasets with 10 different number
of training samples (100, 500, 1000, 1500, 2000, 2500, 3000,
3500, 4000, and 4500) and corresponding ten different training
epochs at 100, 200, 250, 300, 350, 400, 450, 500, 550, and 600,
respectively, from the generated chrysanthemum dataset and
tested them on the proposed TC-YOLO, the results are shown
in Figure 5.

It can be seen that the performance of TC-YOLO improves
with the increase of the dataset size and training epochs.
When the dataset size is less than 1500 and the training
epoch is less than 300, the AP value increases rapidly as the
dataset size and the training epochs increase (13.54–80.53%,
improved by 494.76%). When the dataset size reached 2500,
and the training epoch reached 400, the AP values only slightly
improved and finally converged (from 87.29 to 90.09%) with
the increase of the number of samples and the training epochs.
After the dataset size reached 4000 and the training epoch
reached 550, the detection performance AP value decreased
slightly to 89.51%. Combining these results, we set the optimal
dataset size to 3500 and the optimal training epoch to 500 for
the test experiments in Sections B, C, and D, as it achieved
the highest AP values with the smallest dataset size and the
least training epoch.
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Study on the Performance of Traditional
Data Enhancement Methods and Tea
Chrysanthemum – Generative
Adversarial Network
To investigate the performance of classical data enhancement
methods and TC-GAN, we selected nine classical data
enhancement methods and TC-GAN (Table 3). These data
enhancement methods were configured and tested in the TC-
YOLO object detection model. The results are shown in Table 3.
TC-GAN shows the best performance with an AP value of
90.09%. It was surprising that the advanced data enhancement
methods, such as Mixup, Cutout and Mosaic, had a disappointing
performance with AP values of only 80.33, 81.86, and 84.31%,
respectively. This may be due to the fact that a large amount
of redundant gradient flow would greatly reduce the learning
capacity of the network. We also found that the performance of
Flip and Rotation was second only to TC-GAN, with AP values
of 86.33 and 86.96%. The performance of the model improves
slightly, with an AP value of 87.39% when Flip and Rotation
are both configured on TC-YOLO. Even so, its AP is still 2.7%
lower than TC-GAN.

Comparisons With State-of-the-Art
Detection Models
To verify the superiority of the proposed model, tea
chrysanthemum dataset generated by TC-GAN was used to
compare TC-YOLO with nine state-of-the-art object detection
frameworks (Kim et al., 2018; Zhang et al., 2018; Cao et al., 2020;
Zhang and Li, 2020), and the results are shown in Table 4.

Table 4 shows that TC-GAN not only achieves excellent
performance on the TC-YOLO object detection model with a
mAP of 90.09%, but also performs well on other state-of-the-
art object detection frameworks. TC-GAN is a general data
enhancement method and not constrained to the specific object
detectors. Generally speaking, large image sizes benefit model
training by providing more local feature information, however,
large image sizes (>512 × 512) do not always result in improved
performance. In Table 4, all the models with large image sizes

TABLE 4 | Comparisons with state-of-the-art detection methods.

Method Backbone Size FPS mAP

RetinaNet ResNet101 800 × 800 4.54 82.62

RetinaNet ResNet50 800 × 800 5.31 80.59

RetinaNet ResNet101 500 × 500 7.23 79.13

RetinaNet ResNet50 500 × 500 7.87 83.68

EfficientDetD6 EfficientB6 1280 × 1280 5.29 81.23

EfficientDetD5 EfficientB5 1280 × 1280 6.21 83.51

EfficientDetD4 EfficientB4 1024 × 1024 7.93 83.19

EfficientDetD3 EfficientB3 896 × 896 9.28 84.83

EfficientDetD2 EfficientB2 768 × 768 11.66 84.22

EfficientDetD1 EfficientB1 640 × 640 15.26 82.93

EfficientDetD0 EfficientB0 512 × 512 37.61 82.81

M2Det VGG16 800 × 800 7.08 80.63

M2Det ResNet101 320 × 320 16.89 85.16

M2Det VGG16 512 × 512 21.22 80.88

M2Det VGG16 300 × 300 42.53 78.24

YOLOv3 DarkNet53 608 × 608 12.14 86.52

YOLOv3 (SPP) DarkNet53 608 × 608 15.66 83.89

YOLOv3 DarkNet53 416 × 416 43.25 84.13

PFPNet (R) VGG16 512 × 512 24.35 82.41

RFBNetE VGG16 512 × 512 21.54 77.37

RFBNet VGG16 512 × 512 45.46 85.53

RefineDet VGG16 512 × 512 31.33 81.12

RefineDet VGG16 448 × 448 43.31 79.66

YOLOv4 CSPDarknet53 608 × 608 19.22 85.11

YOLOv4 CSPDarknet53 512 × 512 24.63 84.34

YOLOv5l CSPDenseNet 416 × 416 42.24 88.83

YOLOv5m CSPDenseNet 416 × 416 36.91 86.68

YOLOv5x CSPDenseNet 416 × 416 32.28 84.02

YOLOv5s CSPDenseNet 416 × 416 47.88 88.29

TC-YOLO CSPDenseNet 416 × 416 47.53 90.09

(>512 × 512) were unable to achieve a performance above 87%.
The main reason for this may be that the image size generated
in this article is 512 × 512, which would affect the performance
of models requiring a large input size. To match the input size,
the images could only be artificially resized to the smaller images,

TABLE 3 | Performance comparison of different data enhancement methods.

Flip Shear Crop Rotation Grayscale Blur Mixup Cutout Mosaic TC-GAN AP

√
86.33

√
84.21

√
83.99

√
86.96

√
82.09

√
80.13

√
80.33

√
81.86

√
84.31

√ √
87.39

√
90.09

√
means that this data enhancement method has been adopted.
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resulting in a reduction in image resolution, and this would
considerably affect the final test performance of the models.
Also, transfer learning ability varies between models, and this
may account for some models with over 512 × 512 resolutions
performing poorly. Given the above two reasons, TC-YOLO
has relatively better transfer learning ability compared to other
object detection models. Therefore, TC-YOLO is used as the
test model for generating chrysanthemum images in this article.
Besides, TC-YOLO requires the image input size of 416 × 416,
making the image resolution a relatively minor impact on the
final performance. Furthermore, we deployed the trained TC-
YOLO in the NVIDIA Jetson TX2 embedded platform to evaluate
its performance for robotics and solar insecticidal lamps systems
development. Figure 6 shows the detection results.

Impact of Different Unstructured
Environments on the TC-YOLO
Datasets with complex unstructured environments can effectively
improve the robustness of detection models. This study
investigated the ability of the proposed TC-GAN to generate
complex unstructured environments, including strong light,
weak light, normal light, high overlap, moderate overlap,

normal overlap, high occlusion, moderate occlusion and
normal occlusion, as shown in Figure 7. A total of 26,432
chrysanthemums were at the early flowering stage in the nine
unstructured environments. Since there are no mature standards
to define these different environments, we set the criteria based
on empirical inspection. Strong light is defined as when sunlight
obscures more than fifty percent of the petal area. Weak light
is defined as when the shadows cover less than fifty percent of
the pedal area. Normal light is defined as when the sunlight
covers between zero and fifty percent of the petal area. High
overlap is defined as when the overlapping area between petals is
greater than sixty percent. Moderate overlap is defined when the
overlapping area between petals is between thirty to sixty percent.
Normal overlap is defined when the overlapping area between
petals is between zero to thirty percent. High occlusion is defined
as more than sixty percent of the petal area is obscured. Moderate
is defined as when thirty to sixty percent of the petal area is
obscured. Normal occlusion is defined as when zero to thirty
percent of the petal area is obscured. The chrysanthemums are
counted separately in different environments. For example, when
chrysanthemums in normal light, normal overlap and normal
occlusion appear in one image simultaneously, their numbers
increase by one in the calculation.

FIGURE 6 | Qualitative results of our method. The red box indicates the recognised tea chrysanthemum.
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FIGURE 7 | Example of nine unstructured scenarios.

TABLE 5 | Impact of different unstructured scenarios on the TC-YOLO.

Environment Count Correctly identified Falsely identified Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Strong light 6511 5021 77.12 686 10.54 804 7.25

Weak light 10162 8786 86.46 857 8.43 519 5.11

Normal light 18686 17458 93.43 988 5.29 240 1.28

High overlap 5249 4167 79.39 379 7.22 703 13.39

Moderate overlap 11892 10420 87.62 659 5.54 813 6.84

Normal overlap 17443 16499 94.59 419 2.4 525 3.01

High occlusion 7811 6284 80.45 729 9.33 798 10.22

Moderate occlusion 12162 10661 87.66 630 5.18 890 7.16

Normal occlusion 19299 18147 94.03 648 3.36 504 2.61

Table 5 shows that under normal conditions, with normal
light, normal overlap and normal shading, the AP values
reached at 93.43, 94.59, and 94.03%, respectively. When
the unstructured environment became complicated, the AP
values dropped significantly, especially under the strong light
environment, with only 77.12%. AP value. Intriguingly, the
error rate (10.54%) was highest under the strong light, probably
because the light added shadows to the chrysanthemums.
It also may be due to the poor ability of TC-GAN to
generate high quality images under light environment. The
high overlap had the highest miss rate of 13.39%. Furthermore,
overall, overlap had the least influence on the detection of
chrysanthemums at the early flowering stage. Under high
overlap, the AP, error and miss rates were 79.39, 7.22, and
13.39%, respectively. Illumination had the biggest effect on
chrysanthemum detection at the early flowering stage. Under
high light, the accuracy, error and miss rates were 77.12, 10.54,
and 7.25%, respectively.

Comparison of the Latest Generative
Adversarial Neural Networks
To fully investigate the performance of TC-GAN, TC-GAN and
12 state-of-the-art generative adversarial neural networks were
tested on the chrysanthemum dataset using the TC-YOLO model.
The proposed TC-GAN generated chrysanthemum images with
a resolution of 512 × 512. However, there is variability in the
resolution of the generated images from different generative
adversarial neural networks. Therefore, to facilitate testing of
the TC-YOLO model and to ensure a fair competition between
TC-GAN and these generative adversarial neural networks, we
modified the output resolution of the latest generative adversarial
neural networks. According to the original output resolution
of these neural networks, we modified the output resolution
of LSGAN, Improved WGAN-GP to 448 × 448, BigGAN kept
the original resolution unchanged, and the output resolution of
the remaining generative adversarial neural networks were all
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TABLE 6 | Comparison between tea chrysanthemum – generative adversarial
network (TC-GAN) and state-of-the-art GANs.

Method Size Times/min AP

Improved SN-GAN 32 × 32 1290 80.61

BigGAN 512 × 512 1610 86.45

Dist-GAN 64 × 64 1322 80.68

Progressive GAN 64 × 64 1256 81.11

LSGAN 112 × 112 1410 84.03

Rob-GAN 128 × 128 1293 85.28

MGAN 64 × 64 1151 82.39

AutoGAN 64 × 64 1340 83.25

Improved DCGAN 64 × 64 1280 84.38

DAG 48 × 48 1768 83.29

Improved WGAN-GP 28 × 28 1640 76.16

Improved WGAN 128 × 128 1501 87.16

TC-GAN 512 × 512 1460 90.09

adjusted to 512 × 512, while other parameters were kept fixed.
The performance is shown in Table 6.

Table 6 shows some experimental details. TC-GAN has the
best performance among the latest 12 generative adversarial
neural networks, with an AP value of 90.09%. It is worth noting
that TC-GAN does not have an advantage in training time
among all the latest generative adversarial neural networks, with
all nine models training faster than TC-GAN. Only BigGAN,
Improved WGAN-GP and Improved WGAN are slower than
TC-GAN, with training times of 50, 180, and 241 min slower
than TC-GAN, respectively. This may be due to the design
of the network structure, which increases the depth of the
network and adds a gradient penalty mechanism. In contrast to
most convolutional neural networks, deepening the structure of
generative adversarial neural networks tends to make training
unstable. Also, the gradient penalty mechanism is very sensitive
to the choice of parameters, and this helps training initially,
but subsequently becomes difficult to optimize. Furthermore,
in general, the smaller the original generated image size, the
worse the performance of the generative adversarial neural
network in the detection task. This is because, firstly, current
mainstream adversarial neural networks generate images with
low resolution, and artificially enlarging the resolution would
blur the image, thus affecting the detection accuracy. Then, some
latest models, such as Progressive GAN, Improved DCGAN
and so on, are designed for better faces, and these models are
not robust in terms of transfer ability. Interestingly, among
the 12 latest generative adversarial neural networks, most of
the network structures are unconditional. Nevertheless, from
a comprehensive performance perspective, network structures
with conditional mechanisms, such as the improved WGAN,
have surprisingly good performance. Its training time is only
41 min slower than TC-GAN, while the AP value is only
slightly lower by 2.93%. Network structures with conditional
mechanisms are undoubtedly valuable to learn from, and adding
conditional mechanisms could be a future direction to improve
the performance of TC-GAN. To visualize the performance
of TC-GAN, the images generated by TC-GAN are shown in
Table 7.

TABLE 7 | Generation results of different GANs.

Methods Result

Improved
WGAN-GP

SN-GAN

Dist-GAN

Progressive
GAN

MGAN

AutoGAN

DAG

LSGAN

Improved
DCGAN

Rob-GAN

BigGAN

Improved
WGAN

TC-GAN

Frontiers in Plant Science | www.frontiersin.org 12 April 2022 | Volume 13 | Article 850606

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-850606 April 2, 2022 Time: 14:57 # 13

Qi et al. Generate Tea Chrysanthemum Dataset

FIGURE 8 | (A) Visualization results and (B,C) training process.

DISCUSSION

To investigate the three issues summarized in the section
“Introduction,” we proposed the TC-YOLO and compared
its results with the related work in Table 2. Our proposed

TC-GAN generates high resolution images (512 × 512), and
the E section of the experimental results shows that high
resolution images can significantly enrich environmental features
and thus improve the robustness of the model. GAN is
prone to pattern collapse and gradient vanishing during the
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training process, resulting in the lack of diversity in the
generated image features (Wang et al., 2021). TC-GAN is able to
generate images containing complex unstructured environments
including illumination, overlap and occlusion to gain the benefit
for detection under field environments, whereas most of synthetic
images generated from other GANs listed in Table 2 provide
limited diversity and clear backgrounds. To intuitively view
the image features through the generation process, we show
the visualization process and training process in TC-YOLO
(Figure 8). It can be seen that the important part (flower heads)
of the plants is clearly activated and captured with the TC-YOLO.

There are several points to be optimized for TC-GAN despite
its good detection performance. First, currently, there are no
suitable metrics to evaluate synthetic images. FID is a widely
recognized metric for evaluating synthetic images, but the FID
metric is dedicated to evaluating several specific datasets and
is not applicable to customized datasets. We can only evaluate
the quality of synthetic images by their detection results in an
object detection model. Therefore, establishing a standard set
of evaluation metrics is an urgent issue to be addressed. Next,
the training cost of TC-GAN is expensive. As can be seen from
Table 6, the training of the whole model takes 1460 min under
the 16 GB video memory of Tesla P100, and an ordinary device
is difficult to train effectively. Thus, the light weight of TC-
GAN is beneficial to the promotion of the technology. Besides,
according to the experimental results in section “Impact of
Different Unstructured Environments on the TC-YOLO” of the
experimental results, TC-GAN can not fully construct images
well for the illumination environmental setting. Note that the
lack of efficient interaction between the generator network and
the discriminator network leads to constant oscillation in the
gradient and difficulty in convergence, as shown in Figure 8B.
This is still a challenge without fully addressed in generative
adversarial networks, and we suggest more attention should be
paid to solve this challenge. Finally, our proposed model was
deployed in NVIDIA Jetson TX2 with approximately 0.1 s per
chrysanthemum inference time (the image size is 416 × 416).
It is not real-time performance, and this deserves further
optimization for network architecture such as network pruning
and quantization.

CONCLUSION

This article presents a novel generative adversarial network
architecture TC-GAN for generating tea chrysanthemum

images under unstructured environments (illumination, overlap,
occlusion). The TC-YOLO model is able to generate images
with a resolution of 512 × 512 and achieves the AP of 90.09%,
showing supreme results with other state-of-the-art generative
adversarial networks. Finally, we deployed and tested the TC-
YOLO model in the NVIDIA Jetson TX2 for robotic harvesting
and solar insecticidal lamps systems development, achieving
approximately 0.1 s per image (512 × 512). The proposed TC-
GAN has the potential to be integrated into selective picking
robots and solar insecticide lamp systems via the NVIDIA Jetson
TX2 in the future.
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