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Increasing evidence shows that plant Endophytes play a crucial role in the fitness
and productivity of hosts. Surface sterilization is an indispensable process before
high-throughput sequencing (HTS) and tissue separation of plant endophytes, but
its potential impact on the composition and diversity of endophytes has rarely been
investigated. In the present work, the influence of sodium hypochlorite (NaClO) on
the diversity of endophytic bacteria and fungi in leaves and stems of tea plants was
investigated. We found that the diversity of bacterial endophytes was significantly
affected by the concentration of NaClO as well as the pretreatment time. Pretreatment
with 0.5% NaClO for 8 min and 2.0% NaClO for 3 min were suitable for the tea plant
leaves and stems, respectively, but the effects of NaClO on the diversity of fungal
endophytes were limited according to the results from HTS. Regardless of NaClO
sterilization, most of the endophytes in tissues, such as the dominant taxa, could
not be Isolated by using the regular culture-dependent approaches. Collectively, our
results demonstrated that the pretreatment with NaClO should be modified to precisely
understand the diversity of endophytes from different tissues of tea plants and also
indicate that more attention should be paid to establish specific culture-dependent
protocols for the isolation of plant endophytes.

Keywords: endophytes, surface sterilization, Camellia sinensis, sodium hypochlorite, diversity

INTRODUCTION

As microorganisms inhabiting internal tissue of plants with no negative impacts on hosts,
endophytes, the important components of plant microbiomes (Porras-Alfaro and Bayman, 2011),
have attracted more attention around the world in the last few decades (White et al., 2019).
The colossal biological diversity and the potential for biosynthesizing phytochemicals have made
endophytes microbial resources with great research value and prospects (Jamwal and Gandhi,
2019). In terms of the symbiotic relationship, endophytes exert positive effects on the host plant
in the following ways: (1) Modulating the growth of the host (Saravanan et al., 2008; Shi et al., 2010;
Beltran-Garcia et al., 2014; Verma et al., 2017); (2) Enhancing the abiotic and biotic stress tolerance
of hosts (Redman et al., 2002; Irizarry and White, 2018; Zhang et al., 2019); (3) Influencing the
production of secondary metabolites in the host (Koskimäki et al., 2009; Verginer et al., 2010); and
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(4) Increasing the resistance of the host against pathogens and
pests (Arnold et al., 2003; Hartley and Gange, 2009; Gond et al.,
2015; Busby et al., 2016; Xie et al., 2020). From an individual
perspective, the various secondary metabolites produced by
endophytes not only enrich the chemical diversity of biologically
active molecules, but also make the endophytes a bioengineering
tool for drug discovery (Alvin et al., 2014; Li et al., 2018; Sarsaiya
et al., 2019).

As a worldwide economic woody crop, tea plants (Camellia
sinensis) play essential roles in the forest ecosystem in
which endophytic microorganisms have been a research focus.
According to previous reports, endophytic fungi isolated from
tea plants cover 3 phyla, 5 classes, 14 orders, 24 families, and
34 genera, and endophytic bacteria include 4 phyla, 7 classes,
13 orders, 24 families, and 32 genera (Xie et al., 2020). Research
on biological functions of tea plant endophytes has found that
some tea endophytes not only show antagonism toward tea plant
pathogens (Rabha et al., 2014), but they also have antagonistic
effects on other plant pathogens. In addition, endophytes have
the capacity to promote the growth of tea plants (Nath et al., 2015;
Yan et al., 2018; Borah et al., 2019) as well as to produce or modify
tea plant metabolites (Agusta et al., 2005; Wang et al., 2014; Sun
et al., 2019).

The previous research has shown that endophytes isolated
from tea plants are worth studying in depth. The most frequently
utilized method to isolate endophytes is the tissue separation
with surface sterilization, and the factors of surface sterilization
have a significant influence on the results. Theoretically, the
only condition to determine the exposure duration is complete
surface sterilization. However, because of the agents’ penetration,
it is difficult to eliminate the influence agents have on
endophytic diversity and composition (Hallmann et al., 2006).
Underexposure to the agent leads to the contamination of
cultivable microorganisms and amplifiable nucleic acid, but
overexposure may cause damage to the endophytes (Lundberg
et al., 2012) by inducing DNA mutations (Tosi et al., 2021).
Therefore, it is of importance to established a specific protocol
for endophyte isolation from tea plants.

This study was set out to make a thorough exploration in the
influence of the surface sterilization method based on the sodium
hypochlorite (NaClO), the most commonly used sterilizing agent
(Tosi et al., 2021), on diversity and composition of tea plants’
foliar and cauline endophytes by comprehensively analyzing
the results from high-throughput sequencing (HTS) and tissue
separation and then to find an efficient and specific endophytic
microorganism isolation method for Clonorchis sinensis.

MATERIALS AND METHODS

Sample Collection and Preprocessing
Symptomless mature leaves and stems with no disease or
damage were collected from two varieties of Camellia sinensis,
such as cultivar Longjing 43, from Yuhang county, Zhejiang
Province, China, and cultivar Jiukeng, from Chun’an County,
Zhejiang Province, China. All samples were placed under
running tap water to remove adherent dust and soil particles

and most microbial Surface impurities before further processing
(Hallmann et al., 2006).

Sterility Examination of Surface
Sterilization Combinations
The surface sterilization method was based on five concentrations
of NaClO (0.25, 0.5, 1.0, 2.0, and 4.0%) and different durations
for tissue immersion in the agent (1–15 min) (Xie et al., 2020).
After the pretreatment, samples were sterilized with different
combinations, followed by rinsing with sterile water three times.
The last rinse was taken at the scale of 100 µl/dish onto Luria-
Bertani (LB) medium and potato dextrose agar (PDA) medium,
and samples were incubated in dark at 30◦C for 7 days to confirm
whether sterilization was complete.

DNA Extraction and High-Throughput
Sequencing
However, the agent may permeate into the tissue and create
conditions lethal for some endophytic microorganisms
(Hallmann et al., 2006), HTS was employed to study the
influence of the agent on Endophytes. DNA was extracted
from the surface-sterilized samples according to the ALFA-
SEQ Plant DNA Kit (mCHIP, China) and concentration and
purity of which were determined by using the NanoDrop
One (Thermo Scientific, Wilmington, United States). The
V4 region of the Bacterial 16S rRNA genes was amplified
by using 515f (5′ GTGYCAGCMGCCGCGGTAA 3′)/806r
(5′ GGACTACNVGGGTWTCTAAT 3′) primers (Parada
et al., 2016; Liu et al., 2018; Matsumoto et al., 2021),
and the blocking primers peptide nucleic acids (mPNA
and pPNA) were added to prevent the amplification of
mitochondrial and chloroplast DNA (Lundberg et al., 2013).
The ITS hypervariable region was amplified by using ITS1f
(5′ CTTGGTCATTTAGAGGAAGTAA) and ITS2r (5′
GCTGCGTTCTTCATCGATGC) (Nilsson et al., 2019). For
16S PCR amplification, the thermocycler program was set for
initial denaturing at 95◦C for 5 min, followed by 30 cycles of
denaturing at 96◦C for 1 min, PNA annealing at 78◦C for 5 s,
primer annealing at 54◦C for 1 min, extension at 74◦C for
1 min, and a final extension at 74◦C for 10 min. The ITS PCR
procedures were as follows: pre-denaturation at 95◦C for 5 min,
followed by 30 cycles of deformation at 94◦C for 30 s, annealing
at 52◦C for 30 s, elongation at 72◦C for 30 s, and a final extension
at 72◦C for 10 min. The PCR products were extracted on 1.0%
agarose gels, the concentrations of which were examined by
the GeneTools Analysis Software (Version 4.03.05.0, SynGene).
The fragments purified with an E.Z.N.A. Gel Extraction Kit
(Omega, United States) were sequenced under by PE250 based
on the Illumina Nova 6000 platform (Illumina, San Diego,
United States) at Guangdong Magigene Biotechnology Co., Ltd.,
(Guangzhou, China).

Isolation of Endophytic Fungi by Tissue
Separation
The surface-sterilized samples were cut aseptically into segments
(2 mm × 2 mm for leaf tissue (Liu et al., 2015) and 3 mm
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for debarked stem samples (Win, 2018)) with a sterilized blade
before being plated on malt extract agar (MEA) medium and
PDA medium in 9-cm diameter plastic Petri dishes (10 segments
per Petri dish). The Petri dishes were incubated at 26◦C in
dark for 7 days. Each isolate was inoculated on corresponding
medium in 6-cm diameter plastic Petri dishes for pure culture
and further processing.

Isolation of Endophytic Bacteria by
Tissue Separation
After the surface sterilization, samples were homogenized at the
ratio of 20 ml sterile water to 6 g leaf tissue and 15 ml sterile
water to 6 g stem tissue, followed by the graded dilution to 10−1,
10−2, and 10−3 with sterilized water (Yan et al., 2018). Then,
200 µl diluted homogenate was removed and spread on the LB
agar medium and nutrient agar (NA) medium in 9-cm diameter
Petri dishes. The Petri dishes were placed in the incubator at 30◦C
and in the dark for 5 days. The streak plate method was used for
the purification.

Molecular Identification of Isolated
Endophytes
The sequence analysis of the 16S rRNA gene and
the ITS rDNA region was used for the species-level
identification of isolated endophytic bacteria and fungi,
respectively. The ITS region was amplified with primers
of ITS1 (5′ TCCGTAGGTGAACCTGCGG)/ITS4 (5′
TCCTCCGCTTATTGATATGC) (Pryce et al., 2003;
Kehelpannala et al., 2018) and 16s rRNA genes were amplified
with primers of 27f (5′ AGAGTTTGATCMTGGCTCAG)/1492r
(5′ ACGGTTACCTTGTTACGACTT) (Wei et al., 2018). The
sequences of isolates were subjected to a BLAST search1 and
compared with representative sequences in the NCBI database to
determine the corresponding species (Vu et al., 2019).

High-Throughput Sequencing Analysis
The raw reads transformed from original data were quality-
filtered by FASTP (version 0.14.1.). The paired-end reads
were processed using the USEARCH (version 10.0.240). The
operational taxonomic units (OTUs) that had a 97% similarity
level using UPARSE (Edgar, 2013) were processed by utilizing
QIIME2 (version 2020.11.0). The taxonomy of each 16S rRNA
gene sequence was analyzed against the SILVA (v123) 16S
rRNA gene database at a confidence threshold of 80%. The
taxonomy of each ITS rRNA gene sequence was analyzed
against the RDP (v2) ITS rRNA gene database at a confidence
threshold of 80%.

The alpha diversity based on the R vegan package
was conducted to reveal the within-habitat diversity and
principal component analysis (PCA) was performed to
examine dissimilarities in the community composition
among samples based on an Euclidean metric. Venn diagrams
showed the number of common or unique OTUs in multiple
groups.

1https://blast.ncbi.nlm.nih.gov/Blast.cgi

Statistical Analysis
The statistical analysis and graphic illustration were performed
using the GraphPad Prism version 9.0 (GraphPad Software Inc.,
San Diego, CA, United States) and SPSS Statistics version 26.0
(IBM Corporation., Armonk, NY, United States). Results were
expressed as mean ± standard error of the mean (SEM). The
statistical significance was indicated by one-way analysis of
variance (ANOVA) followed by the Tukey’s multiple comparison
test. A p-value less than 0.05 (p < 0.05) was considered
statistically significant and the statistical differences are indicated
by superscripts.

RESULTS

Preliminary Screening of Surface
Sterilization Methods
The sterilization efficiency of each combination was shown by the
number of microbes after 7-day incubation (Figure 1). To achieve
complete surface sterilization, the lower the concentration of
NaClO used, the longer the effect time needed; conversely, when
using an agent with higher concentration, the reaction time
could be slightly shorter. Meanwhile, the sterilization efficiency
was different in leaf tissue and stem tissue. Mature stem tissue
required a higher concentration or longer duration. The results
showed that the environmental bacteria of tea plants were
more plentiful than fungi, and their survival appeared to be
more related to concentration than duration. Considering both
efficiency and feasibility, three combinations of each kind of
tissue were screened for further study: for leaf tissue, 0.5% NaClO
for 8 min (LL), 1.0% NaClO for 4 min (ML), and 2.0% NaClO for
2 min (HL); for stem tissue, 0.5% NaClO for 10 min (LS), 1.0%
NaClO for 5 min (MS), and 2.0% NaClO for 3 min (HS).

Effects of Surface Sterilization on
Endophytic Diversity
Diversity Analysis of Fungal Endophytes
After removing chimeric, plastids, and mitochondrial sequences,
raw reads were drawn flat by minimum sequence. There were
104,605 reads per leaf sample and 184,954 reads per stem
sample from cultivar Longjing 43, 394,335 reads per leaf sample
and 390,126 reads per stem sample from cultivar Jiukeng. The
alpha diversity (Figures 2A–D) index (observed OTUs) revealed
that the differences were not significant (analysis of significant
differences in two groups is shown in Supplementary Table 1),
indicating that the within-habitat diversity of fungal endophytes
was not noticeably influenced by the surface sterilization
methods. Venn diagrams (Figures 2E–H) of fungal endophytic
OTUs displayed the number of shared and unique OTUs in
samples treated with different surface sterilization methods. The
numbers of OTUs for leaf samples ranged from 151 to 258,
and for stem samples ranged from 531 to 829. Among them,
the ratios of shared OTUs were 86 (28.76%) in leaf samples
of cultivar Longjing 43, 91 (21.77%) in leaf samples of cultivar
Jiukeng, 298 (30.79%) in stem samples of cultivar Longjing 43,
and 439 (35.32%) in stem samples of cultivar Jiukeng. Each
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FIGURE 1 | The disinfection ability of sodium hypochlorite (NaClO) concentrations and exposure time on tea plant leaves (A) and stems (B).
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FIGURE 2 | Effects of sterilization treatments on the diversity of fungal endophytes from tea plant leaves and stems. (A–D) Alpha diversity of the fungal endophytic
community; (E–H) Venn diagram showing the number of shared and unique operational taxonomic units (OTUs) (at 97% similarity); (I–L) relative abundance of fungal
endophytes at the phylum level; (M–P) relative abundance of fungal endophytes at the genus level. LLL, MLL, and HLL represent the leaf samples from cultivar
Longjing 43 treated with 0.5, 1.0, and 2.0% of NaClO. LLJ, MLJ, and HLJ represent the leaf samples from cultivar Jiukeng treated with 0.5, 1.0, and 2.0% of NaClO.
LSL, MSL, and HSL represent the stem samples from cultivar Longjing 43 treated with 0.5, 1.0, and 2.0% NaClO. LSJ, MSJ, and HSJ represent the leaf samples
from cultivar Jiukeng treated with 0.5, 1.0, and 2.0% NaClO.

group had unique OTUs, the differences of which indicated
the sterilization methods had a significant impact on Fungal
endophyte composition.

Analysis at phylum level (Figures 2I–L) showed high
proportions of Ascomycota (93.0–98.3%) for fungal endophytes
in leaves. Ascomycota (88.6–98.5%) was dominant and
Basidiomycota (0.52–8.9%) was abundant for fungal endophytes
in stems. The proportion of Basidiomycota in leaf samples
declined as the concentrations increased. In two cultivars’ leaves,
(Figures 2M,O) common genera showed the same reaction to
different surface sterilization methods: both Mycosphaerella and
Colletotrichum had the lowest content in medium concentration;
Didymella, Pestalotiopsis, Diaporthe, and Pseudocercosporella
content were reduced by high concentrations. In the stems,
(Figures 2N,P) Glomerella decreased sequentially with
increasing concentrations; Pestalotiopsis, in contrast to

Helminthosporium, was affected most by low concentration.
Compared with consistency of endophytic bacteria in leaves
and stems, trends in the common fungi in two tissue types
were more uniform: Davidiella, Pestalotiopsis, Didymella, and
Diaporthe had the highest percentages in medium concentration
and Glomerella declined as dose increased in cultivar
Longjing 43.

Diversity Analysis of Bacterial Endophytes
After qualified filtering the raw reads and normalizing the read
counts, there were 3,945 reads per leaf sample and 55,804 reads
per stem sample from cultivar Longjing 43, and 6,811 reads
per leaf sample and 36,446 reads per stem sample from cultivar
Jiukeng were retained. The alpha diversity (Figures 3A–D)
index (observed OTUS) showed that the within-habitat diversity
declined when the concentration was increased, indicating that
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FIGURE 3 | Effects of sterilization treatments on the diversity of bacterial endophytes from tea plant leaves and stems. (A–D) Alpha diversity of the bacterial
endophytic community; (E–H) principal component analysis (PCA) of the bacterial community structure; (I–L) Venn diagram showing the number of shared and
unique OTUs (at 97% similarity). LLL, MLL, and HLL represent the leaf samples from cultivar Longjing 43 treated with 0.5, 1.0, and 2.0% of NaClO. LLJ, MLJ, and
HLJ represent the leaf samples from the cultivar Jiukeng treated with 0.5, 1.0, and 2.0% of NaClO. LSL, MSL, and HSL represent the stem samples from the cultivar
Longjing 43 treated with 0.5, 1.0, and 2.0% NaClO. LSJ, MSJ, and HSJ represent the leaf samples from the cultivar Jiukeng treated with 0.5, 1.0, and 2.0% NaClO.
Asterisks indicate significant differences (*p < 0.05 and **p < 0.01).

the diversity of bacterial endophytes in leaves is influenced
by the concentration of the agent. The results were opposite
in stem samples in that the group treated with the highest
concentration for the lowest exposed duration maintained the
best richness. Bacterial endophytes in stem tissue were better
tolerant of high concentrations compared to those in leaf
tissue. Beta diversity analysis revealed clustering of differently
treated samples when calculating PCA plots based on Euclidean
distances (Figures 3E–H) and PCoA plots based on Bray–
Curtis distances (Supplementary Figure 1). Venn diagrams
(Figures 3I–L) of bacteria endophytic OTUs in samples of leaf
tissue and stem tissue of each cultivar demonstrate the number
of shared and unique OTUs in samples treated with different
surface sterilization methods. At a 97% similarity level, the
numbers of OTUs for leaf samples ranged from 49 to 196, and
stem samples ranged from 473 to 924. The ratios of shared
OTUs were not high in each group according to tissue types
and cultivar types, respectively; there were 19 (10.56%) in leaf
samples of cultivar Longjing 43 and 42 (11.48%) in leaf samples
of cultivar Jiukeng. There were 234 (18.32%) in stem samples
of cultivar Longjing 43 and 396 (27.69%) in stem samples of
cultivar Jiukeng. In addition, each group had unique OTUs, the
proportions of which indicated that, to some extent, differences
in sterilization methods had an important impact on the bacterial
endophyte composition.

Bacterial endophytic structure and composition (Figure 4)
showed that the abundant phyla (≥0.5% of all sequences
across all samples) in leaves were Proteobacteria (35.2–72.5%),
Firmicutes (1.4–5.9%), Bacteroidetes (2.8–49.9%), Actinobacteria
(0.8–5.0%), and Euryarchaeota (0.6–2.9%). It was also observed
that the abundant bacterial phyla in two cultivars showed
similar trends under different treatments: Firmicutes showed
the highest abundances in medium concentration treatment
(ML) compared to the other two treatments; Actinobacteria and
Euryarchaeota declined trend as the concentration increased.
The common genera in two cultivars appeared to have
same response to different treatments. Relative abundance of
Acinetobacter increased while Methylobacterium decreased with
a higher concentration agent. Bacillus, Paracoccus, and Massilia
took up the highest proportion under the secondary dosage
and processing time. In terms of the relative abundance of
cauline bacterial endophytes, the dominant phyla (≥0.5% of
all sequences across all samples) were Proteobacteria (59–
76.4%), Actinobacteria (5.3–16.5%), Bacteroidetes (3.2–11.3%),
and Firmicutes (0.6–4.6%). Actinobacteria had an advantage
with 2.0% NaClO treatment. At the genus level, Massilia
showed the same response, in that medium combination
negatively affected the relative abundance. Jatrophihabitans and
Burkholderia were identified as the most abundant among the
three treatments in both cultivars. Although most endophytic
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FIGURE 4 | Effects of sterilization treatments on the composition of bacterial endophytes from tea plant leaves and stems at the phylum level (A–D) and genus level
(E–H). LLL, MLL, and HLL represent the leaf samples from the cultivar Longjing 43 treated with 0.5, 1.0, and 2.0% of NaClO. LLJ, MLJ, and HLJ represent the leaf
samples from the cultivar Jiukeng treated with 0.5, 1.0, and 2.0% of NaClO. LSL, MSL, and HSL represent the stem samples from the cultivar Longjing 43 treated
with 0.5, 1.0, and 2.0% NaClO. LSJ, MSJ, and HSJ represent the leaf samples from the cultivar Jiukeng treated with 0.5, 1.0, and 2.0% NaClO.

bacteria had different characteristics in different tissue type,
some of the common genera were found to have similarities:
Comamonas in cultivar Longjing 43 showed intolerance to
high concentration, Pseudomonas in cultivar Jiukeng accounted
most in medium treatment group compared with other
two groups and Sphingomonas was dominant in the low
treatment group.

Analysis of Cultured Endophytes
Endophytes isolated from tea plants are summarized in the
Supplementary Table 2. There were 1,040 strains of fungal
endophytes isolated in total, 43 strains per group on average,
which were categorized by surface sterilization methods,
cultivars, tissue types, and medium types. Two phyla and 46
genera were involved. As shown in Figure 5, statistics were
consistent with the results of HTS at the phylum level; the
proportion of Ascomycota (99.4%) was significantly higher than
Basidiomycota (0.58%). At the genus level, non-conformity
was found between the results of HTS and tissue isolation.
Genera such as Mycosphaerella and Davidiella, which were
abundant according to the results of HTS, were not isolated;
Diaporthe accounted for up to 30.5% of isolated endophytic
fungi but measured only 0.02–1.7% in the HTS results. However,
Botryosphaeria, Didymella, Alternaria, and Pestalotiopsis were
not only enriched in testing results, but also in abundance after
isolation and cultivation. Based on a single factor comparison,
medium types showed little influence on the diversity and
quantity of cultivable genera, and MEA medium was slightly
better than PDA medium. For leaf samples, treatment with 1.0%
NaClO for 4 min (ML) gave better results than did the other two

concentrations, while higher concentration combined with lower
exposure time was more suitable for stem samples.

There were 337 strains of bacterial endophytes isolated,
covering four phyla and 34 genera (Figure 6). Proteobacteria
(59.1%) and Actinobacteria (32.3%) were the dominant phyla,
and Firmicutes and Bacteroidetes accounted for 6.2 and 2.4%,
respectively. At the genera level, Curtobacterium (18.99%),
Sphingomonas (15.73%), and Herbaspirillum (11.87%) were
the top three with the highest percentages. Similar to fugal
endophytes, statistical results at the genus level showed
differences in cultivable ability and non-comformity between
the results of HTS and tissue isolation. Relative consistency
was maintained in sequencing and isolation in Curtobacterium,
Sphingomonas, Burkholderia, and Rhizobium. The surface
sterilization methods showed little influence on the diversity
of isolation methods, and lower concentrations of the agent
were more suitable for isolating the scarce strains. Meanwhile,
endophytic bacteria species preferred tissue types in this study.
For the diversity, cultivable bacterial endophytes from stems
included 30 genera and 20 genera from leaf samples covered.
Bosea, Herbaspirillum, and Sphingomonas were isolated from
both leaf samples and stem samples, and all Burkholderia strains
and Caballeronia strains were isolated from stem samples.

DISCUSSION

During the long period of co-evolution, a mutually beneficial
relationship was gradually established between endophytes and
their host plants (Saikkonen et al., 2004; Wang and Dai, 2011;
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FIGURE 5 | Effects of sterilization treatments on the composition of cultured fungal endophytes from tea plant leaves (A,B) and stems (C,D) in MEA and PDA
medium. LLL, MLL, and HLL represent the leaf samples from the cultivar Longjing 43 treated with 0.5, 1.0, and 2.0% of NaClO. LLJ, MLJ, and HLJ represent the
leaf samples from the cultivar Jiukeng treated with 0.5, 1.0, and 2.0% of NaClO. LSL, MSL, and HSL represent the stem samples from the cultivar Longjing 43
treated with 0.5, 1.0, and 2.0% NaClO. LSJ, MSJ, and HSJ represent the leaf samples from the cultivar Jiukeng treated with 0.5, 1.0, and 2.0% NaClO.

Wani et al., 2015; Baltrus, 2017). The tea plant is one of the
oldest domesticated plants in the world, and its endophytes play
an important role in resisting biotic and abiotic stress (Rabha
et al., 2014; Zhao et al., 2014), as well as participating in secondary
metabolite production (Agusta et al., 2005). Surface sterilization
is used to eliminate the non-endophytic microorganisms, which
is essential for precisely exploring the endophytes (Shan et al.,
2018; Jia et al., 2021). Here, we found that the diversity and
composition of bacterial endophytes were influenced significantly
by the NaClO concentration, while the diversity of fungal
endophytes was relatively stable under higher concentrations of
NaClO or a longer exposure time.

Consistent with the observations in previous studies
(Fukuzaki, 2006; Hallmann et al., 2006; Gonzaga et al., 2015;
Egamberdieva et al., 2017), NaClO showed similar dose-
dependent and exposure time-dependent effects in our study. To
figure out the detailed profiles underlying the effect of NaClO
on endophytes in tea plants, the high-throughput sequencing
was subsequently employed. Both diversity and composition
of fungal endophytes were not significantly affected by the
concentration of NaClO. More specifically, Ascomycota took up

the most fungal endophytes while Proteobacteria, Bacteroidetes,
and Actinobacteria had dominant proportions of bacterial
endophytes. NaClO causes biosynthetic alterations in cellular
metabolism and phospholipid destruction and hypochlorous
acids (HClO-) present in the NaClO solutions may act as solvents
in contact with organic tissue to release chlorine. Chlorine
is a strong oxidant in solution that forms chloramines when
combined with the protein amino group that then disrupt the cell
metabolism and inhibit essential bacterial enzymes, leading to
irreversible oxidation of SH groups (Estrela et al., 2002; Fukuzaki,
2006; Sahu et al., 2022). Bacteria may be more sensitive than
fungi upon treatment with NaClO.

In addition to surface sterilization, the culture medium also
has a vital effect on the isolation of endophytes. Bacillales
of Bacilli was abundant in endophytes isolated and identified
from tea plants (Xie et al., 2020), which was further confirmed
by our results. Previously, the selective effect of mediums on
the isolation of endophytic fungi from an Indian neem plant
Azadirachta indica A. Juss. was investigated. This study found
that not only the quantity, but also the variety and growth rate of
endophytic fungi were affected by the culture medium, indicating
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FIGURE 6 | Effects of sterilization treatments on the composition of cultured bacterial endophytes from tea plant leaves (A,B) and stems (C,D) in LB and NA
medium. LLL, MLL, and HLL represent the leaf samples from the cultivar Longjing 43 treated with 0.5, 1.0, and 2.0% of NaClO. LLJ, MLJ, and HLJ represent the
leaf samples from the cultivar Jiukeng treated with 0.5, 1.0, and 2.0% of NaClO. LSL, MSL, and HSL represent the stem samples from the cultivar Longjing 43
treated with 0.5, 1.0, and 2.0% NaClO. LSJ, MSJ, and HSJ represent the leaf samples from the cultivar Jiukeng treated with 0.5, 1.0, and 2.0% NaClO.

media preference was one of the critical factors that can
directly influence the endophytic isolation (Verma et al., 2011).
Meanwhile, the flora preference of the cultivable endophytic
bacteria influenced by the culture medium was also observed
in Dendrobium, wheatgrass, and Passiflora incarnata (Ringelberg
et al., 2012; Goulart et al., 2019; Wang et al., 2019). Furthermore,

differences exist between endophytic bacteria in the results from
HTS and those from culture-dependent methods, especially at
the genus level (Wang et al., 2019). In our work, Diaporthe
was found to the dominant genus in cultured endophytes, while
Mycosphaerella and Davidiella, the most abundant in HTS results,
were not cultured successfully. Similar results were also observed
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in endophytic bacteria when comparing the results from culture-
dependent methods and HTS.

Moreover, the potential functions of endophytes from
tea plants were previously studied. For instance, Alternaria
alternata, a species from the genus Alternaria, was found to
produce bioactive metabolites that could inhibit the pathogenic
microorganisms (Wang et al., 2014). Diaporthe sp. isolated from
tea plants could stereoselectively oxidize the C-4 carbon of two
R-substituted flavans to a 3-hydroxy structure from the same
direction (Agusta et al., 2005). Bacillus and Pseudomonas had
positive effects in growth promotion and disease prevention
(Chakraborty et al., 2006; Morang and Dutta, 2012). However,
in the present work, Staphylococcus and Bacillus, belonging to
the order of Bacillales, were found to be susceptible to high
concentrations of NaClO, indicating that NaClO sterilization
increases the false-negatives in exploration of the functional
endophytes in tea plants, and the effect of NaClO on microbiome
research should be studied more in the future.

CONCLUSION

The diversity of bacterial endophytes in leaves and stems of tea
plants was significantly affected by the concentration of NaClO
as well as the sterilization time. In comparison, composition of
fungal endophytes in tea tissues was less susceptible to NaClO.

Thus, it is suggested that sterilization with NaClO should be
modified to precisely understand the diversity of the bacterial
endophytes from different tissues in tea plants.
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