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The aged seeds have a significant influence on seed vigor and corn growth. Therefore,
it is vital for the planting industry to identify aged seeds. In this study, hyperspectral
reflectance imaging (1,000–2,000 nm) was employed for identifying aged maize seeds
using seeds harvested in different years. The average spectra of the embryo side,
endosperm side, and both sides were extracted. The support vector machine (SVM)
algorithm was used to develop classification models based on full spectra to evaluate
the potential of hyperspectral imaging for maize seed detection and using the principal
component analysis (PCA) and ANOVA to reduce data dimensionality and extract feature
wavelengths. The classification models achieved perfect performance using full spectra
with an accuracy of 100% for the prediction set. The performance of models established
with the first three principal components was similar to full spectrum models, but
that of PCA loading models was worse. Compared to other spectra, the two-band
ratio (1,987 nm/1,079 nm) selected by ANOVA from embryo-side spectra achieved a
better classification accuracy of 95% for the prediction set. The image texture features,
including histogram statistics (HS) and gray-level co-occurrence matrix (GLCM), were
extracted from the two-band ratio image to establish fusion models. The results
demonstrated that the two-band ratio selected from embryo-side spectra combined
with image texture features achieved the classification of maize seeds harvested in
different years with an accuracy of 97.5% for the prediction set. The overall results
indicated that combining the two wavelengths with image texture features could detect
aged maize seeds effectively. The proposed method was conducive to the development
of multi-spectral detection equipment.

Keywords: maize seeds, hyperspectral imaging, ANOVA, classification, SVM - support vector machine

INTRODUCTION

Maize, regarded as a primary source of food, feeds, fuel, and industrial materials, is one of
the most extensively cultivated cereal crops worldwide (Guo et al., 2017). Seed is the key to
agriculture production. High-quality maize seeds will increase the yield and ensure consistency
of plant growth. It will be conducive to using drones to spray pesticides, emasculation, and other
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mechanized operations (Feng et al., 2019). Seed quality can be
determined by its germinability or physicochemical attributes.
Due to the storage time and storage method, the aged maize seeds
greatly influence the germination rate and corn growth. New
maize seeds show a high germination rate, and the seedlings will
grow strong and healthy. On the contrary, the germination rate
of aged maize seeds is low, and the seedlings tend to be thin and
weak because their nutrition is lost with long storage time.

Generally, the freshness of maize seeds can be judged by
manual observation. The aged maize seeds are stored in a dry
environment and consume their nutrients during storage, due to
which the surface of the seeds lose luster, but the new maize seeds
will appear brighter and fresher. In addition, chemical principles
can be used to identify whether the maize seeds are new or old.
The maize seeds are soaked in the red ink solution for 15 min,
and the embryo of the maize seed is stained for different periods
of time for aged and new seeds. However, these methods are
time consuming and require experienced operators, and farmers
cannot master this skill well. These methods are also inapplicable
for the online detection of a single seed. In order to meet the
requirement of consumers, it is necessary to develop a rapid,
accurate, and non-destructive method for classifying aged maize
seeds for the maize seed industry.

Currently, machine vision and near-infrared (NIR)
spectroscopy have been applied widely for the detection of
seed quality, such as variety (Tu et al., 2021; Xu et al., 2021),
vigor (Wang et al., 2020), and defect (Huang et al., 2019). Ali
et al. (2021) applied a machine vision approach combined
with a support vector machine (SVM) classifier to achieve the
classification of maize seed varieties, and the obtained accuracy
on six varieties was over 99%. Lin et al. (2018) used the NIR
spectroscopy to identify the maize haploid seeds. The results
indicated that the average accuracy of the back-propagation
neural network (BPNN) classifier is 96.16%. However, machine
vision employs only phenotypic characteristics, such as color,
size, shape, and surface texture, but it is unsuitable for predicting
the chemical composition of samples (Huang and Chien, 2017).
Thus, machine vision is not suitable to detect maize seeds
harvested in different years because the chemical composition,
such as starch and protein, will be changed by storage time. NIR
spectroscopy can be used to assess the chemical composition of
samples, but it is only used to obtain spectral information by
using a single spot and is always influenced by the uniformity of
sample distribution (ElMasry et al., 2019). Single-seed detection
equipment using NIR spectroscopy is usually specially designed
according to the different shapes and sizes of samples. Therefore,
NIR spectroscopy is not the best choice for developing a
single-seed detection system.

Hyperspectral imaging, as a non-destructive and reliable
technique, has been widely used in different fields. This
technology combines the advantages of machine vision and
NIR spectroscopy (Chen et al., 2021). It obtains both image
and spectral information, and collects spectral information not
only from a single point but also at each pixel of an image,
thereby overcoming the limitations of machine vision and NIR
spectroscopy technology (Gabrielli et al., 2021). In recent years,
several studies have used hyperspectral imaging as a powerful

tool for the classification and identification of seed quality
(Zhang et al., 2020a; Zhou et al., 2020). Wakholi et al. (2018)
used a shortwave infrared hyperspectral imaging system with
a range of 1,000–2,500 nm to assess the viability of maize
seeds, and the result indicated the SVM model obtained the
highest classification of 100%. Cui et al. (2020) employed the
hyperspectral imaging system to predict the root and seeding
length of sweet corn seed for the assessment of germination.
The results demonstrated that the kernel principal component
regression (KPCR) combined with several feature wavelengths
can predict the root and seeding length with a correlation
coefficient of 0.7805 and 0.6074, respectively. Ma et al. (2020)
demonstrated that NIR-HSI, combined with the CNN approach
using PC images and SVM mapping, is an effective method
for classifying the naturally aged Japanese mustard spinach
seeds, with the seed viability classification accuracies for the
training set and the test set of approximately 90% and 83%,
respectively. In addition, hyperspectral imaging is also used
to detect variety (Xia et al., 2019; Liu et al., 2022), frostbite,
heat damage (Zhang et al., 2020b,c), and fungal infection
(Alisaac et al., 2019).

Previous research has demonstrated the potential of
hyperspectral imaging and provided good references in the
field of seed quality detection. However, the detection models
still need to be established with several feature wavelengths. In
the development of detection equipment, the fewer the number
of feature wavelengths used for the model establishment, the
lower the difficulty and cost of development. For instance,
Qiao et al. (2022) applied the partial least squares regression
(PLSR) and successive projection algorithm (SPA) to detect the
hardness of maize kernels. Although this method used only six
feature wavelengths for modeling, it is still not easy to develop
online detection equipment using these wavelengths because
the multiband camera of six wavelengths should be designed.
Hence, a more convenient method should be proposed to
identify the aged maize seeds to reduce the cost of equipment
development and improve detection efficiency. In addition, some
studies demonstrated the potential of using image textures to
detect the seed quality (Lurstwut and Pornpanomchai, 2017;
Long et al., 2022). Thus, several image textures, including
histogram statistics (HS) and gray-level co-occurrence matrix
(GLCM) based on feature wavelength images, were extracted for
modeling in this study. Therefore, it is necessary to establish data
fusion models based on spectral and image texture features to
improve accuracy.

The overall goal of this study was to examine the potential
of hyperspectral imaging for the detection of aged maize seeds
using samples harvested in different years. Specific objectives
were to (1) establish classification models for maize seed
detection based on full spectra; (2) identify and evaluate
optimal feature wavelengths and two-band ratio for maize
seed detection; (3) extract the image texture features based
on feature images; and (4) develop a simple model based
on using spectral and image texture features. The ultimate
purpose was to develop a faster and more efficient multi-spectral
method for real-time inspection of maize seeds harvested in
different years.
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MATERIALS AND METHODS

Sample Preparation
JINGKE 968 is one of the typical varieties of maize seeds in
China. In this study, a total of 360 samples of this variety with
uniform sizes and without apparent defects were utilized. The
samples (120 maize seeds from each year) were harvested in
three different years (2018, 2019, and 2020). All the seeds were
provided by a seed company in Gansu Province, China. The
germination percentages were 85.5, 87.6, and 98% for the maize
seeds harvested in 2018, 2019, and 2020. A subset of 240 kernels
was selected randomly as the calibration set for training models,
and the remaining 120 single maize seeds were used as the
prediction set for testing.

Hyperspectral Image Collection and
Processing
Hyperspectral Image Collection and Calibration
A line-scan reflectance hyperspectral imaging system with a near-
infrared range (930–2,548 nm) was employed to acquire images
of maize seeds. The system comprises an imaging spectrograph
(ImSpector N25E, Spectral Imaging Ltd., Oulu, Finland) with
a spectral range of 930–2,548 nm and a 6.2–6.5 nm slit, 150
Watt (W) halogen lamp with two-line lighting fibers (3900-
ER, Illumination Technologies, Inc., United States) providing
uniform lighting conditions for samples in the field of view
(FOV), a 14-bit NIR charge-coupled device (CCD) camera
(Xeva-2.5-320, Xenics Ltd., Belgium) with the spatial resolution
of 320 × 256 pixels, a control platform moving horizontally
(EZHR17EN, AllMotion, Inc., United States) driven by a stepping
motor, and a computer (Dell OPTIPLEX 990, Intel (R) Core
(TM) i5-2400 CPU at 3.10 GHZ) with specialized software
programs, such as spectral data acquisition software and platform
control software (Isuzu Optics Corp., Taiwan). Before collecting
the hypercube of maize seed, the time of exposure of the
spectrograph, the speed of the platform, and the object distance
should be confirmed to avoid image distortion. Thus, the final
guaranteed exposure, speed, and distance parameters were 3 ms,
25 mm/s, and 365 mm, respectively. The system was placed in
a metal box painted with black matte ink, thus reducing the
influence of stray light from outside.

In order to enhance the collection efficiency, every 60 maize
seeds from the same year were placed on a dark-background
sampling plate for the collection of hyperspectral images. First,
the embryo side of the seed faced the camera, and hyperspectral
images of the embryo side were collected; then, the seeds were
flipped one by one so that the images of the endosperm side of
the seeds were acquired. Because of the low single-noise ratio
at the edges of the spectral region of 930–2,548 nm caused by
the lower CCD response efficiency, the spectra within 1,000–
2,000 nm (159 bands) were employed for further analysis. The
uneven intensity of the light source in different bands and
the dark current in the CCD camera could lead to increased
noise of some bands. Therefore, the raw hyperspectral images
should be corrected with white and dark references. The white
reference image was collected with a white Teflon board (99%

reflection efficiency) (Spectralon SRT-99-100, Labsphere Inc.,
North Sutton, NH, United States). The dark reference image was
obtained by turning off the light sources and covering the lens
with a black cap (99% reflection efficiency), thus removing the
dark current influence in the CCD camera. The corrected image
(Rc) is calculated using the following equation:

Rc =
Rraw − Rdark
Rwhite − Rdark

where Rc indicates the corrected hyperspectral image and
Rraw means the original hyperspectral image. Rwhite and Rdark
represent the white and dark reference images, respectively.

Spectral Data Extraction
The corrected image was used to extract the average spectra of the
single maize seed. The background segmentation is the critical
step for extracting multi-spectral images. First, the gray-scale
image at 1,098 nm, which can show the highest contrast between
seeds and background among all the band images, was selected
to be the mask. Then, the background data can be removed by
applying the mask image in all band images, and the data of
regions of all single seeds were retained. The spectra of each pixel
in the regions of a single seed were averaged, and finally, 360
averaged spectra were acquired for future analysis.

In order to compare the performance of different spectral
types extracted from a single maize seed for modeling, the
average reflectance spectra of embryo and endosperm sides were
extracted, respectively. Then, the average spectra of both sides
were calculated by averaging the spectra of the embryo and
endosperm sides.

Principal Component Analysis
Principal component analysis (PCA) is the classical method
to reduce dimensionality and select feature in hyperspectral
data. PCA could synthesize and simplify the multiple data
(Yang et al., 2018). In the premise of keeping the vital spectral
information, it uses a few new variables to replace the original
data to eliminate overlapping information coexisting in the
vast information (Dong et al., 2017). After PCA with original
spectra, every sample could obtain a few new variables called
PCs (principal components) by the linear combination of the
original spectra, indicating the similarity and otherness between
different samples (Wu et al., 2016). Since each PC is the linear
sum of original spectra at individual wavelengths multiplied by
the corresponding waveband weight coefficient, the wavelengths
corresponding to the peak and valley of the curve of weight
coefficient represent the feature wavelengths (Huang et al., 2015).
In this study, PCs and weight coefficients of PCs were used to
analyze the average spectral data for dimensionality reduction
and feature selection.

ANOVA for Two-Band Ratio
This study used a two-band ratio method to exploit a detection
algorithm for a low-cost and real-time system. A one-way
ANOVA test was employed to determine the optimal two-band
ratio combination. The ANOVA is one of the most robust and
frequently used statistical comparison methods to analyze the
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differences between groups (Lee et al., 2017; Torres et al., 2019).
It was utilized to select the optimal two-band combination for
seed classification between different harvested years. The F-values
of a one-way ANOVA were used to select feature wavelengths
representing statistically significant differences for three groups.
The two-band ratio with the highest F-values indicated that the
differences between different groups are the most significant
under this two-band ratio (Tian et al., 2021). The optimal
threshold was determined based on the highest classification
accuracy. The data in the calibration set was used to select the
optimal two-band ratio and threshold for identifying single maize
seed harvested in different years.

Image Texture Extraction From Optimal
Two-Band Ratio Images
Image texture plays a critical role in contributing to the
classification system. In this study, the optimal two-band ratio
image selected by the ANOVA test based on F-value was applied
to extract the information about the texture of the hidden image.
Two representative types of statistical image texture features were
extracted in this study. One was histogram statistics (HS) and the
other was gray-level co-occurrence matrix (GLCM).

Histogram statistics is a frequently used method in image
processing. In HS, the number of pixels at each different gray
intensity value is calculated, which could reflect the statistical
feature of gray intensity value in an image (Hu et al., 2012; Pu
et al., 2015). The difference in HS of different images can be used
as a basis for recognition. In this study, the statistical features
of histograms, including mean intensity, mean consistency,
skewness, kurtosis, mean contrast, and entropy, were employed
as one of the texture features of images and denoted as Hintensity,
Hconsistency, Hskewness, Hkurtosis, Hcontrast , and Hentropy, respectively.
The above-mentioned parameters can be calculated as follows:

Mean intensity

Hintensity =

L−1∑
i=0

zip(zi)

Mean consistency

Hconsistency =

L−1∑
i=0

p2(zi)

Skewness

Hskewness =
1

H3
contrast

L−1∑
i=0

(zi −Hintensity)
3p(zi)

Kurtosis

Hkurtosis =
1

H4
contrast

L−1∑
i=0

(zi −Hintensity)
4p(zi)

Mean contrast

Hcontrast =

√√√√L−1∑
i=0

(zi −Hintensity)2p(zi)

Entropy

Hentropy =

L−1∑
i=0

p(zi) log2 p(zi)

where zi is the random variable of gray level i and L is the largest
gray level in images. The term p(zi) represents the probability of
zi in an image.

The gray-level co-occurrence matrix is a classical statistical
texture analysis tool in which image texture features can be
extracted by means of statistical approaches from the co-
occurrence matrix (Khodabakhshian and Emadi, 2018; Ren
et al., 2021). The GLCM measures the probability that a
pixel of a particular gray level occurs at a specified direction
and a distance from its neighboring pixels. In this study,
image texture features were calculated from the gray co-
occurrence matrix with 0 angles, and the distance between pixels
was 1 pixel. Four image texture features, including contrast,
correlation, energy, and homogeneity, were extracted for future
research studies and denoted as Gcontrast , Gcorrelation, Genergy, and
Ghomogeneity, respectively.

Contrast

Gcontrast =

X∑
i=0

Y∑
i=0

∣∣i− j
∣∣2 p(i, j)

Correlation

Gcorrelation =

X∑
i=0

Y∑
j=0

(i− µii)(j− µjj)p(i, j)
σiσj

Energy

Genergy =

X∑
i=0

Y∑
j=0

p(i, j)2

Homogeneity

Ghomogeneity =

X∑
i=0

Y∑
i=0

p(i, j)
1+

∣∣i− j
∣∣

µi =

X∑
i=0

i
Y∑
j=0

p(i, j)

µj =

X∑
j=0

j
Y∑
i=0

p(i, j)

σi =

√√√√ X∑
i=0

(i− µi)2
Y∑
j=0

p(i, j)

σj =

√√√√ Y∑
j=0

(j− µj)2
X∑
i=0

p(i, j)

where X is the column number of GLCM, Y is the row number of
GLCM, and p (i, j) is the gray-level co-occurrence matrix.
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Supervised Classification Method
The classification of the hyperspectral image can be divided into
two main categories. One is the spectral-based classification,
where the mean spectra derived by averaging reflectance or
transmittance values of all pixels at different wavelengths could
be regarded as spectral features (Shrestha et al., 2016). The other
one is image-based classification, and it could employ the image
texture features for the quality assessment of agriculture products
(He et al., 2021). In this study, both spectral features and image
texture features were used for the three-class classification. The
widely used supervised classification algorithm, support vector
machine (SVM), was employed for distinguishing the single
maize seed harvested in different years. SVM can deal with linear
and nonlinear problems by enabling an implicit mapping to
transform inseparable linear data into a linear separable space
(Gopinath et al., 2020; Li et al., 2021). The kernel function
and parameters of SVM play an essential role in modeling. In
this study, the radial basis function (RBF), the most commonly
used kernel, was used as the kernel function of SVM. The
penalty parameters (c) and kernel function parameters (g) were
optimized by a grid search procedure in the range of 2−10–210

through five-fold cross-validation.

Software Tools
MATLAB R2016b (The math-Works, Natick, MA, United States)
was used to extract the average spectra, select the spectral and
image features, and establish classification models. Origin 2018
(Origin Lab Corporation, Northampton, MA, United States)
was applied to construct the graphs. The Win 10 64-bit

operating system, with Inter (R) Core (TM) i5-8300H CPU,
2.30 GHz, and 8G RAM as the software platform, carried out all
software operations.

RESULTS AND DISCUSSION

Spectra Analysis
The raw average reflectance spectra with standard deviation (SD)
of maize seeds harvested in three different years are shown in
Figure 1. Figures 1A–C represent the spectra of the embryo,
endosperm, and both sides, respectively. A similar trend is
observed for different curves, but some differences still exist.
The obvious peak and valley appeared at around 1,110 nm,
1,200 nm, 1,300 nm, and 1,467 nm. The peak and valley around
1,110 nm and 1,200 nm are caused by the second overtone of C–
H stretching vibrations of carbohydrates (Marques et al., 2016;
Alhamdan and Atia, 2018). The peak at around 1,300 nm mainly
results from the combination of the first overtone of Amide B and
the fundamental amid vibrations (Wu et al., 2019). The valley at
around 1,467 nm is connected with the stretching vibration of
the first overtone of the N–H contained in protein (Zhao et al.,
2018). As shown in Figure 1, the overlap of embryo-side spectra
of different year seeds is the lowest, followed by the spectra
of both sides and the endosperm side. Complex changes might
have occurred in maize seeds stored for different time periods,
which is further reflected by the average spectra of seeds obtained
from different years. It can be seen in Figures 1A,C that the
spectra reflectance increases with the storage time of maize seeds.
However, the spectral curves of maize seeds harvested in different

FIGURE 1 | The original reflectance spectra of different sides of single maize seed. (A) Embryo side, (B) endosperm side, and (C) both sides.
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TABLE 1 | The classification results based on original spectra
using SVM algorithm.

Spectral type Parameters Classification accuracy

Calibration set Prediction set

Embryo side c 0.5 g 4 100 100

Endosperm side c 128 g 8 100 100

Both sides c 0.25 g 64 100 100

Abbreviations: PCs: principal components. c: the penalty coefficient. g: the kernel
function parameter.

years overlap sufficiently in Figure 1B, but they start to separate
after around 1,400 nm. All these findings lay the foundation for
the theoretical basis of the classification of the maize seeds of
different years using spectral data. However, the classification
of the maize seeds harvested from different years based on the
difference in spectral curves is unreliable owing to the overlap
problem. Thus, it is necessary to establish classification models
to effectively extract and use features in hyperspectral images to
classify new and aged maize seeds.

Classification Results Based on Full
Spectra
The classification of harvested years was performed using SVM
models based on the three types of spectra (embryo side,
endosperm side, and both sides) acquired in the wavelength
range of 1,000–2,000 nm. Table 1 presents the performance of
classification models built with different types of spectra. It can
be seen clearly in the table that all the spectra achieved the perfect
classification performance. The classification accuracy of the
calibration and prediction set was 100%, respectively. This might
be caused by the significant difference in the spectra of maize
seeds harvested in different years after around 1,400 nm. These
results demonstrated that hyperspectral imaging technology
could classify new and aged maize seeds. However, the full

TABLE 2 | The results of feature wavelength selection from different spectral types
based on loading of PC3.

Spectral type Feature wavelengths

Embryo side 1111 nm 1198 nm 1310 nm 1151 nm

Endosperm side 1104 nm 1197 nm 1304 nm 1518 nm

Both sides 1111 nm 1198 nm 1310 nm 1151 nm

spectrum models are unsuitable for developing online detection
instruments due to the vast and high-dimensional data. Hence,
selecting the optimal feature information from hyperspectral
images is necessary to simplify the models for future study.

Feature Selection and Classification
Results Based on Principal Component
Analysis
In this study, PCA was used as one of the data dimension
reduction methods for raw spectra. In the process of PCA, a few
numbers of PCs could be used to replace the full spectra, or the
loading of PCs can be applied to select feature wavelengths (Dong
et al., 2017; He et al., 2019). The PCA results of the endosperm-
side and both-side spectra are similar to that of the embryo-side
spectra. Figure 2 only shows the PCA results of embryo-side
original reflectance spectra. It is clear from Figure 2A that the
first three PCs explained the most of the variance in this situation
(PC1 = 88.4%, PC2 = 9.2%, and PC3 = 1.9%). It can also be
seen that there was a lot of overlap among sample points in the
projections of the scatter plot in different directions, and a better
classification can be obtained when the PC1, PC2, and PC3 work
together. Thus, the first three PCs were applied to replace full
spectra to build identification models.

The loading plots of the first three PCs are shown in Figure 2B.
The peaks and valleys offer the dominant wavelengths. The
loading plot of PC1 is flat, meaning the feature wavelengths
could not be obtained from that of PC1. The loading plot of

FIGURE 2 | The results of PCA analysis of embryo-side original reflectance spectra. (A) Scatter plot of first three principal components, and (B) loading plots for the
first three principal components. Abbreviations: PC1: the first principal component. PC2: the second principal component. PC3: the third principal component. FWs:
the feature wavelengths.
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TABLE 3 | The classification results based on the first three PCs and the loading
of PC3 using SVM algorithm.

Spectral type Model Parameters Classification accuracy (%)

Calibration set Prediction set

Embryo side PCs c 0.5 g 4 100 100

Loading c 1024 g 4 85.83 85.83

Endosperm side PCs c 512 g 0.5 99.17 99.17

Loading c 16 g 64 68.75 71.67

Both sides PCs c 0.5 g 16 100 100

Loading c 512 g 4 72.50 80.83

Abbreviations: PCs: principal components. c: the penalty coefficient. g: the kernel
function parameter.
The above-mentioned results indicated that SVM combined with the first three PCs
based on the embryo-side and both-side spectra could establish perfect classifiers
to classify maize seeds harvested in different years. However, PCs are a linear
combination of the full spectra. In terms of rapid detection equipment development,
this method still needs to extract the full spectra to establish a classification model,
which cannot effectively reduce the development cost and model complexity.
Therefore, it is necessary to find a more effective data dimension reduction method
for further study.

PC2 fluctuates gently, and the positions of peaks and valleys
which have a value not equal to zero are similar to that of PC3.
It can be seen clearly that the loading plot of PC3 fluctuates
sharply, and the peaks and valleys can be observed at 1,111,
1,198, 1,310, and 1,511 nm. Thus, from the loading plot of PC3,

these wavelengths (corresponding to peaks and valleys) were
selected as feature wavelengths related to C–H, O–H, and N–
H, respectively. The feature wavelengths selected from different
spectral types based on the loading plot of PC3 are summarized
in Table 2.

The first three PCs (PC model) and feature wavelengths
selected from the loading of PC3 (loading model) were employed
to build SVM classification models instead of full spectra,
respectively. The performance of developed SVM models is
presented in Table 3, indicating that the PC models performed
better than the loading models. All PC models achieved perfect
performance. The results indicated that PCA is an effective
method for data dimension reduction, and the first three PCs
could explain the most information and replace full spectra
for identification in this study. The performance of loading
models decreased sharply compared to the PC models, with
a classification accuracy of prediction set of 85.83%, 71.67%,
and 80.83%, respectively. The results indicated that the feature
wavelengths selected from the loading of PC3 could be used to
identify the maize seeds harvested in different years, but other
critical wavelengths in spectra were ignored. It is interesting to
observe that the peaks and valleys of the loading curve of PC3
are similar to the original spectra. The original spectra began to
separate significantly after 1,400 nm (Figure 1). However, the
feature wavelengths selected by the loading curve of PC3 only
included one wavelength in the spectral range of 1,400–2,000 nm,

FIGURE 3 | The contour plots of F-value calculated from different waveband ratio combinations. The color change from blue to red represents the F-value increases
from low to high. (A) Embryo side, (B) endosperm side, and (C) both sides.
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FIGURE 4 | The distribution of two-band ratio for different samples. (A) Embryo side, (B) endosperm side, and (C) both sides.

TABLE 4 | The classification results using threshold values based on the two-band ratio values.

Spectral type Two-band ratio Threshold Classification accuracy (%)

Calibration set Prediction set

Embryo side 1987 nm/1079 nm t1 0.8046 t2 0.8784 95.83 95.00

Endosperm side 1011 nm/1987 nm t1 1.0140 t2 1.0550 76.67 72.50

Both sides 1980 nm/1048 nm t1 0.8631 t2 0.9174 91.67 89.17

Abbreviations: t1: the first threshold value; t2: the second threshold value.
Compared to the classification results obtained by PCA-SVM models, the number of wavelengths selected by ANOVA was significantly lower. The result provides a more
efficient and cost-effective solution for the development of a maize seed classification approach based on hyperspectral imaging technology. However, a two-band ratio
alone may not provide sufficient information, and it is necessary to explore more features to improve the classification accuracy.

which could explain why the performance of the loading model
was not as good as expected.

Optimal Two-Band Ratio Selection From
ANOVA
The F-values of ANOVA for all the two-band ratios of three
classes were calculated, and the contour plots of F-values
are shown in Figure 3. The ratio of 1,987 nm/1,079 nm,
1,011 nm/1,987 nm, and 1,980 nm/1,048 nm obtained the largest
F-values in embryo-side, endosperm-side, and both-side spectra,
respectively. The results indicated that three sets of samples at
these band ratios demonstrated the most difference. It can be
seen clearly that the wavelengths selected based on F-value are

different from feature wavelengths selected from the loading
curve of PC3. Obviously, the wavelengths selected by the two-
band ratio were distributed around the beginning or end of
the spectral range, and the spectra of maize seeds harvested in
different years showed apparent differences in that range.

Classification Results Based on ANOVA
Classification Results Based on Optimal Two-Band
Ratio Value
Figure 4 shows the distribution of two-band ratios for
new and aged seeds. The overlap among the three classes
could result in misclassification between different classes.
Thus, a proper threshold value is required for discrimination.
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FIGURE 5 | Comparison of the images obtained by using the hyperspectral image.

TABLE 5 | The classification results based on various feature variables using SVM algorithm.

Spectral type Two-band ratio Model Variable number Classification accuracy (%)

Calibration set Prediction set

Embryo side 1987 nm/1079 nm Two-band ratio 1 96.67 95

Image textures 10 65 59.17

Data fusion 11 98.75 97.5

Endosperm side 1011 nm/1987 nm Two-band ratio 1 75.83 73.33

Image textures 10 58.33 44.17

Data fusion 11 79.17 80

The above-mentioned results showed that the proposed method can be used to classify the maize seeds harvested in different years. However, only the new and aged
seeds need to be identified for general production requirements. Therefore, the maize seeds harvested in 2020 were defined as new seeds, and the remaining were
classified as aged seeds. Then, the classification model was built according to the proposed method. This model showed better performance with an accuracy of 99.17%
in the prediction set. It is also clear from Figure 6B that only one seed was misclassified. In brief, the SVM model combined with the two-band ratio and image textures
extracted from the two-band ratio image of 1,987 nm/1,079 nm showed excellent performance for classifying new and aged maize seeds. It also demonstrated that
ANOVA, HS, and GLCM algorithms were suitable for selecting the feature variables.

The threshold values can be easily calculated based on the
two-band ratios. Table 4 shows the classification results using
threshold values based on the two-band ratio values. The two-
band ratio method based on embryo-side spectra (the first
threshold value (t1) = 0.8046 and the second threshold value
(t2) = 0.8784) obtained the best classification performance with
the classification accuracy of 95.00%. The classification accuracy
based on both-side spectra (t1 = 0.8631 and t2 = 0.9174) was
less than that obtained by embryo-side spectra with 89.17% for
prediction set. Due to the considerable overlap in the band
ratio distribution among the three classes for the endosperm-side
spectra, the two-band ratio based on endosperm-side spectra had
a huge error in classifying the seeds of different harvest years.

Classification Results Based on Multiple Features
The advantage of hyperspectral imaging technology is that it
combines both image features and spectral information. Thus, the

band ratio images can be obtained according to the optimal two-
band ratio selected by the largest F-values. Figure 5 shows the
color images of the maize seeds harvested in different years. It is
clear from the figure that the maize seeds cannot be distinguished
visually by using band ratio images of embryo and endosperm
sides. Thus, 10 image textures, including mean intensity,
mean consistency, skewness, kurtosis, mean contrast, entropy,
contrast, correlation, energy, and homogeneity, were selected and
extracted from band ratio images for seed identification. In order
to standardize the image texture data, standard normalization
was employed for each image texture.

In order to explore the robustness and reliability of prediction
models, two-band ratio and information about image textures
and their combination (two-band ratio and image textures were
concatenated to create a single matrix) were used to establish
SVM classification models, respectively. Table 5 shows the
classification results based on various feature variables by using
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FIGURE 6 | The confusion matrix of the data fusion model based on embryo side spectra. (A) is the classification results of maize seed harvested in 2018, 2019 and
2020. (B) is the classification results of new (2020) and aged (2018 and 2019) maize seed.

the SVM algorithm. As for embryo-side spectra, the band ratio
model obtained 95% classification accuracy for the prediction
set, while the image texture model only yielded the classification
accuracy of 59.17% for the prediction set. The fusion of band
ratio and image features enhanced the model performance with
98.75% and 97.5% accuracy for calibration and prediction set,
respectively. Figure 6A shows the confusion matrix of the
data fusion model based on embryo-side spectra. In terms of
the endosperm side, the image texture model obtained poor
performance with the lowest classification accuracy of 44.17%.
The performance of the band ratio model was a bit better
than the image texture model with an accuracy of 73.33%. The
data fusion model also obtained the best classification result
with an accuracy of 80%, which also proved that the combined
features improved the classification ability. However, it can be
seen clearly that models built with embryo-side spectra presented
better calibration and prediction accuracy than endosperm-
side spectra, irrespective of the feature used to establish the
identification model. The reason may be that the embryo side
contains both embryo and endosperm structures, which could
be used to extract more useful information. In addition, it
also can be illustrated from the table that band ratio data
provided more useful information than image texture data, and
the band ratio had a higher contribution than the image texture
in building SVM models. In particular, fusion information was
more effective than the single feature for establishing SVM
models, thus providing a more comprehensive understanding
of the changes in components and textures and enhancing
the model accuracy and reliability. The above results showed
that the proposed method can be used to classify the maize
seeds which were harvested in different years. However, only
the new and aged seeds need to be identified for general
production requirements. Therefore, the maize seeds harvested
in 2020 were defined as new seeds, and the rest were aged
seeds. Then, the classification model was built according to
the proposed method. This model showed better performance
with an accuracy of 99.17% in the prediction set. It is also
clear from Figure 6B that only one seed was misclassified.

In brief, the SVM model combined with the two-band ratio
and image textures extracted from two-band ratio image of
1987 nm/1079 nm showed excellent performance for classifying
new and aged maize seeds. It also demonstrated that ANOVA,
HS, and GLCM algorithms were suitable for selecting the feature
variables.

CONCLUSION

This study successfully applied a hyperspectral reflectance
imaging system with the spectral range of 1,000–2,000 nm
for rapid and non-destructive classification of maize seeds
harvested in different years. In consideration of the issues
caused by the discrepancies between the different sides of the
maize seeds, the spectra of the different sides were analyzed.
SVM algorithm was adopted for establishing classification
models for maize seeds. PCA and ANOVA were used for the
selection of feature variables to reduce redundant data and
identify important information. The image texture features,
including HS and GLCM, were applied to extract 10 texture
features from two-band ratio images for data fusion. The
results indicated that ANOVA was more suitable for data
dimension reduction, where only two wavelengths were selected
for modeling. Compared with the models using the single
feature, the two-band ratio of 1,987 nm/1,079 nm combined
with image texture features obtained the best classification
accuracy with 97.5% for the prediction set. The results indicated
that data fusion models were more advantageous than single
feature models in maize seed classification. Moreover, the
proposed two-band ratio (1,987 nm/1,079 nm) from the embryo
side of maize seed has excellent potential for maize seed
classification, which could be used to develop an imaging
system for quality detection in the packing line. Further
studies should be carried out to improve the classification
capabilities of this technique at an industrial scale so that
this proposed method can be used in the online evaluation of
maize seed qualities.
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