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Functional responses are central to predator–prey dynamics and describe how predation

varies with prey abundance. Functional responses often are measured without regard to

prey size (i.e., body mass) or the temperature dependence of feeding rates. However,

variation in prey size within populations is ubiquitous, and predation rates are often both

size and temperature-dependent. Here, we assessed functional responses of larvae

and adult Harmonia axyridis on the 1st, 2nd, and 3rd instars of the prey Spodoptera

litura across a range of temperatures (i.e., 15, 20, 25, 30, and 35◦C). The type and

parameters of the functional responses were determined using logistic regression and

fitted to the Roger’s random predator equation. The magnitude of predation varied with

the predator and prey stage, but prey predation increased with warming and predator

age. Predation by the female and 4th instar of H. axyridis on the 1st instar of prey was

greater, followed by the 2nd and 3rd instar of prey S. litura. No predation occurred on the

larger prey for the 1st, 2nd, and 3rd instars of H. axyridis. The larvae and adult H. axyridis

produced a type II (hyperbolic) functional response curve across all temperatures and the

three prey types they consumed. Space clearance rates, handling time, and maximum

predation rates of H. axyridis changed with temperature and prey size, increasing with

temperature and decreasing with prey size, suggesting more predation will occur on

younger prey. This study indicates an interactive role of temperature and prey/predator

size in shaping functional responses, which might complicate the planning of effective

biocontrol strategies against this serious pest.

Keywords: biocontrol, space clearance rate, handling time, lepidoptera, coccinellids, warming, predation

INTRODUCTION

Trophic interactions are central to community ecology and ecosystem stability (Wang and Zou,
2017) by structuring food webs (Mcintosh et al., 2017), driving population dynamics (Noman
et al., 2021), and shaping landscapes of fear (Fardell, 2022). These ecological functions, however,
are regulated by species interaction strengths within food webs (Novak andWootton, 2010). Many
biotic and abiotic factors (King et al., 2021), including temperature, arena size, species identity, body
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mass, and offensive or defensive structures (DeLong, 2014; Li
et al., 2018; Uiterwaal and DeLong, 2020), influence species
interaction strengths. Measuring functional responses, i.e., the
relationship between foraging rate and prey abundance, can thus
help improve our understanding of predator–prey relationships
and use them to generate biocontrol programs that are effective
and sustainable (Holling, 1959; DeLong and Uiterwaal, 2021).

A fundamental factor influencing the biological rates of most
ectotherms is the temperature (Kim et al., 2020). The impact
of temperature on biological rates extends from biochemical
reactions to individual physiology to nutrient cycling in
ecosystems (Brown et al., 2004; Rall et al., 2012; Yvon-Durocher
et al., 2012; Amarasekare, 2015; Islam et al., 2022). The
temperature has the potential to modify species interaction
strengths and alter energy distribution across food webs. With
climate change becoming a major challenge worldwide, interest
in determining the effect of temperature on ecological systems
has grown (García et al., 2018). Insects are ectotherms, and
hence their growth, maturation, reproduction, and trophic
interactions can be modified by their thermal surroundings
(Amarasekare, 2015; Govindan and Hutchison, 2020). These
effects indicate that pest management strategies relying on insects
as biocontrol agents against arthropod pests can be altered by
temperature changes.

There are three typical types of functional responses (Holling,
1959; DeLong, 2021): a linear rate of predation up to a constant
plateau (type I), hyperbolic (type II), or sigmoid (type III),
based upon whether the functional response parameters, i.e.,
the coefficients of space clearance rate (a) and prey handling
time (Th), vary with prey abundance. The space clearance rate
corresponds to the area cleared of prey per predator per unit
of time, whereas handling time measures the loss in search
time associated with killing, consuming, and digesting the prey
(Pervez, 2005). A high space clearance rate and low handling
time are general characteristics of a successful biocontrol agent
(DeLong and Uiterwaal, 2021).

Functional responses often are estimated without regard to
body size or other traits (Jalali et al., 2010; DeLong et al.,
2021). However, variation in prey size owing to ontogeny and
individual variation is ubiquitous, and predation rates typically
depend on the size of the predator, the prey, or both (Cogni
et al., 2002; Mccoy et al., 2011). This variation stems from
the effect of predator and prey body size on the functional
response parameters (i.e., handling time and space clearance rate)
(DeLong, 2014; Uiterwaal and DeLong, 2020; Buba et al., 2021).
Generally, handling time increases as prey size increases and
decreases as predator body size increases. Space clearance rate
may increase with predator body size, while the effect of prey
body size on space clearance rate is more variable (Uiterwaal
and DeLong, 2020; Buba et al., 2021). Similarly, functional
responses often are estimated at only one temperature, despite
the widespread effect of temperature on functional response
parameters. Across many systems and in several focused studies,
the temperature has a unimodal effect on both space clearance
rate and handling time (Uszko et al., 2017; Uiterwaal andDeLong,
2020). In smaller comparative studies, however, the temperature
may have a monotonic effect on functional responses (Buba et al.,
2021; DeLong and Uiterwaal, 2021). It is imperative to consider

the temperature in biological control strategies, especially for
biological control with non-indigenous natural enemies (Islam
et al., 2020, 2021).

Spodoptera litura F. (Lepidoptera: Noctuidae) is a noxious
polyphagous pest with a worldwide distribution, attacking many
agricultural, horticultural, and ornamental plants (Atwal and
Dhaliwal, 2009). It feeds on an extensive host range of 389
species in 109 plant families (Qin et al., 2006). The pest lays
eggs in batches, yielding a large population of hatchlings that
are gregarious and spread over nearby plants as they grow. The
hatchlings develop through 5-7 larval instars (Rao et al., 1989),
during which they can inflict huge losses on sensitive crops
(Razaq et al., 2019; Shah et al., 2020). The potential for whole
crop failures causes farmers to heavily apply pesticides to their
crops (Saleem et al., 2016; Shah et al., 2017, 2019). As a result,
the pest has developed resistance to synthetic pesticides, leading
to control failures and outbreaks (Xie et al., 2010; Xu et al.,
2012).With over 638 resistance reports against 39 active pesticide
ingredients (Whalon et al., 2012), the management of this pest
remains a challenge.

It is therefore necessary to consider alternative approaches,
such as biological control with predators, to suppress this pest.
About 131 species of natural enemies are reported to feed on S.
litura (Rao et al., 1993). Harmonia axyridis (Pallas) (Coleoptera:
Coccinellidae) is an important predator of several economically
important hemipterans (Huang et al., 2019; Gao et al., 2020)
and lepidopterans (Koch et al., 2003; Uiterwaal and DeLong,
2018, 2020; Islam et al., 2020). Recently, in companion studies,
we showed temperature-dependent predation and functional
responses ofH. axyridis to eggs of S. litura, but there are no prior
estimates of the functional response of H. axyridis to the larval
stages of S. litura. This study estimated the functional responses
of H. axyridis foraging on five larval stages of S. litura across a
range of temperatures and the body size of the predators. We
tested the hypothesis that the functional response interactively
depends upon prey size, predator growth stage, and temperature.

MATERIALS AND METHODS

Rearing of H. axyridis
In January 2019, colonies ofH. axyridis and Acyrthosiphon pisum
Harris (Hemiptera:Aphididae) were obtained from a collection
of adults from a stock culture at the Key Laboratory of Hubei,
Insect Resources Utilization and Sustainable Pest Management,
located at Huazhong Agricultural University (HZAU), Wuhan,
China. The predator was fed with A. pisum, and both cultures
were maintained on Vicia faba (L.) Fabaceae (Leguminosae)
bean plants inside a growth chamber at 26 ± 1◦C, 60–70%
RH, and 16:8 h (light:dark) photoperiod (Knapp and Nedvěd,
2013).

Thirty pairs of H. axyridis adults were mated inside 9 ×

5 cm2 plastic cups (Yongxin and Plastic Products Guangzhou
Co., Ltd: Model No 277), which had fine mesh covering the top
for ventilation and crumpled filter papers at the bottom as an
oviposition substrate. The adults of H. axyridis were kept inside
plastic cups and fed with A. pisum. The oviposition was checked
daily. Eggs were removed daily and kept in 6 cm Petri dishes with
moistened cotton. Post-emergence hatchlings were subsequently
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maintained inside similar plastic cups containing aphids for
prey that were refreshed daily. Upon reaching sexual maturity,
the adults were sexed and the developed progeny was used to
establish population culture. In this way, the whole population
culture was maintained throughout the trial with individuals
from each stage required for this study.

Rearing of Spodoptera litura
The S. litura egg masses were purchased from Henan Jiyuan
Baiyun Industrial Co., Ltd, China, in February 2019, and
incubated inside the growth chamber at 26◦C and 70 ± 5 %
RH under a 12:12 h (light: dark) photoperiod. Post-emergence
hatchlings were fed with a standard artificial diet (Ul Haq et al.,
2015) and cultured until they reached the final instar stage inside
mesh-covered transparent circular glass jars (1 L). The artificial
diet (semi-solid) consisted of ascorbic acid (2.35 g), distilled
water (550ml), kidney bean flour (150 g), agar (8.4 g), sorbic
acid (0.75 g), yeast powder (24 g), methyl-4-hydroxy benzoate
(1.5 g), formaldehyde solution (1ml), and streptomycin (0.75 g).
The final instars were isolated and subsequently cultured through
maturity inside similar jars that contained moist cotton balls
as a pupation media and a 15% glucose solution for food. A
clean piece of paper completely covered the jar’s bottom as
an oviposition substratum (Chang et al., 2020). Oviposition
was checked daily, and post-emergence hatchlings were reared
together to obtain uniform sets of individuals of the same age.
The population culture was established separately for the 1st, 2nd,
and 3rd instars. The length of the 1st instar of prey varied from
1.1 to 1.7mm, whereas that of the 2nd and 3rd instars varied
from 2.4 to 3.9mm and 7.6 to 8.5mm, respectively (Ramaiah
and Maheswari, 2018). The mean weights were 7.31×105 ±

2.99×10−5 g/larva for 1st instar of prey, 2.95×10−4 ± 1.20×10−4

g/larva for 2nd instar of prey, and 1.37×10−3 ± 5.58×10−4

g/larva for 3rd instar of prey S. litura.

Functional Response Experiment
The predators were fed with aphids during development. It
was therefore necessary to remove maternal prey effects and
acclimatize the predator to the new prey. This was approached
by rearing H. axyridis on 1st instar of S. litura for at least two
complete generations. The 1st, 2nd, 3rd, and 4th instars, and
adult (male and female) individuals of H. axyridis used in this
study were of the approximate same age (0-6 h) and were starved
singly to stimulate hunger. The starvation period was 6 h for
the 1st instar and 24 h for the subsequent instars/stages (Islam
et al., 2020). During starvation, humidity was provided inside
Petri dishes through moist cotton. The minimum time required
between molts was always greater than 48 h for the tested
temperatures. This suggests little chance for molting to interfere
with functional response experiments over a 24-h period.

Experiments were conducted at five constant temperatures
(i.e., 15, 20, 25, 30, and 35◦C) under fixed settings of 65 ± 5
% RH and photoperiod of 16:8 (light: dark) inside a computer-
controlled growth chamber (Shanghai Xinmiao Medical Device
Manufacturing Co., Ltd: Model No QHX-250 BSH-III). The
temperature regimes reflect thermal conditions experienced by
H. axyridis in various protected plantations and field crops

in tropical and temperate areas (Brown et al., 2011). Tomato,
Solanum lycopersicum L. (Solanales: Solanaceae), is a suitable host
plant for S. litura (Bano and Muqarab, 2017). The experiments
were conducted on circular tomato leaflets, cut to fit inside a
9-cm diameter dish, and wrapped at petioles with moist cotton
to prevent drying. Three independent prey/predator systems
were established in this study. In the first system, predators in
all growth stages were allowed to feed on the 1st instar of S.
litura. The densities of 1st instar of prey offered to the 1st and
2nd instars of H. axyridis were 3, 6, 10, 15, 20, 25, 35, and 50
larvae/arena, and 5, 10, 20, 30, 40, 50, 60, and 70 larvae/arena,
respectively, whereas 3rd and 4th instars, and adult male and
female were offered the densities of 25, 50, 75, 100, 150, 200,
250, and 300 larvae/arena. In the second system, older predator
instars/stages (i.e., 3rd and 4th instars, and both adults) were
given only 2nd instar of S. litura at the densities of 5, 10, 20,
30, 50, 80, 100, and 120 prey larvae/arena. Here, 1st and 2nd
instars of H. axyridis were excluded from the candidate list, as
they were not found to be able to feed on 2nd instar of prey in
the preliminary assessments. In the third system, the predators
(i.e., 4th instar and both adults) were offered with the 3rd instar
of S. litura at the densities of 2, 4, 8, 16, 32, 40, 45, and 50
prey larvae/arena. Here, 1st, 2nd, and 3rd instars of H. axyridis
were excluded from the candidate list, as they could not consume
the 3rd instar of prey. A control treatment that only contained
prey but no predator was also established for each prey/predator
system to account for natural mortality. Within each of these
systems, the selection of prey densities offered to the predator was
based on preliminary assessments. All experimental treatments
were replicated 10 times, and the control treatment had five
replicates. One predator was placed on the tomato leaflet inside
the arena (9-cm diameter) using a fine camel hairbrush. Prey
was pre-released about 30min before the predator to settle over
the substrate. The escape of predator and prey was prevented
by wrapping parafilm around the edges of the arena. Larvae
consumed by H. axyridis were not replaced during the entire
experiment. After 24 h, the larval and adult H. axyridis were
removed from the arenas, and the number of prey caterpillars,
either damaged, killed, regurgitated, or consumed, was recorded
for predation assessment.

Data Analyses
The control mortality of all stages of prey S. litura (1st, 2nd,
and 3rd instars) was none to very low (<2%) across all five
temperatures, and therefore data were not adjusted for control
mortality. Predation of prey by H. axyridis was analyzed using
generalized linear models (GLM) with a binomial distribution
and a logit link function. Temperature, growth stage, prey
size, density, and their interactions were considered as fixed
effects. The dependent variable was Ne. As three prey sizes were
used, and as prey densities could be confounded by prey size
(Uszko et al., 2020), we used the mean weight of each prey
in each replicate as a covariate. Non-normal distributions of
the data (P > 0.05) were tested by Kolmogorov–Smirnov test.
Factors and interaction effects were assessed using the likelihood
ratio (LR) chi-square test with a 95 % percent confidence
interval (CI). Following the detection of significant effects of
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prey size (main/interaction), we further tested the effects of
temperature, growth stage, density, and their two-way or three-
way interactions within each of the three prey sizes offered.
Because several tests were carried out to determine the effects of
temperature, predator stage, prey instar, and their interaction, we
employed the Bonferroni correction to correct for significance,
i.e., dividing the standard significance criterion (P < 0.05) by the
number of tests evaluated. Statistical analyses were performed by
using R software (v4.1.2) (R Core Team et al., 2022) for GLM
analysis and “car” (Fox and Weisberg, 2011) packages for the
likelihood ratio (LR) chi-square test.

Functional Response Assays

We used the two-step procedure recommended by Juliano (2001)
to determine the form and parameters of a functional response.
The form of the functional response curve was first determined
by fitting polynomial logistic regression on the proportion of
larvae consumed across larvae densities, as described by:

Ne

N0
=

exp
(

Po + P1N0+ P2N
2
0+ P3N

3
0

)

1+ exp
(

Po + P1N0+ P2N
2
0+ P3N

3
0

) (1)

where Ne and N0 represent the number of prey killed
or consumed and initial prey density, respectively, and Ne

N0
represents the proportion of prey that was consumed. P0, P1, P2,
and P3 are the constant, linear, quadratic, and cubic coefficients
of the regression, respectively. We started with a cubic model
for fitting the polynomial logistic regression; however, since the
parameters of this model are non-significant (P > 0.05), we then
eliminated the cubic term N3

0 and simplified polynomial logistic
regression to fit with the quadratic coefficient. These coefficients
were calculated using generalized linear models (GLM) with a
binomial distribution and a logit link, and a maximum likelihood
function with R software (v4.1.2) (R Core Team et al., 2022).
Type II and type III functional responses can be distinguished
based on the shape of the curves obtained by fitting Equation
1 to the proportional predation data. A type II response is
described by a negative linear estimate (decreasing proportional
predation with increasing prey density), and a type III functional
response by a positive linear estimate followed by a negative
quadratic term (increasing but then decreasing proportional
predation with increasing prey density) (Juliano, 2001). The type
II response indicates that predation declines monotonically with
prey density, and a type III response shows that the proportional
prey predation is positively density-dependent (Holling, 1959).
The logistic regression indicated that the data fit a type II
functional response (P1 < 0) at all stages and tested temperatures
(see Table 1). Thereafter, Roger’s “random predator equation”
(Equation 2) (Rogers, 1972) was applied, which is appropriate for
our experiment without prey replacement (Juliano, 2001). This
model is as follows:

Ne = N0 [1− exp(a(ThNe − T))] (2)

where Ne and N0 again represent the number of prey consumed
and offered, respectively, α is the space clearance rate, Th is the
handling time, and T is the total time available for predators

to forage (i.e., 24 h for this study), and it is solved using
Lambert’s transcendental equation (Bolker, 2008). We used the
“frair” R software package to determine the coefficients of space
clearance rate and handling time (Pritchard et al., 2017). The
95% confidence intervals (CIs) for space clearance rate and
handling time were generated by nonparametric bootstrapping
(n = 10,000) again by using “frair” R package. Then we
compared fitted coefficients in which non-overlapping 95% CIs
are considered significantly different (Pritchard et al., 2017).

Finally, we calculated the maximum predation rate from the
estimates of Th. The ratio of 1/Th represents the maximum
predation rate considering a predator that spends all its time
handling (i.e., 24 h here). The CIs for maximum predation rate
were obtained from a set of 20 simulated samples, and 50
datasets (i.e., 50 simulated replicates) were generated for this
study by using “simaR” R software package (Benhadi-Marín et al.,
2018). Again, significant differences in maximum predation rates
among the temperatures were calculated by non-overlapping CIs.

RESULTS

Predation of H. axyridis on S. litura
Predation of H. axyridis on the larvae of S. litura was dependent
upon temperature and the size of both predator and prey
(all P < 0.05, Supplementary Table 1). The rate of predation
increased with warming and with advances in the predator stage;
however, predation decreased with advances in the prey stage
(Figure 1).

Effects of temperature, predator stage, prey density, and their
interactions were significant on the prey instars tested (P <

0.05, Supplementary Table 2), except for predator stage and prey
density interaction on 3rd prey instars (P = 0.1156).

The magnitude of predation was different for the same
predator in the three prey systems across the temperatures
tested (Figure 2). The mean predation rate for females decreased
from 84.88 ± 2.47 larvae/arena to 10.83 ± 0.36 larvae/arena
with advances in the prey size from the 1st to the 3rd instar
(Figure 2A). The mean rate of prey predation increased from
35.05 ± 1.16 larvae/arena to 73.92 ± 2.58 larvae/arena on the
1st instar of prey S. litura, 8.50 ± 0.23 larvae/arena to 23.43 ±

0.88 larvae/arena on the 2nd instar of prey of S. litura, and 4.86±
0.17 larvae/arena to 12.53 ± 0.49 larvae/arena on the 3rd instar
of prey S. litura as the temperature increased from 15 to 35◦C.
Predation was lowest at 15 and 20◦C, intermediate at 25 and
30◦C, and greatest at 35◦C on the 1st and 2nd instars of prey S.
litura, whereas on the 3rd instar of prey S. litura, predation was
found to be the lowest at 15 and 20◦C, intermediate at 30◦C and
35◦C, and greatest at 25◦C (Figure 2B).

The rate of prey predation was much higher when feeding on
the 1st instar of S. litura than on the 2nd and 3rd instars of S.
litura (Figure 1). The highest predation was noted for females,
followed by 4th instar and adult males against 1st instar of S.
litura. The predation rate of the 4th instar and femaleH. axyridis
was similar in the 2nd and 3rd instars of S. litura. Initial instars of
H. axyridis (i.e., 1st and 2nd instar) showed the lowest predation
against the 1st instar of S. litura. Likewise, 3rd instar ofH. axyridis
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TABLE 1 | Maximum likelihood estimates from logistic regression analyses of the proportion of prey eaten by different stages of Harmonia axyridis preying upon 1st, 2nd, and 3rd instars of prey Spodoptera litura at

various temperatures.

Predator

stage

Temperature

(◦C)

Prey

stage

Intercept Siga Linear Siga Quadratic Siga

Estimates S.E. Z-value Pr(>|z|) Estimates S.E. Z-value Pr(>|z|) Estimates S.E. Z-Value Pr(>|z|)

1st larvae 15 1st 0.760 0.237 3.207 1.341 × 10−3 ** −0.107 0.019 −5.740 9.49 × 10−09 *** 1.1233 × 10−3 3.069 × 10−4 3.660 2.52 × 10−4 ***

20 1st 1.470 0.244 6.024 1.7 × 10−9 *** −0.133 0.019 −7.161 8.03 × 10−13 *** 1.4818 × 10−3 3.006 × 10−4 4.929 8.28 × 10−7 ***

25 1st 2.573 0.288 8.946 <2 × 10−16 *** −0.135 0.020 −6.752 1.46 × 10−11 *** 1.3643 × 10−3 3.078 × 10−4 4.432 9.33 × 10−6 ***

30 1st 3.387 0.371 9.134 <2 × 10−16 *** −0.121 0.024 −4.986 6.16 × 10−7 *** 1.027 × 10−3 3.57 × 10−4 2.877 4.01 × 10−3 **

35 1st 7.336 0.883 8.312 <2 × 10−16 *** −0.267 0.050 −5.329 9.9 × 10−8 *** 2.5379 × 10−3 6.678 × 10−4 3.800 1.45 × 10−4 ***

2nd larvae 15 1st 0.944 0.216 4.371 1.24 × 10−5 *** −0.081 0.011 −7.139 9.42 × 10−13 *** 6.132 × 10−4 1.324 × 10−4 4.633 3.61 × 10−6 ***

20 1st 2.093 0.239 8.765 <2 × 10−16 *** −0.095 0.012 −8.232 <2 × 10−16 *** 7.121 × 10−4 1.287 × 10−4 5.532 3.17 × 10−8 ***

25 1st 3.632 0.337 10.785 <2 × 10−16 *** −0.107 0.015 −7.299 2.91 × 10−13 *** 7.332 × 10−4 1.521 × 10−4 4.821 1.43 × 10−6 ***

30 1st 4.880 0.467 10.459 <2 × 10−16 *** −0.125 0.019 −6.524 6.84 × 10−11 *** 7.868 × 10−4 1.897 × 10−4 4.147 3.37 × 10−5 ***

35 1st 9.261 0.903 10.252 <2 × 10−16 *** −0.265 0.034 −7.784 7.01 × 10−15 *** 1.9271 × 10−3 3.111 × 10−4 6.194 5.88 × 10−10 ***

3rd larvae 15 1st 0.224 0.106 2.113 3.46 × 10−02 * −0.016 0.001 −11.363 <2 × 10−16 *** 2.71 × 10−5 4.021 × 10−6 6.740 1.58 × 10−11 ***

20 1st 0.931 0.103 9.017 <2 × 10−16 *** −0.022 0.001 −15.753 <2 × 10−16 *** 3.985 × 10−5 3.852 × 10−6 10.345 <2 × 10−16 ***

25 1st 1.207 0.102 11.890 <2 × 10−16 *** −0.021 0.001 −16.070 <2 × 10−16 *** 3.795 × 10−5 3.621 × 10−6 10.480 <2 × 10−16 ***

30 1st 2.184 0.110 19.856 <2 × 10−16 *** −0.019 0.001 −15.090 <2 × 10−16 *** 3.202 × 10−5 3.341 × 10−6 9.583 <2 × 10−16 ***

35 1st 2.979 0.129 23.060 <2 × 10−16 *** −0.021 0.001 −15.040 <2 × 10−16 *** 3.409 × 10−5 3.588 × 10−6 9.500 <2 × 10−16 ***

15 2nd −0.760 0.177 −4.297 1.73 × 10−5 *** −0.032 0.006 −4.982 6.29 × 10−7 *** 1.42 × 10−4 4.59 × 10−5 3.094 1.97 × 10−3 **

20 2nd 0.777 0.237 3.280 1.04 × 10−3 *** −0.086 0.015 −5.699 1.21 × 10−8 *** 9.855 × 10−4 2.538 × 10−4 3.882 1.04 × 10−4 ***

25 2nd 0.790 0.151 5.241 1.6 × 10−7 *** −0.051 0.005 −9.623 <2 × 10−16 *** 2.312 × 10−4 3.768 × 10−5 6.136 8.48 × 10−10 ***

30 2nd 0.886 0.149 5.936 2.93 × 10−9 *** −0.050 0.005 −9.812 <2 × 10−16 *** 2.35 × 10−4 3.618 × 10−5 6.494 8.34 × 10−11 ***

35 2nd 0.871 0.147 5.924 3.15 × 10−9 *** −0.047 0.005 −9.472 <2 × 10−16 *** 2.246 × 10−4 3.461 × 10−5 6.491 8.55 × 10−11 ***

4th larvae 15 1st 0.471 0.099 4.776 1.790 × 10−6 *** −0.013 0.001 −10.120 <2 × 10−16 *** 1.963 × 10−5 3.485 × 10−6 5.632 1.78 × 10−8 ***

20 1st 1.888 0.105 17.932 <2 × 10−16 *** −0.019 0.001 −15.140 <2 × 10−16 *** 3.131 × 10−5 3.339 × 10−6 9.377 <2 × 10−16 ***

25 1st 3.117 0.131 23.840 <2 × 10−16 *** −0.023 0.001 −16.300 <2 × 10−16 *** 3.704 × 10−5 3.635 × 10−6 10.190 <2 × 10−16 ***

30 1st 5.591 0.393 14.239 <2 × 10−16 *** −0.060 0.007 −8.378 <2 × 10−16 *** 2.769 × 10−4 3.949 × 10−5 7.012 2.36 × 10−12 ***

35 1st 9.873 0.499 19.790 <2 × 10−16 *** −0.064 0.004 −14.760 <2 × 10−16 *** 1.059 × 10−4 9.098 × 10−6 11.640 <2 × 10−16 ***

15 2nd 0.950 0.152 6.271 3.59 × 10−10 *** −0.055 0.005 −10.472 <2 × 10−16 *** 2.619 × 10−4 3.766 × 10−5 6.955 3.52 × 10−12 ***

20 2nd 1.319 0.151 8.753 <2 × 10−16 *** −0.053 0.005 −10.653 <2 × 10−16 *** 2.502 × 10−4 3.431 × 10−5 7.292 3.06 × 10−13 ***

25 2nd 1.865 0.160 11.654 <2 × 10−16 *** −0.053 0.005 −10.654 <2 × 10−16 *** 2.342 × 10−4 3.361 × 10−5 6.967 3.23 × 10−12 ***

30 2nd 2.563 0.183 14.023 <2 × 10−16 *** −0.055 0.005 −10.338 <2 × 10−16 *** 2.263 × 10−4 3.449 × 10−5 6.563 5.27 × 10−11 ***

35 2nd 3.061 0.208 14.688 <2 × 10−16 *** −0.055 0.006 −9.608 <2 × 10−16 *** 2.266 × 10−4 3.622 × 10−5 6.257 3.94 × 10−10 ***

15 3rd 0.805 0.237 3.393 6.91 × 10−4 *** −0.110 0.019 −5.786 7.19 × 10−9 *** 1.2165 × 10−3 3.241 × 10−4 3.754 1.74 × 10−4 ***

20 3rd 1.839 0.259 7.110 1.16 × 10−12 *** −0.128 0.019 −6.852 7.27 × 10−12 *** 1.4197 × 10−3 3.026 × 10−4 4.692 2.7 × 10−6 ***

(Continued)
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TABLE 1 | Continued

Predator

stage

Temperature

(◦C)

Prey

stage

Intercept Siga Linear Siga Quadratic Siga

Estimates S.E. Z-value Pr(>|z|) Estimates S.E. Z-value Pr(>|z|) Estimates S.E. Z-Value Pr(>|z|)

25 3rd 2.625 0.307 8.552 <2 × 10−16 *** −0.128 0.020 −6.354 2.1 × 10−10 *** 1.2858 × 10−3 3.121 × 10−4 4.120 3.79 × 10−5 ***

30 3rd 2.949 0.347 8.507 <2 × 10−16 *** −0.114 0.022 −5.253 1.5 × 10−7 *** 1.0405 × 10−3 3.267 × 10−4 3.185 1.45 × 10−3 **

35 3rd 3.079 0.338 9.117 <2 × 10−16 *** −0.148 0.021 −6.877 6.12 × 10−12 *** 1.5525 × 10−3 3.256 × 10−4 4.769 1.86 × 10−6 ***

Male 15 1st 0.552 0.178 3.106 1.899 × 10−3 *** −0.025 0.004 −6.163 7.13 × 10−10 *** 1.091 × 10−4 2.63 × 10−5 4.148 3.36 × 10−5 ***

20 1st 1.190 0.099 11.989 <2 × 10−16 *** −0.016 0.001 −13.152 <2 × 10−16 *** 2.617 × 10−5 3.364 × 10−6 7.778 7.35 × 10−15 ***

25 1st 1.818 0.105 17.350 <2 × 10−16 *** −0.017 0.001 −14.013 <2 × 10−16 *** 2.759 × 10−5 3.307 × 10−6 8.344 <2 × 10−16 ***

30 1st 2.657 0.124 21.406 <2 × 10−16 *** −0.018 0.001 −12.779 <2 × 10−16 *** 2.517 × 10−5 3.508 × 10−6 7.173 7.34 × 10−13 ***

35 1st 4.340 0.178 24.414 <2 × 10−16 *** −0.027 0.002 −15.069 <2 × 10−16 *** 4.042 × 10−5 4.331 × 10−6 9.333 <2 × 10−16 ***

15 2nd 0.551 0.154 3.573 3.53 ×10−4 *** −0.054 0.006 −9.690 <2 × 10−16 *** 2.603 × 10−4 4.04 × 10−5 6.443 1.17 × 10−10 ***

20 2nd 0.867 0.148 5.878 4.16 × 10−9 *** −0.046 0.005 −9.302 <2 × 10−16 *** 2.149 × 10−4 3.494 × 10−5 6.152 7.65 × 10−10 ***

25 2nd 1.795 0.159 11.313 <2 × 10−16 *** −0.052 0.005 −10.564 <2 × 10−16 *** 2.298 × 10−4 3.376 × 10−5 6.808 9.9 × 10−12 ***

30 2nd 1.346 0.153 8.830 <2 × 10−16 *** −0.057 0.005 −11.199 <2 × 10−16 *** 2.706 × 10−4 3.565 × 10−5 7.591 3.18 × 10−14 ***

35 2nd 2.667 0.183 14.559 <2 × 10−16 *** −0.064 0.005 −11.884 <2 × 10−16 *** 2.772 × 10−4 3.549 × 10−5 7.811 5.68 × 10−15 ***

15 3rd 0.849 0.375 2.264 2.358 × 10−2 * −0.243 0.060 −4.048 5.16 × 10−5 *** 7.265 × 10−3 2.402 × 10−3 3.025 2.49 × 10−3 **

20 3rd 1.828 0.259 7.054 1.73 × 10−12 *** −0.143 0.019 −7.394 1.43 × 10−13 *** 1.5842 × 10−3 3.194 × 10−4 4.959 7.07 × 10−7 ***

25 3rd 1.848 0.260 7.106 1.19 × 10−12 *** −0.128 0.019 −6.769 1.3 × 10−11 *** 1.36 × 10−3 3.069 × 10−4 4.431 9.37 × 10−6 ***

30 3rd 3.376 0.354 9.534 <2 × 10−16 *** −0.171 0.023 −7.577 3.53 × 10−14 *** 1.749 × 10−3 3.408 × 10−4 5.132 2.87 × 10−7 ***

35 3rd 1.653 0.259 6.392 1.64 × 10−10 *** −0.076 0.018 −4.231 2.33 × 10−5 *** 6.251 × 10−4 2.871 × 10−4 2.177 2.95 × 10−2 *

Female 15 1st 1.508 0.102 14.823 <2 × 10−16 *** −0.018 0.001 −14.564 <2 × 10−16 *** 2.932 × 10−5 3.4 × 10−6 8.624 <2 × 10−16 ***

20 1st 2.680 0.118 22.740 <2 × 10−16 *** −0.024 0.001 −17.550 <2 × 10−16 *** 3.981 × 10−5 3.494 × 10−6 11.390 <2 × 10−16 ***

25 1st 4.584 0.180 25.440 <2 × 10−16 *** −0.031 0.002 −16.840 <2 × 10−16 *** 4.738 × 10−5 4.373 × 10−6 10.840 <2 × 10−16 ***

30 1st 6.669 0.308 21.666 <2 × 10−16 *** −0.040 0.003 −13.988 <2 × 10−16 *** 6.12 × 10−5 6.316 × 10−6 9.689 <2 × 10−16 ***

35 1st 17.670 1.131 15.600 <2 × 10−16 *** −0.117 0.009 −12.890 <2 × 10−16 *** 2.011 × 10−4 1.794 × 10−5 11.210 <2 × 10−16 ***

15 2nd 0.599 0.149 4.024 5.72 × 10−5 *** −0.045 0.005 −8.698 <2 × 10−16 *** 2.037 × 10−4 3.661 × 10−5 5.564 2.64 × 10−8 ***

20 2nd 1.054 0.146 7.209 5.63 × 10−13 *** −0.037 0.005 −7.980 1.47 × 10−15 *** 1.589 × 10−4 3.236 × 10−5 4.911 9.08 × 10−7 ***

25 2nd 1.647 0.155 10.605 <2 × 10−16 *** −0.045 0.005 −9.319 <2 × 10−16 *** 1.971 × 10−4 3.232 × 10−5 6.100 1.06 × 10−9 ***

30 2nd 2.449 0.179 13.699 <2 × 10−16 *** −0.052 0.005 −10.108 <2 × 10−16 *** 2.28 × 10−4 3.38 × 10−5 6.747 1.51 × 10−11 ***

35 2nd 3.710 0.241 15.385 <2 × 10−16 *** −0.065 0.006 −10.297 <2 × 10−16 *** 2.816 × 10−4 3.923 × 10−5 7.178 7.06 × 10−13 ***

15 3rd 0.629 0.233 2.702 6.9 × 10−3 ** −0.086 0.018 −4.714 2.43 × 10−6 *** 8.777 × 10−4 3.081 × 10−4 2.849 4.39 × 10−3 **

20 3rd 2.046 0.268 7.621 2.51 × 10−14 *** −0.127 0.019 −6.740 1.58 × 10−11 *** 1.3819 × 10−3 3.016 × 10−4 4.582 4.6 × 10−6 ***

25 3rd 2.606 0.309 8.422 <2 × 10−16 *** −0.119 0.020 −5.928 3.06 × 10−9 *** 1.2178 × 10−3 3.099 × 10−4 3.930 8.51 × 10−5 ***

30 3rd 3.298 0.371 8.892 <2 × 10−16 *** −0.135 0.023 −5.938 2.89 × 10−9 *** 1.332 × 10−3 3.386 × 10−4 3.934 8.37 × 10−5 ***

35 3rd 4.437 0.479 9.267 <2 × 10−16 *** −0.187 0.028 −6.769 1.3 × 10−11 *** 1.8606 × 10−3 3.918 × 10−4 4.749 2.05 × 10−6 ***

Not all predator stages could successfully utilize S. litura as their prey. There was no predation on 2nd and 3rd instars of prey S. litura by 1st, 2nd, and 3rd instars of H. axyridis, respectively. The densities offered of each prey size were

different. The mean weights of 1st, 2nd, and 3rd instars of prey S. litura were 7.31×10−05 ± 2.99×10−05, 2.95×10−04 ± 1.20×10−04, and 1.37×10−03 ± 5.58×10−04 g per larvae, respectively. *, **, and *** represent significance at

0.05, 0.01, and 0.001 probability levels. Pr(>|z|) column represents the p-value associated with the value in the z-value column. If the p-value is less than a certain significance level (e.g., α = 0.05), then this indicates that the predictor

variable has a statistically significant relationship with the response variable in the model.

Number of replications (N) = 10.

The a indicates the level of significance at P < 0.05.
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FIGURE 1 | Consumption of prey Spodoptera litura by Harmonia axyridis at five temperatures and three prey instars. Box plots show the range of data (lower and

upper quartiles), median (line), and mean (dotted line), and different lowercase letters above the whisker caps indicate significant differences among group mean

values according to 95% CI. Number of replications (N) = 10.

exhibited the lowest predation rate against the 2nd instar of S.
litura (Figure 2A).

The predation rate increased with the initial density of prey
offered. The maximum predation rate was noted at densities of
250 (i.e., 94.93 ± 3.37), 300 (i.e., 93.55 ± 3.42), and 200 (i.e.,
90.12 ± 3.20) larvae/arena against 1st instar of S. litura. On the
2nd instar of S. litura, the predation was greatest at a density
of 100 (i.e., 25.41 ± 0.93), 120 (i.e., 24.47 ± 0.94), and 80 (i.e.,
22.12 ± 0.83) larvae/arena, whereas on 3rd instar of S. litura, the
predation was greatest at a density of 45 (i.e., 15.84 ± 0.50), 40
(i.e., 14.27± 0.46), and 50 (i.e., 14.00± 0.44) (Figure 2C).

Functional Response
Logistic regression showed that all predator stages exhibited type
II functional responses at all temperatures. This is because the
linear estimates of Equation 1 were significantly negative for all
stages of predator except for 1st instar and adult female at 35◦C
(Table 1). The curves show that initially at low prey densities,
predation quickly increased across all predatory stages at all
tested temperatures but leveled off with a further increase in
prey density (Figures 3–5). The proportion of all stages of S.
litura consumed by H. axyridis decreased monotonically with
prey density offered (Supplementary Figures 1A–M).

The magnitude of the functional response of H. axyridis
was considerably different between temperatures and prey
instars offered (Figure 6). The space clearance rate decreased
(Figures 6A–C) and handling time increased (Figures 6D–F) as
the prey size increased. For 1st instar of S. litura, the highest space
clearance rate (α) and lowest handling time (Th) was found for

females at 35◦C. The lowest space clearance rate was shown by the
3rd instar of predator (i.e., 0.018± 0.003 h−1) at 15◦C against the
2nd instar of prey larvae. The highest handling time against the
1st instar of S. litura was exhibited by the 1st instar of H. axyridis
(i.e., 3.457 ± 0.309 h) at 15◦C. The highest space clearance rate
(i.e., 0.173 ± 0.017 h−1) and lowest handling time (i.e., 0.386
± 0.013 h) against the 2nd instar of prey S. litura were noted
for males and females, respectively, at 35◦C. The highest space
clearance rate (i.e., 0.239 ± 0.035 h−1) and the lowest handling
time (i.e., 0.871 ± 0.047 h) on the 3rd instar of S. litura were
exhibited by female and 4th instar of H. axyridis at 35 and 30◦C,
respectively. The handling time of the 4th instar of H. axyridis
was lower than that of the female at the 3rd instar of prey at 30◦C.

The space clearance rate of 4th instar larvae was higher on the
1st instar of prey (i.e., 0.517 ± 0.039 h−1) than on the 2nd (i.e.,
0.136 ± 0.009 h−1) and 3rd instars of S. litura (i.e., 0.150 ± 0.02
h−1) at 35◦C. Similarly, the handling time of 4th instar larvae was
lower on the 1st instar (i.e., 0.134± 0.002 h) than on the 2nd (i.e.,
0.416 ± 0.015 h) and 3rd instar larvae of S. litura (i.e., 1.192 ±

0.060 h) at 35◦C. At 15◦C, the space clearance rates of the 4th
instar and adult males were higher than that of the 2nd instar
and 1st instar of S. litura.

The maximum predation rate (1/Th) increased with warming
and H. axyridis age but decreased with prey age (Figures 6G–I).
Overall, the maximum rate was noted for females, followed by
4th instar and adult males against all stages of the prey. For
the 1st instar of prey S. litura, the maximum predation rate of
females increased from 64.370 ± 0.184 to 195.209 ± 0.238 as the
temperature increased from 15 to 35◦C. As the prey size increased
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FIGURE 2 | Consumption of prey Spodoptera litura by Harmonia axyridis at five temperatures, according to predator stage (A), temperatures (B), and prey densities

offered (C). Box plots show the range of data (lower and upper quartiles), median (line), and mean (dotted line), and different lowercase letters above the whisker caps

indicate significant differences among group mean values according to 95% CI. Number of replications (N) = 10.

from the 2nd to the 3rd instar, the maximum predation rate of
females and males decreased. The maximum predation rate for
both 4th instars also was dependent on the prey size-, and it
decreased as the prey size increased. For the 1st instar of prey
S. litura, the maximum predation rates were calculated for the
4th instar, males, and females (i.e., 179.535 ± 0.255, 155.651 ±

0.272, and 195.209± 0.238, respectively), which were also greater
at 35◦C.

DISCUSSION

The quantification of biotic interaction strengths is fundamental
for understanding population processes (Shaver et al., 2000) and
the trophic interactions structuring the food webs (Anderson

et al., 2001). H. axyridis is among a group of predators with
a worldwide distribution and depends on trophic interactions
with agricultural pests. This study demonstrated the broad
dependence of the foraging rates of H. axyridis on temperature,
prey densities, and both prey and predator body masses (stages).
H. axyridis in all growth stages readily preyed upon 1st instar of
prey S. litura, but 1st, 2nd, and 3rd instar predators were unable
to consume the larger 2nd and 3rd instars of prey, suggesting that
predators at initial stages lack the ability to capture or handle
bigger prey that is generally more aggressive over their smaller
counterparts. Adults (male and female) and the 4th instar of H.
axyridis could feed upon all prey sizes, but predation substantially
declined with increasing prey size. The 4th instar and adult
female H. axyridis consumed more than their male counterparts.
Both larval and adult predators foraged more with increasing
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FIGURE 3 | Functional response of different stages of Harmonia axyridis [L1-Female (A–F)] foraging on 1st instar of Spodoptera litura. Dots represent the observed

numbers of prey consumed at each initial prey density, and black lines were predicted by the Roger’s random predator equation, while the shaded areas represent the

limits of the 95% confidence intervals. Number of replications (N) = 10.

temperature. This may be explained by the acceleration of
biological rates (i.e., metabolism) under warm conditions, which
increases both the capacity to do biological work and the demand
for resources. Our results are consistent with previous reports
(Islam et al., 2020, 2021) that showed heightened predation with
warming by the 4th instar and female H. axyridis against S.
litura eggs and Acyrthosiphon pisum (Hemiptera: Aphididae)
(Harris) and also that they foraged relatively more than males
and younger predators. Similar results were shown forHarmonia
dimidiata (F.) (Coleoptera: Coccinellidae) preying on Aphis
gossypii Glover (Hemiptera: Aphididae) (Yu et al., 2013) and
for Podisus maculiventris (Say) and Podisus nigrispinus (Dallas)
(Heteroptera: Pentatomidae) preying upon immature Spodoptera
exigua (Hubner) (Lepidoptera: Noctuidae) (Mohaghegh et al.,
2001).

Our results indicate that the functional response ofH. axyridis
on S. litura larvae was type II across prey and predator body
size (stages) and temperature. Our results are in line with some
previous studies with coccinellids where warming did not change
the type of functional response, including Scymnus levaillanti
Mulsant, Adalia bipunctata L., and Cycloneda sanguinea (L.)
(Coleoptera: Coccinellidae) feeding on Aphis gossypii Glover and

Myzus persicae (Sulzer) (Hemiptera: Aphididae) (Işikber, 2005;
Jalali et al., 2010). However, our results are different than other
reports, where Eupeodes corollae (Fabricius) (Diptera: Syrphidae)
preying on Spodoptera frugiperda (J. E. Smith) (Lepidoptera:
Noctuidae) larvae (Li et al., 2021) showed a type III functional
response (density-dependent predation rate) to initial instars
of S. frugiperda on fresh maize leaves. The authors suggested
the proportion of prey consumed by predators accelerated
initially owing to better prey searching by predators in low-
density patches. Othermechanisms generating type III functional
responses include predator learning, prey switching, predator–
prey encounter rates and movements, prey detectability, and
intraguild predation (Verdy and Amarasekare, 2010; DeLong,
2021; Bruzzone et al., 2022). These mechanisms, however, do
not seem to operate in our predator–prey system, suggesting the
need to test for individual predator–prey systems for a better
understanding of how temperature drives food webs.

The parameters space clearance rate and handling time
determine the height and shape of functional responses (Pervez,
2005; DeLong, 2021). The space clearance rate describes the
ability of a predator to capture prey and determines how steeply
the functional response curve rises with the increasing prey
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FIGURE 4 | Functional response of different stages of Harmonia axyridis [L3-Female (A–D)] foraging on 2nd instar of Spodoptera litura. Dots represent the observed

numbers of prey consumed at each initial prey density, and black lines were predicted by the Roger’s random predator equation, while the shaded areas represent the

limits of the 95% confidence intervals. Number of replications (N) = 10.

density. The handling time includes all-time costs that interrupt
further searching, including evaluating, catching, pursuit, and
predation (Pervez, 2005; DeLong, 2021). Thus, the response of
these two parameters to temperature is critical for understanding
predator–prey interactions in different locations and in response
to climate change. Our findings demonstrate that H. axyridis
predators have increased space clearance rates at higher
temperatures, indicating that low-density prey populations in
warmer environments can be reduced more successfully. Further
increases in temperature, however, might be expected to reduce

space clearance rate, since predators of many species have their
highest feeding rates at intermediate temperatures (Englund
et al., 2011; Uszko et al., 2017; Uiterwaal and DeLong, 2020).
Typically, predators spend more time handling prey at lower
temperatures than at higher temperatures (Mohaghegh et al.,
2001; DeLong and Uiterwaal, 2021), and this is consistent with
our findings. In our findings, linear estimates of 1st instar and
female H. axyridis also exhibited a type II response at 35◦C,
although the parameters were not significant. The temperature
was found to impact changes in the linear estimates, driving
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FIGURE 5 | Functional response of different stages of Harmonia axyridis [L4, Female (A–C)] foraging on 3rd instar Spodoptera litura. Dots represent the observed

numbers of prey consumed at each initial prey density, and black lines were predicted by the Roger’s random predator equation, while the shaded areas represent the

limits of the 95% confidence intervals. Number of replications (N) = 10.

higher magnitude functional response by decreasing handling
times. Our results are consistent with previous findings where 4th
instar and femaleH. axyridis showed a type II functional response
against A. pisum at 30◦C even though the linear estimates
were not significant (Islam et al., 2021). This temperature effect
suggests increased predator effectiveness at warmer temperatures
at high prey densities as well. Overall, warming appears to likely
improve the effectiveness of H. axyridis on S. litura, but the
temperature at which foraging rates begin to decline is currently
not known.

Variation in functional response parameters across prey stages
suggests thatH. axyridiswill be effective at limiting only a portion
of the S. litura population. Specifically, the space clearance rate
of H. axyridis decreased with the larval sizes of S. litura, and
handling time increased as prey size increased from the 1st to
3rd instar, indicating that H. axyridis is most effective at limiting
smaller and younger S. litura individuals. It is likely more difficult
and time consuming for the predator to capture large size prey,
possibly due to physical feeding limitations (i.e., gape limitation),
while predators may be unwilling to consume prey that is too
small due to their poor nutritional value. A possible explanation
is that larger prey (2nd and 3rd instars) are more aggressive
and difficult to capture. Although observations of the predator’s
feeding behavior in this study showed that prey of all sizes was
swallowed completely, in some cases, 4th instar and adult H.
axyridis regurgitated large S. litura larvae several times before
finally ingesting them. This behavior could explain the shorter
handling times for small prey (Kreuzinger-Janik et al., 2019).
The success of any natural enemy, however, cannot be traced
solely to its functional response to the target insect in laboratory
settings. Natural enemy behavior and efficiency can be affected
by the limited size of the arena used in laboratory experiments
compared to field circumstances, and also with respect to spatial
complexity in nature, host features, biotic and abiotic influences,
and numerical response. All these variables must be explored for
the species under study for further development of successful
biocontrol programs.

In conclusion, the present study found that the functional
response of H. axyridis foraging on S. litura larvae was
temperature-dependent and type II at all temperatures and
stages of the prey. Variation in functional responses suggests
that the most effective use of these predators is early in
the season to cope with early pest infestation. In the tropics
where the infestations of S. litura start in the hot season, this
predator may provide effective control due to the steeper and
higher functional response in warmer temperatures. Where prey
size is large and thus difficult to control for H. axyridis, the
use of botanicals that can physiologically stress the pest and
possibly reduce their defense could be a viable method for
increasing susceptibility to predators. More generally, this strong
temperature and body size influence on functional response
parameters can lead to important changes in predator–prey
relationship, population dynamics, and food web interactions
(Sentis et al., 2012). However, the nature of these ecological
interactions can be very complex and difficult to predict
from laboratory studies. It should be expected that warmer
temperatures may favor the development of both the prey
and predator but with impacts and concerns that should vary
widely. S. litura can develop at a much faster rate under
warmer temperatures, but aphids have a weaker developmental
response to temperature (Fand et al., 2015; Islam et al., 2021).
The development of H. axyridis may be fostered with warmer
temperatures, but the life cycle may be disturbed, as the
temperatures beyond 35◦C did not allow the hatching of H.
axyridis eggs (preliminary experiment results). Furthermore,
increased development with warmer temperatures reduces the
time of the developmental stages, resulting in the predator
consuming more prey during a single unit of time compared
to its entire life stage. As global warming represents a global
challenge, and as parts of the tropics and Asia often experience
temperatures above 35◦C during summer months (Ma et al.,
2021), the release of this predator when temperatures have gone
beyond 35◦C may affect biocontrol sustainability through effects
on predator development and biology. We therefore suggest
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FIGURE 6 | Functional response coefficients of Harmonia axyridis foraging on 1st, 2nd, and 3rd instars of Spodoptera litura under different temperatures. Mean ±

95% confidence intervals of space clearance rate [a (A–C)], handling time [Th (D–F)], and maximum predation rate [1/Th (G–I)] were estimated from bootstrapped

(Continued)
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FIGURE 6 | data (n = 10,000). Different lowercase letters above the caps indicate significant differences in H. axyridis stages among the temperatures according to

95% CI. Number of replications (N) = 10.

that current findings should be followed with great caution for
sustained control of S. litura, particularly in protected crops and
plantations, and when temperatures are between 25 and 35◦C.
Further studies should address the development and biology of
H. axyridis foraging on the eggs and larvae of prey S. litura for
developing a more effective biocontrol strategy to manage this
serious pest.
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