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Internet of Things (IoT) realizes the real-time video monitoring of plant propagation or

growth in the wild. However, the monitoring time is seriously limited by the battery

capacity of the visual sensor, which poses a challenge to the long-working plant

monitoring. Video coding is the most consuming component in a visual sensor, it is

important to design an energy-efficient video codec in order to extend the time of

monitoring plants. This article presents an energy-efficient Compressive Video Sensing

(CVS) system to make the visual sensor green. We fuse a context-based allocation

into CVS to improve the reconstruction quality with fewer computations. Especially,

considering the practicality of CVS, we extract the contexts of video frames from

compressive measurements but not from original pixels. Adapting to these contexts,

more measurements are allocated to capture the complex structures but fewer to

the simple structures. This adaptive allocation enables the low-complexity recovery

algorithm to produce high-quality reconstructed video sequences. Experimental results

show that by deploying the proposed context-based CVS system on the visual sensor,

the rate-distortion performance is significantly improved when comparing it with some

state-of-the-art methods, and the computational complexity is also reduced, resulting in

a low energy consumption.

Keywords: Internet of Things, visual sensor, Compressive Video Sensing, context extraction, linear recovery,

plant monitoring

1. INTRODUCTION

In the Internet of Things (IoT), the plant propagation process or plant growth can be monitored
by visual sensors. One benefit from the framework of IoT, a large amount of data on the plant
can be gathered in a central server, and the valuable information can be achieved by analyzing
the data in real-time. However, with the limited processing capabilities and power/energy budget
of visual sensors, it is a challenge for video monitoring of plant to compress large-scale video
sequences by using the traditional codec, e.g., H.264/AVC and HEVC (Sullivan et al., 2012), so
the existing works have developed low-complexity and energy-efficient video codecs, in which
Distributed Video Coding (DVC) (Girod et al., 2005) and Compressive Video Sensing (CVS)
(Baraniuk et al., 2017) have attracted more attention in industry and academia. Different from
DVC, CVS dispenses with the feedback and virtual channels (Unde and Pattathil, 2020), which
makes the codec framework simpler. Meanwhile, CVS provides a low-complexity encoder because
of its theoretic foundation, Compressive Sensing (CS) (Baraniuk, 2007), realizes the capture of
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video frames at a rate significantly below the Nyquist rate.
Currently, many researchers recognize that CVS is a potential
scheme to compress the video sequences in the IoT framework,
and especially for wireless video monitoring of plants, the CVS
scheme can assist visual sensors to efficiently reduce the energy
consumptions, however, its rate-distortion performances are still
far from satisfactory.

The objective of this article is to improve the rate-distortion
performance of CVS, providing high-quality video monitoring of
plants with low energy consumption. To achieve this objective,
the existing works focus on how to design excellent recovery
algorithms, and they are keen on mixing various advanced tools
into the CVS framework, e.g., the latest popular Deep Neural
Network (DNN) (Palangi et al., 2016; Zhao et al., 2020; Tran et al.,
2021). Though effective, they bear a heavy computational burden.
Different from these works, we try to exploit the capability of CS
to capture important structures, improving the reconstruction
quality only armed with some simple recovery algorithms. It is
well known that the context feature (Shechtman and Irani, 2007;
Romano and Elad, 2016) is a good structure for visual quality,
and, therefore, in this article, we focus on how to fuse contexts
into CVS for an obvious improvement of reconstruction quality.

Compressive Video Sensing consists of three essential steps
including CS measurement, measurements quantization, and
reconstruction. CS measurement is a process of randomly
sampling each video frame, in which the block-based (Gan, 2007;
Bigot et al., 2016) or structurally (Do et al., 2012; Zhang et al.,
2015) random matrix is often used to ensure the small memory
requirement. Output by CS measurement, all measurements are
required to be quantized as bits, then transmitted to the decoder.
The straightforward solution to incorporating quantization into
CVS is simply to apply Scalar Quantization (SQ), but it brings
a big error. For block-based sampling, Differential Pulse Code
Modulation (DPCM) (Mun and Fowler, 2012) can be used,
and it exploits the correlations between blocks to improve the
rate-distortion performance. Based on DPCM, many works also
proposed some efficient predictive schemes (Zhang et al., 2013;
Gao et al., 2015) to quantize CS measurements. Reconstruction
is deployed at the decoder, and it uses quantized measurements
to reconstruct the video sequence by the CS recovery algorithm.
At present, the reconstruction can be implemented by one of
the three types: frame-by-frame (Chen Y. et al., 2020; Trevisi
et al., 2020), three-dimensional (3D) (Qiu et al., 2015; Tachella
et al., 2020), and distributed strategies (Zhang et al., 2020;
Zhen et al., 2020). The frame-by-frame reconstruction performs
a CS recovery algorithm to reconstruct each video frame
independently, and it has a poor rate-distortion performance
due to neglecting the correlations between frames. The 3D
reconstruction designs some complex representation models to
once reconstruct a whole video sequence or a Group Of Pictures
(GOP), e.g., Li et al. (2020) proposed the Scalable Structured
CVS (SS-CVS) framework, which learns the union of data-
driven subspaces model to reconstruct GOPs. However, it has
a defect in 3D reconstruction that the huge memory and high
computational complexity are required to be invested at decoder.
Derived from the decoding strategy of DVC, the distributed
reconstruction divides the input video sequence into non-key

frames and key frames and reconstructs each non-key frame
by the CS recovery algorithm with the aid of its neighboring
key frames. With a small memory and a low computational
complexity, the distributed reconstruction improves the rate-
distortion performance by exploiting the motions between
frames, so many existing works focus on it to design the CVS
systems, e.g., Ma et al. proposed the DIStributed video Coding
Using Compressed Sampling (DISCUCS) (Prades-Nebot et al.,
2009), Gan et al. proposed the DIStributeCOmpressed video
Sensing (DISCOS) (Do et al., 2009), Fowler et al. proposed
the Multi-Hypothesis Block CS (MH-BCS) system (Chen et al.,
2011; Tramel and Fowler, 2011; Azghani et al., 2016), etc. The
core of distributed reconstruction is the Multi-Hypothesis (MH)
predictive technique, which uses a linear combination of blocks
in key frames to interpolate the blocks in non-key frames.
As one of the state-of-the-art techniques, the MH prediction
is widely applied to distributed reconstruction. Recently, some
works try to modify the implementation of MH prediction,
e.g., Chen C. et al. (2020) added the iterative Reweighted
TIKhonov-regularized scheme into MH prediction (MH-RTIK),
causing a significant improvement of CVS performance. CS
theory indicates that the precise recovery requires enough CS
measurements. With insufficient CS measurements, the excellent
CS recovery algorithm still cannot prevent the degradation of
reconstruction quality, however, by adaptively allocating CS
measurements based on local structures of the image, a simple
recovery algorithm can also provide a good reconstruction
quality (Yu et al., 2010; Taimori and Marvasti, 2018; Zammit
and Wassell, 2020). Judging from the above facts, the adaptive
allocation is a potential way to improve the rate-distortion
performance of the CVS system with a light codec.

This article presents a context-based CVS system, of which the
core is the allocation of CS measurements adapted by context
structures at the encoder. Based on these adaptive measurements,
by combining linear estimation and MH prediction into
distributed reconstruction, the decoder provides a satisfying
reconstruction quality with lowmemory and computational cost.
The contributions of the proposed context-based CVS is to solve
the following issues:

(1) How to extract the context structures from CS
measurements? Traditional methods use pixels to compute
the context features, but it costs lots of computations at the
encoder, resulting in impracticality for CVS. Especially when
the encoder is realized by Compressive Imaging (CI) devices
(Liu et al., 2019; Deng et al., 2021), due to the unavailability
of original pixels, it is impossible to perform the traditional
methods. Considering the low dimensionality and availability
of CS measurements, it is practical in CVS to extract context
structures from CS measurements.

(2) How to adaptively allocate CS measurements by context
structures? Contexts measure the correlations between pixels,
and their distribution reveals some meaningful structures,
e.g., smoothness, edges, textures, etc. With the same
recovery quality, fewer necessary measurements are required
for simple structures and more for complex structures.
According to the distribution of contexts, an efficient
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allocation is designed to avoid insufficiency or redundancy
of measurements.

(3) How to quantize the adaptive measurements? Adaptive
allocation makes blocks have different numbers of CS
measurements, as a result, the traditional prediction cannot
be applied to quantization. Due to the insufficient capability
of SQ, an appropriate prediction scheme is required to reduce
the quantization error.

Experimental results show that the proposed context-based CVS
system outputs the high-quality reconstructed video sequences
when monitoring plant growth or propagation and improves the
rate-distortion performances when compared with the state-of-
the-art CVS systems, which demonstrates the effectiveness of
context-based allocation for CVS.

The rest of this article is organized as follows. Section 2 briefly
overviews Plant Monitoring System, CVS, and describes the
traditional method to extract context features. Section 3 presents
the proposed context based CVS system. Experimental results are
provided in Section 4, and we conclude this article in Section 5.

2. RELATED WORKS

2.1. Plant Monitoring System
In modern agriculture, it is essential to monitor plant
propagation or growth for guaranteeing productivity. The labor
costs can be efficiently reduced by automatically capturing the
architectural parameters of the plant, so more andmore attention
has been paid to the design of the plant monitoring system
(Somov et al., 2018; Grimblatt et al., 2021; Rayhana et al.,
2021). Early, lots of systems are designed to monitor the various
environmental parameters on plant growth, such as humidity,
temperature, solar illuminance, etc., e.g., James and Maheshwar
(2016) used multiple sensors to measure the soil data of plants
and transmitted these data to the mobile phone by Raspberry
Pi; Okayasu et al. (2017) developed a self-powered wireless
monitoring device that is equipped with some environmental
sensors; Guo et al. (2018) added big-data services to analyze
the environmental data on plant growth. These environmental
parameters indirectly indicate the process of plant growth, and
they cannot record the visual scenes on plant growth, resulting in
the unavailability of the physical structure parameters on plants.
To realize the visual monitoring of plants, some works have
started to integrate the visual sensors into the plant monitoring
system, e.g., Peng et al. (2022) used the binocular camera to
capture video sequences on a plant and used the structure
from motion method (Piermattei et al., 2019) to extract the
3-D information of a plant; Sajith et al. (2019) designed a
complex network to derive the plant growth parameters from the
monitoring images; Akila et al. (2017) extracted the plant color
and texture by the visual monitoring system. From the above, it
can be seen that the visual sensor or camera is used to capture the
video sequences on plant growth, and these video sequences are
compressed as bitstream which is transmitted to the IoT cloud
for further analyzing. As the core of visual sensors, the video
compression is a major energy consumer, so a challenge that we
face for the visual monitoring system of the plant is to design

an energy-efficient video coding scheme to extend the working
time of the visual sensor. In the framework of IoT, CVS is a
potential coding scheme to reduce the energy consumption of
visual sensors. The following briefly overviews the CVS systems.

2.2. CVS System
Compressive Video Sensing is the marriage of CS theory and
DVC, which reduces the encoding costs and enhances the
robustness to noise, thus becoming a potential video codec for
wireless visual sensors. At the encoder, to satisfy low complexity
and fast computation, the block-based CS sampling is performed
on each video frame independently, i.e., the ith video frame f i of
size N1 × N2 is partitioned into non-overlapping blocks of size
B × B, each block is vectorized as xi,j of length Nb, and the CS
measurements yi,j of xi,j are output by

yi,j = Φ i,j · xi,j (1)

where Φ i,j is called as the measurement matrix and can be
constructed by some random matrices, e.g., Gaussian, Bernoulli,
structural random matrix, etc. By setting the length of yi,j to be
Mi,j, the size of Φ i,j is fixed to beMi,j × Nb, and the subrate Si of
f i is defined as

Si =
Mi

N
=

∑J
j=1Mi,j

N1 × N2
(2)

where N is the number of total pixels in f i, Mi is the number
of CS measurements for f i, and J is the number of blocks in
f i. In CI application, an optical device is designed to perform
Equation (1), and directly output the CS measurements. To
ensure a stable recovery, L video frames are gathered to form a
GOP, in which the first frame, called the key frame, is set to be a
high subrate, and others, called the non-key frame, are set to be a
low subrate. After quantization, all CS measurements of GOP are
packaged and transmitted to decoder.

At the decoder, by using the received CS measurements,
the frame-by-frame, 3D, or distributed strategy is performed to
reconstruct the GOP. For frame-by-frame, the reconstruction
model can be represented by

{
x̂i,j

}J
j=1

= arg min
{xi,j}

J
j=1




J∑

j=1

∥∥∥yi,j − Φ i,j · xi,j

∥∥∥
2

2
+α ·

J∑

j=1

∥∥Ψ · xi,j
∥∥
1



 (3)

where Ψ denotes the 2D sparse representation basis, α is a
regularization factor, ‖ · ‖2 denotes ℓ2 norm, and ‖ · ‖1 denotes
ℓ1 norm. The model (3) can be solved by some non-linear
optimization algorithms, e.g., Alternating Direction Method of
Multipliers (ADMM) (Yang et al., 2020), and all reconstructed

blocks are spliced into the estimated frame f̂ i. The frame-by-
frame model uses only the spatial correlations, so its rate-
distortion performance is unsatisfactory. The 3D reconstruction
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FIGURE 1 | Mechanism of Multi-Hypothesis (MH) prediction.

model fully considers the spatial-temporal correlations and it can
be represented by

{
x̂i,j

∣∣L
i=1

}J
j=1

= arg min
{xi,j|Li=1 }

J

j=1





L∑

i=1

J∑

j=1

‖yi,j − Φ i,j · xi,j‖
2
2

+α ·

L∑

i=1

J∑

j=1

∣∣Γ ·
[
x1,j, x2,j, · · · , xL,j

]∣∣




(4)

where Γ denotes the 3D sparse representation basis, and it is used
to remove the spatial-temporal redundancies between blocks.
Though effective, model (4) results in a heavy computational
burden. Different from the 3D reconstruction, the distributed
reconstruction uses the motion-compensation based prediction
technique to expose the spatial-temporal redundancies between
blocks. Figure 1 shows the mechanism of MH prediction, which
is commonly used in distributed reconstruction. MH prediction
collects the spatial-temporal neighboring blocks in key frames to
construct an MH matrix Hi,j. According to the motion vector
vi of xi,j, the motion-aligned windows W1 and W2 of sizes
W × W are, respectively, located on the previous and the
next key frames, and all candidate blocks in W1 and W2 are
extracted as the hypotheses {ht}

T
t=1 of xi,j, producing Hi,j =

[h1, h2, · · · , hT], in which T = W2. By using MH prediction,
the distributed reconstruction is modeled as a Least-Squares (LS)
problem as follows:

ŵi,j = argmin
w

{
‖yi,j − Φ i,j ·Hi,j · w‖

2
2 + β · ‖Θ · w‖22

}
(5)

x̂i,j = Hi,j · ŵi,j (6)

where Θ is the Tikhonov matrix, and β is a regularization factor.
Θ is a diagonal matrix and constructed by

Θ =



‖yi,j − Φ i,j · h1‖2 0

. . .

0 ‖yi,j − Φ i,j · hT‖2


 (7)

With this structure, Θ assigns weights of small magnitude to
hypotheses mostly dissimilar from xi,j. The LS problem can be
fast solved by the Conjugate Gradient algorithm (Zhang et al.,
2018), which significantly reduces the computational complexity
of distributed reconstruction. Due to the full exploitation of
spatial-temporal correlations between blocks, the MH prediction
enables the distributed reconstruction to provide superior
recovery. From the above, in order to realize a light decoder
and ensure a good recovery at the same time, distributed
reconstruction is a wise way.

2.3. Contexts
Compressive Sensing theory indicates that the sparsity K of the
signal determines its required numberM of CS measurements by
precise recovery. An empirical rule (Becker and Bobin, 2011) is
that the precise recovery can be achieved if

M ≥ 4 · K (8)

In the block-based CS sampling, this rule can be used to avoid
the redundancy or insufficiency of CS measurements for blocks,
i.e., adapted by the sparsity, each block is allocated to the
appropriate number of CS measurements. The sparsity is defined
as the number of coefficients with significant magnitude in a
representation, and its calculation has not a strict mathematical
formula. For images, the sparsity can be revealed by some
features, e.g., edge, variance, gradient, etc., and these features
are applied into adaptive allocation, leading to the improvement
of recovery quality. The simple features only describe the
correlations between pixels, but the structures of blocks are not
taken into consideration, thus we require some complex features
to improve the efficiency of adaptive allocation. In Ref. Romano
and Elad (2016), the self-similarity descriptor (Shechtman and
Irani, 2007) is used to extract the contexts of blocks, which
represents how similar a central block is to its large surrounding
windows. Contexts contain the internal structures and external
relations among blocks, and it is a potential feature to better
reveal the sparsity variation. The following briefly describes how
to extract the contexts in an image.

The context feature expresses the similarities between a central
block and those of its large surrounding windows. As illustrated
in Figure 2, for a central block xp in an image, its similarity
weights are computed by

sp,q = exp

{
−
‖xp − xq‖

2
2

2σ 2

}
,∀q ∈ �d

(
p
)

(9)

where xq denotes the qth surrounding block in a neighborhood
�d

(
p
)
of size d × d, and σ is a normalization factor. The range
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of sp,q is [0, 1], in which a large value indicates that the blocks xp
and xq are highly similar, and a small value indicates that the two
are substantially different. All weights constitute a correlation
surface Up =

[
sp,q|∀q ∈ �d

(
p
)]
, of which the statistics reveal

FIGURE 2 | Illustration on the traditional extraction of contexts.

the self-similarity of xp. To measure the statistics, the correlation
surface of xp is rearranged into a histogram of b bins, of which
the normalization is regarded as the context feature gp of xp.

The context feature gp is an empirical distribution of the co-
occurrences of xp in its large surroundings, which measures the
correlations between xp to its surroundings. When gp is biased
toward the left bins, it can be concluded that the majority of
sp,q are small, indicating the block xp is unique, i.e., it originates
from a highly textured and non-repetitive area, so its sparsity
is relatively high. When gp is biased toward the right bins, it
means that most of sp,q are high, indicating that the block xp has
many co-occurrences in its surroundings, i.e., it originates from
a large flat area, so its sparsity is low. From the above, we can
see that the context feature accurately describes the geometric
structure of a block with respect to its surrounding blocks, thus it
is naturally sensitive to the sparsity variation. However, in CVS,
the traditional method is impractical due to the unavailability
of original pixels or high computational complexity. Therefore,
it is challenging to extract the context feature by using CS
measurements of blocks.

3. PROPOSED CONTEXT BASED CVS
SYSTEM

3.1. System Architecture
As shown in Figure 3, we describe the architecture of the
proposed context-based CVS system in detail. The input video
sequence is divided into several GOPs of length L, and each
GOPk is successively encoded as Packetk. After receiving this
packet, the decoder reconstructs the corresponding ĜOPk, and all
reconstructed GOPs are regrouped as the entire video sequence.

FIGURE 3 | Architecture of the proposed context-based Compressive Video Sensing (CVS) system: (A) encoder framework, (B) decoder framework.
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Figure 3A presents the process of encoding GOPk. The key

frame f 1 is split from GOPk, and others
{
f i

}L
i=2

are regarded
as the non-key frames. The key frame f 1 and the ith non-key

frame f i are partitioned into J non-overlapping blocks
{
x1,j

}J
j=1

and
{
xi,j

}J
j=1

of size B × B, respectively. For the key frame

f 1, we set a high subrate S1 = SK to sample the blocks
{
x1,j

}J
j=1

and generate the CS measurements
{
y1,j

}J
j=1

according

to Equation (1). The blocks
{
xi,j

}J
j=1

in the non-key frame f i are

sampled at a low subrate Si = SNK, producing the corresponding

CS measurements
{
yi,j

}J
j=1

by Equation (1). For f 1 and f i, based

on the preset subrates, CS measurements are uniformly allocated
to each block, however, without considering the structures of
blocks, the uniform allocation results in either redundancy or
insufficiency of CS measurements for some blocks. To improve
the efficiency of block-based CS sampling, the core of the
encoder is to perform the adaptive allocation by contexts of
blocks. Different from traditional methods, the contexts U1,j

and U i,j of x1,j and xi,j are, respectively, extracted by using the

CS measurements y1,j and yi,j, which makes CVS system more
practical. After context extraction, according to the contexts U1,j

and U i,j, the numbers of CS measurements of x1,j and xi,j are
modified as M1,j and Mi,j by adaptive allocation. According to
M1,j andMi,j, by removing the redundancy or supplementing the
insufficiency in y1,j and yi,j, x1,j and xi,j are re-sampled as ỹ1,j and
ỹi,j, respectively. DPCM cannot be used to quantize the adaptive
measurements with different numbers. To overcome this defect
of DPCM, we fuse zero padding into DPCM and predictively
quantize ỹ1,j and ỹi,j as ỹ

q
1,j and ỹ

q
i,j. Finally, all quantized CS

measurements are encoded as bits by Huffman and packaged
as Packetk.

Figure 3B presents the process of decoding Packetk. After
unpackaging Packetk, the inversions of Huffman and zero-
padding DPCM are implemented, and the CS measurements
of x1,j and xi,j are recovered as ŷ1,j and ŷi,j which have
some quantization errors with their originals ỹ1,j and ỹi,j. The
distributed reconstruction is performed to reconstruct the key

frame f 1 and the non-key frames
{
f i

}L
i=2

. To suppress the
blocking artifacts in the reconstructed frames, we realize the
recovery of large blocks by merging the CS measurements

FIGURE 4 | Illustration on contexts extraction based on Compressive Sensing (CS) measurements.
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of the spatially neighboring blocks, so the CS measurements
of f 1 and f i are updated as z1,r and zi,r for large blocks.

Based on z1,r , the reconstructed key frame f̂ 1 is produced by

Algorithm 1 | Allocating the appropriate numbers of
Compressive Sensing (CS) measurements to blocks.

Require: Si - Subrate of f i, Pi,j - Distribution on the sparsity of
blocks xi,j, j = 1, 2, · · · , J, N - Total number of pixels in f i,
Nb - Block length;

1: Initial measurement number m(0)
i,j = Round

(
Pi,jSi,jN

)
, and

Round (·) is a rounding operator;

2: Restrict m
(0)
i,j to not be larger than 0.9Nb, i.e., m

(0)
i,j =

Min
(
m

(0)
i,j , 0.9Nb

)
, in which Min (·) is a minimization

operator;

3: SetMsup = Si · N −
∑J

j=1m
(0)
i,j , and iter = 0;

4: whileMsup > 0, increment iter by 1 do
5: ifMsup < J then
6: Randomly select Msup blocks, and their measurement

numbers are incremented by 1;

7: Updatem(iter)
i,j , and setMi,j = m

(iter)
i,j ;

8: Break;
9: else

10: m
(iter+1)
i,j = m

(iter)
i,j + 1

11: Msup = Msup − J
12: end if

13: end while

14: return Mi,j, j = 1, 2, · · · , J.

using a linear recovery model, which rapidly recovers each
block by a matrix-vector product. Regarding the previous
and the next reconstructed key frames as references, the MH

prediction outputs the reconstructed non-key frame f̂ i by
using zi,r . Finally, all reconstructed frames are combined into
ĜOPk. Details of the core parts, including contexts extraction,
measurements allocation, zero-padding DPCM, and distribution
reconstruction, are described in the following subsections.

3.2. Context Extraction
In the proposed CVS system, the context features are extracted by
using the CS measurements of blocks. As illustrated in Figure 4,
we compute the correlation surfaceU i,j of xi,j in f i as its contexts,
in which i = 1, 2, · · · , L. In the surrounding window of size db ×
db centered on xi,j, we cannot extract the original blocks pixel-
by-pixel due to the unavailability of original pixels, but can only

use the CS measurements
{
yi,j	n

}Nc

n=1
of non-overlapping blocks

{
xi,j	n

}Nc

n=1
, in which Nc = d2b. According to CS theory, the

measurement matrix Φ i,j holds the Restricted Isometry Property

(RIP) (Candès and Wakin, 2008) for blocks
{
xi,j

}J
j=1

, which

implies that all pairwise distances between original blocks can be
well preserved in the measurement space, i.e.,

‖xi,j − xi,j	n‖2 ≈ ‖Φ i,j · xi,j − Φ i,j · xi,j	n‖2

= ‖yi,j − yi,j	n‖2,∀n ∈ {1, 2, · · · ,Nc}
(10)

where it is noted that all blocks share the same measurement
matrix Φ i,j due to the uniform allocation. Based on Equation

FIGURE 5 | Illustration on zero-padding Differential Pulse Code Modulation (DPCM).
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(10), the similarity weights between xi,j and xi,j	n can be
estimated by

si,j	n = exp

{
−
‖yi,j − yi,j	n‖

2
2

2σ 2

}
,∀n ∈ {1, 2, · · · ,Nc} (11)

All weights constitute the correlation surface U i,j as follows:

U i,j =
[
si,j	n |∀n ∈ {1, 2, · · · ,Nc}

]
(12)

To compactly represent the contexts of xi,j, we compute the mean
ui,j of U i,j as the context feature, i.e.,

ui,j =
1

Nc

Nc∑

n=1

si,j	n (13)

3.3. Measurement Allocation
By exploiting the context feature ui,j of xi,j, we set the appropriate
number of CS measurements for xi,j, and remove the redundancy
or supplement the insufficiency in yi,j. The magnitudes of context
features are high in smooth regions, and the magnitudes are low
in the edge and texture regions, so it is found that the experience
that the context feature is inversely proportional to the sparsity.

Based on this experience, we can describe the distribution on the
sparsity degrees of blocks by

Pi,j =
u−1
i,j∑J

j=1 u
−1
i,j

(14)

According to the present subrate Si of f i, we construct the
allocation model of CS measurements for blocks as follows:

Mi,j = arg min
mi,j

J∑

j=1

(
mi,j − Pi,j · Si · N

)

s.t.

j∑

j=1

mi,j = Si · N,mi,j ≤ 0.9 · Nb,mi,j ∈ N
+

(15)

whereN is the total number of pixels in f i,Nb is the block length,
mi,j is a positive integer, and its upper bound is set to be 0.9 · Nb.
The model (15) is solved according to Algorithm 1 and outputs
the final numberMi,j of CS measurements for xi,j.

3.4. Zero-Padding DPCM
Due to the adaptive allocation, the lengths of the re-sampled

CS measurements
{
ỹi,j

}L
j=1

vary. Compared with SQ, DPCM

provides better rate-distortion performance by adding the

FIGURE 6 | Illustration on block merging when lev is set to be 1.
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predictive scheme into the quantization of block-based CS
measurements. However, DPCM requires that all blocks have the
same number of CS measurements, as a result, DPCM cannot

be used to quantize
{
ỹi,j

}L
j=1

. To make DPCM adapt to the

adaptive allocation, we propose zero-padding DPCM, whose
implementation is shown in Figure 5. Before inputting ỹi,j to
DCPM, we fill zeros in the last of ỹi,j to make its length the same
as others. After obtaining the de-quantized CS measurements
ŷi,j, we delete the zeros in the last of ŷi,j to recover its original

length Mi,j. By zero padding, each measurement in ŷi,j−1 can

be used to predict the corresponding measurement in ŷi,j, and

especially when there is predictive measurement ŷi,j−1(m) of the

m-thmeasurement ỹi,j(m), the residual ydi,j(m) can be significantly

reduced due to the intrinsic spatial correlation between ỹi,j and
ỹi,j−1. The rate-distortion curves of the reconstructed Foreman,
Mobile, and Football sequences are presented when zero-padding

DPCM and SQ are, respectively, used to quantize the adaptive

CS measurements (shown in Supplementary Figure 1), in which

the rate-distortion curve is measured in terms of the Peak Signal-
to-Noise Ratio (PSNR) in dB and bitrate in bits per pixel (bpp),

and the linear recovery algorithm presented in subsection 3.5

is used to recover each video frame. It can be seen that zero-
padding DPCM presents competitive performance with SQ at
low bitrates but as the bitrate increases, its improvement of
performance over SQ is increasingly significant. From these
results, we find that the efficiency of zero-padding DPCM relies
on the correlation between block-based CS measurements. With
insufficient measurements, the correlation is weakened by the
filling of excessive zeros, causing the performance degradation,
but when measurements are sufficient, a high correlation is
maintained, so the performance improvement stands out. From
the above, zero-padding DPCM is more suitable for adaptive
measurements compared with SQ.

FIGURE 7 | Rate-distortion curves of the reconstructed key frames in (A) Foreman, (B) BlowingBubbles, and (C) ParkScene sequences at different block-size pairs.
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3.5. Distributed Reconstruction
At decoder, the distributed strategy is performed to reconstruct

the key frame f 1 and the non-key frames
{
f i

}L
i=2

, in which f 1
is estimated by a linear recovery model, and f i is produced by
MH prediction. To highlight the complex structures by contexts,
a small block size is more desired at the encoder. However,
the small block size causes serious blocking artifacts due to the
differences of neighboring blocks in recovery quality. To suppress

the blocking artifacts, we merge the CS measurements
{
ŷi,j

}J
j=1

of the small blocks
{
xi,j

}J
j=1

into those
{
zi,r

}R
r=1

of the large

blocks
{
x̃i,r

}R
r=1

and realize the sampling of small blocks and the
recovery of large blocks. The size Blev × Blev of large block is set
to be

Blev = 2lev · B, lev = 1, 2, · · · (16)

in which lev is a positive integer. The number R of large blocks
is N/B2

lev
, and it is smaller than the number J of small blocks.

Figure 6 illustrates the block merging when lev is set to be 1.
The four neighboring blocks xi,j, xi,j+1, xi,j+N1/B, xi,j+1+N1/B are
merged into a large block x̃i,r , and their CS measurements ŷi,j,

ŷi,j+1, ŷi,j+N1/B
, and ŷi,j+1+N1/B

are spliced into zi,r in rows, i.e.,

zi,r =




ŷi,j
ŷi,j+1

ŷi,j+N1/B

ŷi,j+1+N1/B


 ≈ Λi,r ·




xi,j
xi,j+1

xi,j+N1/B

xi,j+1+N1/B


 (17)

Λi,r =




Φ i,j 0
Φ i,j+1

Φ i,j+N1/B

0 Φ i,j+1+N1/B


 (18)

FIGURE 8 | Rate-distortion curves of the reconstructed non-key frames in (A) Foreman, (B) BlowingBubbles, and (C) ParkScene sequences at different

block-size pairs.
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in which Λi,r is the diagonal matrix composed of the block
measurement matrices Φ i,j, Φ i,j+1, Φ i,j+N1/B, and Φ i,j+1+N1/B,
N1 is the total number of rows in f i, and B is the block size of
the small block. To make zi,r , the CS measurements of x̃i,r , we
transform x̃i,r as




xi,j
xi,j+1

xi,j+N1/B

xi,j+1+N1/B


 = I · x̃i,r (19)

in which I is an elementary column transformation matrix.
Plugging Equation (19) into Equation (17), we build the bridge
between x̃i,r and zi,r by

zi,r ≈ Λi,r · I · x̃i,r = Ai,r · x̃i,r (20)

in which Ai,r = Λi,r · I. According to Equation (20), the large
block x̃i,r can be recovered by using zi,r . When lev is set to be
larger than 1, the block merging can be done in manner similar
to the above.

After the block merging, we use
{
z1,r

}R
r=1

to recover the key
frame f 1. The block x̃1,r of f 1 is linearly estimated by

x̂1,r = P1,r · z1,r (21)

in which P1,r is the transformation matrix produced by the
following model:

P1,r = arg min
P

{
E

[
‖x̃1,r − P · z1,r‖

2
2

]}
(22)

in which E [·] denotes the expectation function. The model (22)
outputs the optimal transformationmatrix to minimize the mean
square error between x̃1,r and its estimator x̂1,r , and it can be

FIGURE 9 | Rate-distortion curves of the reconstructed key frames in (A) Foreman, (B) BlowingBubbles, and (C) ParkScene sequences when using different

allocation schemes. For Foreman and BlowingBubbles, the block-size pair is set to be (2, 16), and for ParkScene, the block-size is set to be (8, 16).
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solved by making the gradient of objective function equal to
0, producing

P1,r = E
[
x̃1,rz

T
1,r

]
E−1

[
z1,rz

T
1,r

]
(23)

Plugging Equation (20) into Equation (23), we get

P1,r = Corxx · A
T
1,r

(
A1,r · Corxx · A

T
1,r

)−1
(24)

Corxx = E
[
x̃1,rx̃

T
1,r

]
(25)

in which Corxx is the auto-correlation matrix of x̃1,r , and its
element Corxx [m, n] is estimated as follows:

Corxx [m, n] = 0.95δm,n (26)

in which δm,n is the Euclidean distance between two pixels x̃1,r(m)
and x̃1,r(n) in x̃1,r . When the subrate is set to be large, the linear
recovery model can provide excellent visual quality while costing
fewer computations.

4. EXPERIMENTAL RESULTS

We evaluate the proposed CVS system on video sequences with
various resolutions, including seven CIF (352 × 288) sequences
Akiyo, Bus, Container, Coastguard, Football, Foreman, Hall, one
WQVGA (416 × 240) sequence BlowingBubbles, and one 1080p
(1920× 1080) sequence ParkScene. In the proposed CVS system,
the window size db × db and the normalization factor σ are,
respectively, set to be 11 × 11 and 10 for the context extraction,
the window size W × W and the regularization factor β are,
respectively, set to be 21×21 and 0.25 for theMH prediction, and

FIGURE 10 | Rate-distortion curves of the reconstructed non-key frames in (A) Foreman, (B) BlowingBubbles, and (C) ParkScene sequences when using different

allocation schemes. For Foreman and BlowingBubbles, the block-size pair is set to be (2, 16), and for ParkScene, the block-size is set to be (8, 16).

Frontiers in Plant Science | www.frontiersin.org 12 February 2022 | Volume 13 | Article 849606

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Li et al. Green Visual Sensor of Plant

the measurement matrix is produced by Gaussian distribution.
First, we discuss the effects of different block sizes on the
proposed CVS system. Second, we evaluate the performance
improvement resulting from the used context extraction. Finally,
we compare the proposed CVS system with two state-of-the-art
CVS systems: SS-CVS (Li et al., 2020) and MH-RTIK (Chen C.
et al., 2020) in terms of the rate-distortion performance. PSNR is
used to evaluate the qualities of reconstructed video sequences,
and the bitrate denotes the average amount of bits per pixel to
encode a video sequence. The variation of PSNR with bitrate
is called the rate-distortion performance. The computational
complexity is measured by the execution time. Experiments are
implemented with MATLAB on a workstation with 3.30-GHz
CPU and 8 GB RAM.

4.1. Effects of Block Sizes
In the proposed CVS system, in order to highlight the complex
structures by contexts, we desire a small block size at encoder, but
at decoder, a large block size is desired to suppress the blocking
artifacts in the reconstructed video frames. We set a block-size
pair (B,Blev), in which B and Blev are the block sizes for sampling
and recovery, respectively, and evaluate the effects of different
block-size pairs on the reconstruction qualities of key frames and
non-key frames.

First, we select the first frames of Foreman, BlowingBubbles,
and ParkScene sequences as the key frames, which are linearly

recovered, and show their rate-distortion curves at different
block-size pairs in Figure 7. For Foreman and BlowingBubbles
with the low resolution, the block-size pair (4, 16) achieves higher
PSNR values than others with low bitrates, but the rate-distortion
curve for the block-size pair (2, 16) rapidly increases as the
bitrate increases and significant PSNR gains are achieved when
compared with other block-size pairs. These results indicate that
the small blocks used in adaptive allocation and large blocks
for linear recovery fit together well. For ParkScene with high
resolution, when the block size B for sampling is set to be too
small, e.g., B = 2, no block can contain sufficient structures,
causing the rate-distortion performance to degenerate as the
bitrate increases, but a suitable block size for sampling is set, e.g.,
B = 8, PSNR gains can be significantly improved.

Then, we select the second frames of Foreman,
BlowingBubbles, and ParkScene sequences as the non-key
frames, which are recovered by MH prediction based on the
reconstructed previous and next key frames at the subrate 0.7,
and show their rate-distortion curves at different block-size pairs
in Figure 8. Similar to the results from key frames, for Foreman
and BlowingBubbles, the better rate-distortion performance is
achieved when the block-size pair is set to be (2, 16), and for
ParkScene, in order to prevent the loss of structures, the block
size for sampling is appropriately set to be 8.

Given the above, we can see that the bad effects resulting
from the extraction of contexts can be suppressed by the block

TABLE 1 | Average Peak Signal-to-Noise Ratio (PSNR) (dB) for reconstructed video sequences by the proposed Compressive Video Sensing (CVS) system, Scalable

Structured CVS (SS-CVS) (Trevisi et al., 2020), and Multi-Hypothesis Reweighted TIKhonov (MH-RTIK) (Chen C. et al., 2020) at subrates 0.1 to 0.5.

Sequence Resolution Algorithm
Subrate SNK

0.1 0.2 0.3 0.4 0.5

GOP Length L = 2

Container

CIF

MH-RTIK 33.67 34.76 35.08 35.28 35.47

Proposed 38.74 39.92 40.38 40.47 40.61

Coastguard
MH-RTIK 33.12 34.26 34.69 35.08 35.43

Proposed 35.80 37.22 38.30 38.89 39.45

Hall
MH-RTIK 37.10 38.01 38.39 38.65 38.91

Proposed 38.26 39.69 40.82 41.23 41.50

Foreman
MH-RTIK 36.52 37.09 37.56 37.96 38.60

Proposed 38.13 39.66 40.87 41.41 41.78

GOP Length L = 10

Akiyo

CIF

SS-CVS 17.70 24.80 33.06 36.55 39.23

Proposed 40.75 43.50 45.28 45.09 45.56

Bus
SS-CVS 18.65 23.57 25.71 27.67 30.10

Proposed 25.65 38.31 30.97 32.97 34.00

Football
SS-CVS 15.52 23.95 27.87 30.33 32.93

Proposed 28.98 32.67 35.78 36.55 37.28

Foreman
SS-CVS 13.40 20.51 28.07 32.90 35.25

Proposed 33.18 36.00 38.55 39.54 40.22

BlowingBubble QWVGA
SS-CVS 16.93 23.50 28.47 30.70 32.84

Proposed 30.13 32.17 33.58 35.01 35.68

ParkScene 1080P
SS-CVS 23.19 30.04 33.14 35.53 36.62

Proposed 33.01 35.18 36.79 37.97 38.67
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merging, therefore, the quality improvement from contexts-
based allocation is further enhanced.

4.2. Effects of Contexts
In the proposed CVS system, the contexts are extracted
from CS measurements and used to adaptively allocate the
CS measurements for blocks, leading to the improvement of
reconstruction quality. To verify the validity of contexts from
CS measurements on the quality improvement, we evaluate the
effects of different allocation schemes on the rate-distortion
performance of the proposed CVS system. The uniform
allocation is used as a benchmark, and the adaptive allocation
uses the contexts extracted from CS measurements and original
pixels, respectively.

Figure 9 shows the rate-distortion curves of the reconstructed
key frames when using different allocation schemes, in which
the key frames are, respectively, taken from the first frames of
Foreman, BlowingBubbles, and ParkScene sequences. It can be
seen that adaptive allocation outperforms uniform allocation in

PSNR values at any bitrate, indicating that contexts contribute
to quality improvement. Importantly, the contexts from CS
measurements are competitive with those from original pixels,
and their performance gaps are very small, which means that CS
measurements can better represent the contexts of blocks.

Figure 10 shows the rate-distortion curves of the
reconstructed non-key frames when using different allocation
schemes, in which the non-key frames are, respectively, taken
from the second frames of Foreman, BlowingBubbles, and
ParkScene sequences. It can be seen that the adaptive allocation is
still effective for MH prediction, and it can significantly improve
the rate-distortion performances when compared with uniform
allocation. The contexts from CS measurements have similar
efficiency of allocation to that of contexts from original pixels,
which proves that the merits of adaptive allocation can still be
maintained in the measurement domain.

The above results indicate that the contexts extracted by
CS measurements prompt the adaptive allocation to improve
the reconstruction quality of CVS system, which makes the

FIGURE 11 | Rate-distortion curves obtained by the proposed CVS system and Multi-Hypothesis TIKhonov (MH-TIK) (Chen C. et al., 2020) for (A) Container,

(B) Coastguard, (C) Hall, and (D) Foreman sequences. Note that the length L of GOP is set to be 2.
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FIGURE 12 | Rate-distortion curves obtained by the proposed CVS system and Scalable Structured CVS (SS-CVS) (Li et al., 2020) for (A) Akiyo, (B) Bus,

(C) Football, (D) Foreman, (E) BlowingBubble, and (F) ParkScene sequences. Note that the length L of GOP is set to be 10.
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TABLE 2 | Average encoding time (s/frame) and decoding time (s/frame) on video

sequences with different resolutions for the proposed CVS system, SS-CVS (Li

et al., 2020), and MH-RTIK (Chen C. et al., 2020).

Resolution Algorithm Encoding Time

(s/frame)

Decoding Time

(s/frame)

Average on Subrates SNK 0.1 to 0.5

CIF
MH-RTIK 0.17 19.34

Proposed 0.63 4.48

Average on Subrates SNK = 0.6

CIF
SS-CVS 5.40 21.22

Proposed 0.64 7.79

QWVGA
SS-CVS 4.90 17.23

Proposed 0.64 7.69

1080P
SS-CVS 108.10 401.8

Proposed 1.83 162.47

proposed CVS system more suitable to the applications with
limited resources.

4.3. Performance Comparisons
We evaluate the performance of the proposed CVS system by
comparing it with the two state-of-the-art CVS systems: SS-CVS
(Li et al., 2020) and MH-RTIK (Chen C. et al., 2020). To make a
fair comparison, we keep the parameter settings of SS-CVS and
MH-RTIK in their original reports, some important details are
repeated as follows:

1) SS-CVS: the system consists of one base layer and one
enhancement layer; the block size is set to be 16; the length
of GOP is 10; the subrate of key frame is set to be 0.9; the
dimension of the subspace is 10; the number of subspaces is 50.

2) MH-RTIK: the sub-block extraction is used; the number of
hypotheses is 40; the block size is set to be 16; the length of
GOP is 2; the subrate of key frame is set to be 0.7.

In addition, we employ SQ and Huffman in SS-CVS and MH-
RTIK to compress the CS measurements. For the proposed
CVS system, the block-size pair is set to be (2, 16) for CIF and
QWVGA sequences and (8, 16) for 1080P sequences, the subrate
SK of key frame is set to be 0.7, the results under the GOP
length L = 2 are compared with those of MH-RTIK, and the
results under the GOP length L = 10 are compared with those
of SS-CVS.

Table 1 lists the average PSNR values for the reconstructed
video sequences by the proposed CVS system, SS-CVS, and MH-
RTIK when the subrate SNK of non-key frame varies from 0.1
to 0.5. Compared with MH-RTIK, the proposed CVS system
achieves obvious PSNR gains at any subrate, e.g., the average
PSNR gain is 2.824 dB for the Foreman sequence. Compared
with SS-CVS, the proposed CVS system also presents higher
PSNR values at any subrate, and especially for low subrates,
PSNR gains are significant, e.g., when the subrate is 0.1, PSNR
gains are 9.82, 13.20, and 19.78 dB for ParkScene, BlowingBubble,
Foreman sequences, respectively. Figures 11, 12 show the rate-
distortion curves for the proposed CVS system, MH-RTIK, and

SS-CVS. Due to the implementation of zero-padding DPCM,
the performance improvement of the proposed CVS system is
further enhanced when compared with MH-RTIK and SS-CVS.
By the objective evaluation of the reconstruction quality, it can
be indicated that the proposed CVS system can significantly
improve the qualities of the reconstructed video sequences.

Table 2 lists the average encoding time (s/frame) and decoding
time (s/frame) on video sequences with different resolutions for
the proposed CVS system, SS-CVS, and MH-RTIK. We compute
the average execution time on the range [0.1, 0.5] of subrate SNK
for the proposed CVS system and compare it with that of MH-
RTIK for CIF sequences. The encoding speed of the proposed
CVS system is slowed down due to the contexts-based adaptive
allocation, and its encoding time is 0.63 s per frame, larger than
that of MH-RTIK. Assisted by the simple linear recovery, the
proposed CVS system reduces the decoding complexity, and only
costs 4.48 s to reconstruct a video frame, however, MH-RTIK
requires 19.34 s per frame. Under the subrate SNK = 0.6, the
execution time of the proposed CVS algorithm is compared with
that of SS-CVS for the CIF, QWVGA, and 1080P video sequences,
respectively. Compared with SS-CVS, the proposed CVS system
costs less encoding time, and the encoding time does not
dramatically increase as the resolution increases, e.g., for 1080P
sequence, the proposed CVS system only costs 1.83 s per frame,
but SS-CVS costs 108.10 s. In SS-CVS, the subspace clustering
and the basis derivation are implemented at the encoder, and
they lead to more encoding costs than the adaptive allocation
in the proposed CVS system. The proposed CVS system costs
less decoding time than SS-CVS, and its decoding costs also
grow more slowly when compared with SS-CVS, e.g., for 1080P
sequence, the proposed CVS system costs 162.47 s per frame,
and the SS-CVS costs 401.8 s. The heavy computational burdens
for SS-CVS derive from the non-linear subspace learning, but
the decoding complexity of the proposed CVS system is limited
benefiting from the linear recovery and prediction. From the
above, we can see that the proposed CVS system still keeps
a low computational complexity while providing better rate-
distortion performance.

5. CONCLUSION

In this article, a context-based CVS system is proposed to
improve the visual quality of the reconstructed video sequences.
At the encoder, the CS measurements are adaptively allocated for
blocks according to the contexts of video frames. Innovatively,
the contexts are extracted by CS measurements. Although the
extraction of contexts is independent of original pixels, these
contexts can still better reveal the structural complexity of
each block. To guarantee better rate-distortion performance,
the zero-padding DPCM is proposed to quantize these adaptive
measurements. At the decoder, the key frames are reconstructed
by linear recovery, and these non-key frames are reconstructed
by MH prediction. Thanks to the effectiveness of context-based
adaptive allocation, the simple recovery schemes also provide the
comfortable visual quality. Experimental results show that the
proposed CVS system improves the rate-distortion performances
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when compared with two state-of-the-art CVS systems, including
MH-RTIK and SS-CVS, and guarantees a low computational
complexity.

As the research in this article is exploratory, there are many
intriguing questions that future work should consider. First, the
estimation of block sparsity should be analyzed in mathematics.
Second, we will investigate how to fuse the quantization into
adaptive allocation. More importantly, we will deploy the
adaptive CVS system on an actual hardware platform.
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