
fpls-13-849260 April 15, 2022 Time: 13:11 # 1

ORIGINAL RESEARCH
published: 25 April 2022

doi: 10.3389/fpls.2022.849260

Edited by:
Yongliang Qiao,

The University of Sydney, Australia

Reviewed by:
Agnieszka Szczęsna,
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With the arrival of aging society and the development of modern agriculture, the use of
agricultural robots for large-scale agricultural production activities will become a major
trend in the future. Therefore, it is necessary to develop suitable robots and autonomous
navigation technology for agricultural production. However, there is still a problem of
external noise and other factors causing the failure of the navigation system. To solve
this problem, we propose an agricultural scene-based multi-sensor fusion method via
a loosely coupled extended Kalman filter algorithm to reduce interference from external
environment. Specifically, the proposed method fuses inertial measurement unit (IMU),
robot odometer (ODOM), global navigation and positioning system (GPS), and visual
inertial odometry (VIO), and uses visualization tools to simulate and analyze the robot
trajectory and error. In experiments, we verify the high accuracy and the robustness
of the proposed algorithm when sensors fail. The experimental results show that the
proposed algorithm has better accuracy and robustness on the agricultural dataset than
other algorithms.

Keywords: loosely coupling, extended Kalman filter algorithm, multi-sensor fusion, robustness, agricultural robot

INTRODUCTION

In recent years, with the development of artificial intelligence technology, agricultural robots such
as drones and ground mobile carts (Katsigiannis et al., 2016; Tang et al., 2020; Atefi et al., 2021;
Qin et al., 2021) have been gradually applied to modern agriculture. Their ability to sense the
environment and navigate on their own is a more critical influencing factor. And multi-sensor
fusion technology provides an effective method for agricultural robots to enhance their ability to
work in complex and uncertain environments (Noguchi et al., 1998; Viacheslav et al., 2011).

Multi-sensor fusion technology is a multi-level complementary. It optimally processes the
information from different types of sensors to form a reasonable interpretation of the observed
environment. Compared with the traditional single-sensor technology, it is fault-tolerant,
complementary, real-time, economical, and can solve the defects caused by single sensor, such as
fuzzy points and so on. And all of these allow it a more accurate observation of the environment.
Therefore, multi-sensor fusion technology has received wide attention in various fields such as
military, control, and signal processing (Abidi and González, 1992; Hall and Llinas, 1997; Varshney,
2000).

Visual inertial odometry (VIO) is an application of multi-sensor fusion technology. At
present, the mainstream VIOs includes VINS_MONO (Tong et al., 2018), VINS_FUSION
(Tong et al., 2018) and MSCKF_VIO (Mourikis and Roumeliotis, 2007). They are used to
accomplish map construction, navigation and positioning functions by fusing visual sensors
and inertial measurement units (IMUs). According to the difference of fusion framework,
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vision inertial odometry can be further divided into two types:
tightly coupled and loosely coupled. In the loosely coupled
(Faessler et al., 2015, 2016; Delmerico and Scaramuzza, 2018), the
visual motion and inertial navigation system has two independent
modules. In addition, the filter is used to decouple and fuse
the visual and IMU information, which has the characteristic
of simplicity and speed. VINS-MONO is an open source VIO
algorithm, which is realized by tight coupling method and
restores the scale through Monocular and IMU. VINS-FUSION
is an optimization-based multi-sensor state estimator, it achieves
accurate self-localization for autonomous applications (drones,
cars, and AR/VR). VINS-FUSION is an extension of VINS-
MONO, which supports multiple visual-inertial sensor types
(MONO camera + IMU, stereo cameras + IMU, even stereo
cameras only). MSCKF_VIO is a binocular visual odometry
based on multi-state constraint Kalman filter. Multi-state
constraint refers to adding the camera pose of multi-frame images
to the Kalman state vector by using least square optimization and
estimating 53 the spatial position of feature points through the
constraints between multi frame images. Then the state vector
is constrained based on the spatial position of the optimized
feature points. In the field of agricultural robots, the research on
machine vision and trajectory navigation is gradually deepening,
and visual-inertial navigation combined with other methods is
constantly evolving.

The core of VIO algorithm is based on the state optimization
of filtering methods (Scaramuzza et al., 2014), where the
filtering methods are mainly based on Bayesian estimation
theory, including Kalman filter (KF) algorithm (Gao et al.,
2017) and particle filtering algorithm (Leutenegger et al.,
2015), etc. Among these, the KF algorithm is used more
widely in practical applications. Since SLAM methods are
generally non-linear when performing system observations and
measurements, KF algorithms need to be extended to the non-
linear domain. Accordingly, researchers propose the Extended
Kalman Filter (EKF) (Kalman, 1960), a linear approximation
method in ignoring higher-order terms for non-linearity, which
can estimate the state of a dynamic system from a series of
measurements that do not exactly contain noise. Though it is a
suboptimal filtering algorithm, it solves the problem of nonlinear
systems in the KF algorithm. EKF is widely used in the field of
robotics. An improved covariance Intersection EKF data fusion
algorithm is proposed for multi-sensor time-delay system (Lee
and Gao, 2019). A slam method with extended Kalman filter
(EKF) is introduced to locate landmark robots and mobile robots
(Inam et al., 2020).

Many studies on multi-sensor fusion algorithms for
agricultural robots have been conducted by reasearchers. At
the end of last century, many scholars proposed vision based
automatic agricultural machine perception, navigation obstacle
avoidance and other related methods (Ollis and Stentz, 1997;
Sharma and Borse, 2016; Reina and Messina, 2019). Recently,
research has developed rapidly, including developed modular
structured robots that use GPS for navigation and positioning,
and multi-sensor fusion for robot obstacle avoidance (Liu et al.,
2011). A multi-sensor data fusion algorithm has been presented
based on the fusion set, it is mainly used for data collection in
agricultural systems (Hu and Yan, 2018). A multi-sensor fusion

approach has been developed for autonomous navigation of
agricultural vehicles, which is applied for crop row tracking
and traversable operations (Benet and Lenain, 2017). Along
with the great improvement in integrated navigation and sensor
fusion, a class of autonomous driving control algorithms has
been proposed in order to achieve high-precision autonomous
navigation of tracked agricultural vehicles, which includes GNSS-
RTK sensor integration algorithm and path tracking algorithm
(Han et al., 2020). A LiDAR-based autonomous navigation
system is developed for agricultural robots, which fuses LiDAR
and IMU to solve the problem of agricultural navigation when
the tree canopy is obscured (Velasquez et al., 2021). At present,
the research of agricultural robots combined with multi-sensor
fusion technology is in a rapid development stage. However,
the sensor technology generally relies too heavily on GNSS
or GPS navigation system, and the sensor fusion category
is single, generally using only two sensors for fusion, which
may lead to a failure of the whole system when the navigation
system has problems.

This paper presents a multi-sensor fusion algorithm based on
a loosely coupled extended Kalman filter, the proposed method
reincorporates the robot odometer (ODOM), global navigation
and positioning system (GPS), and the inertial measurement
unit (IMU) on the top of the visual odometer for agricultural
robots. And due to the favorable features of GPS navigation
such as wide coverage, strong resistance to climate influence and
real-time dynamics (RTK), we introduce a loosely coupled and
extended Kalman filtering algorithm to fuse the GPS and VINS-
MSCKF, ODOM, and IMU. In addition, the effects of GPS or
sensors failure on the system are also analyzed. Based on the
analysis, it is obvious that the proposed algorithm can better solve
the problem for the system downtime situation caused by the
failures of GPS and VIO sensors. Based on these experimental
results, we can conclude that the proposed algorithm can
effectively improve navigation accuracy and system robustness
under agricultural scenes.

EXTENDED KALMAN FILTERING AND
MULTI-SENSOR FUSION REVIEW

Extended Kalman Filter
As a linearized approximation method, extended Kalman filtering
(Sastry, 1971) is a class of extended form of standard Kalman
filtering in nonlinear systems.{

xk+1 = f (xk)+ wk
zk = h (xk)+ vk

(1.1)

where xk and zk are the state vector and the measurement vector,
wk and vk are system noise and measurement noise, respectively,
with covariance Qk,Rk. The system state equation is:

xk+1 = f
(
x̂k∨k

)
+ Fk

(
xk − x̂k∨k

)
+ wk (1.2)

where, Fk = ∂f /∂xk|xk=x̂k|k
One-step state prediction equation:

x̂k+1∨k = E
[
xk+1 + wk

]
= f

(
x̂k+|k

)
(1.3)
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The one-step state prediction covariance is:

Pk+1∨k = FkPk|kFTk + Qk (1.4)

One-step measurement prediction equation:

ẑk+1|k = E
[
hk+1 + vk

]
= h

(
x̂k+1|k

)
(1.5)

Measurement prediction error covariance array:

Pzz,k+1|k = Hk+1Pk+1|kHT
k+1 + Rk+1 (1.6)

The reciprocal covariance matrix between the state and the
measurement equations:

Pxz,k+1|k = Pk+1|kHT
k+1 (1.7)

State gain matrix:

Kk+1 = Pk+1HT
k+1

(
Hk+1Pk1|kHT

k+1 + Rk+1

)−1
(1.8)

The state estimates at moment k+1 is:

x̂k+1|k+1 = x̂k+1|1 + Kk+1(zk+1 − ẑk+1|k (1.9)

State estimation error covariance matrix is:

Pk+1∨k+1 =
(
I − Kk+1Hk+1

)
Pk+1|k

(
I − Kk+1Hk+1

)T
+ Kk+1Rk+1Kk+1

T (1.10)

Eqs. (1.2) to (1.10) form the extended Kalman filter algorithm.
In this paper, we define the failure state of GPS and VIO. When

there is no GPS signal, it is defined as GPS failure. When the
distance between the two adjacent VIO frames is greater than
a given threshold, it is defined as the VIO failure. During the
GPS or VIO fails, we perform sensor fusion by discarding the
GPS or VIO state variable values, and replace the failed GPS
or VIO values by the wheel odometer’s position, quaternion,
and covariance values. Compared with the traditional Kalman
filter algorithm, the proposed loosely coupled extended Kalman
filter algorithm can perform tasks when the GPS or VIO fails,
since the fusion mechanism includes the failure judgment of GPS
and VIO. Therefore, the judgment of the fusion mechanism can
remove the influence of the failed GPS or the invalid VIO on
the whole system, and thus replace the state variables of a failed

GPS or a failed VIO with the wheel odometer’s position, attitude,
quaternion, and covariance values. Therefore, the system can still
operate normally even when GPS or VIO fails.

The mathematical description of this paper is based on the
extended Kalman filter theory, and the state variables involved
are the position and attitude of GPS, wheel odometer, VIO, and
the attitude of IMU. From a mathematical point of view, the
proposed method is to switch the state variable to the value of the
wheel odometer by judging the GPS signal state and the position
change of VIO, in order to achieve system stability.

Multi-Sensor Fusion
Multi-sensor fusion (MSF) currently completes the required
measurement estimates for subsequent information processing
by using computer technology. In this way, automatically analyze
and synthesize data from multiple sensors or multiple sources
with certain criteria.

The multi-sensor fusion is characterized by complexity and
multi-level, and its basic requirements for algorithms are
robustness, parallel processing capability, speed and accuracy of
operations, etc. It is also necessary to consider the performance
of the connection with the previous pre-processing (information
input) and subsequent information processing system (system
output), etc. In general, mathematical methods based on non-
linearity and with features such as fault tolerance and adaptability
can be used as fusion algorithms. At present, most of the research
on sensor fusion algorithms based on Kalman filter include
adaptive Kalman filter, extended Kalman filter, volumetric
Kalman filter and unscented Kalman filter. In these studies,
the model parameters and the system noise characteristics can
be estimated and updated only when the sensor is working
normally. When the sensor fails, the whole system collapse. In
this paper, the failure judgment is added on the basis of the past,
and a loosely coupled EKF algorithm is proposed to make the
system run normally.

MATERIALS AND METHODS

Algorithm Framework
The proposed algorithm framework is shown in Figure 1. The
input of algorithm are images captured by the binocular camera
and the measurement from the IMU. And the information about

FIGURE 1 | (A) Overall algorithm framework and (B) multi-sensor signal fusion module.
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FIGURE 2 | (A) Data set–repeated scenes and (B) example of dataset tracking.

FIGURE 3 | (A) Weeding mobile robot equipped with sensors and (B) dataset coordinate system definition.

the farming system, i.e, the farming data set, is obtained from
the input binocular image. At the same time, the position pose
estimation of the farming robot is completed based on the
proposed fusion algorithm.

The extended Kalman filter fusion algorithm cannot obtain
stable data since GPS and VIO are greatly affected by the
environment. For example, GPS basically cannot receive satellite
signals after being blocked, and VIO is too sensitive to ambient
light. To solve this problem, the proposed algorithm fuses four
sensors, among which the data from GPS and VIO need to
be evaluated. The algorithm can perform decision-level fusion
by adding a condition to determine whether the sensor fails.
The algorithm judges whether the GPS is invalid through the
differential state. When the output of the differential positioning
state is 2, the GPS works normally. Otherwise, the algorithm will
replace the GPS data with the ODOM data. The same goes for
VIO. The algorithm determines whether the distance between
the two adjacent VIO frames is greater than a given threshold.
If the VIO fails, the proposed algorithm will use the ODOM data
instead of the VIO data. When the sensor returns to normal, the

data of GPS and VIO are re-added to the fusion system for fusion
to correct the system error. After synchronizing the time of each
sensor, the algorithm uses the EKF filtering formula to process the
data, and outputs the attitude estimation value of the whole robot.

The data fused in the algorithm contain the odometer
information converted by GPS through coordinates, including
the covariance and coordinate values for x and y axes of the
GPS; the covariance and coordinate values for x and y axes of
the ODOM; the quaternion and covariance of the IMU; the
covariance and coordinate values for x, y, and z axes of the VIO
and the quaternion output by the tight coupling between the IMU
and the camera. And all these data are obtained in the carrier
coordinate system (ObXbYbZb). In addition, the coordinate
systems considered in this paper include: Geographic Coordinate
System (OgXgYgZg), Camera Coordinate System (OcXcYcZc),
Navigation Coordinate System (OnXnYnZn), Inertial Coordinate
System (OiXiYiZi) and Pixel Coordinate System (Opuv).

The proposed fusion of sensor information framework is
shown in Figure 1, it can improve the navigation accuracy
while enhancing the robustness of the system effectively. The
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FIGURE 4 | Comparison of the overall trajectory of the fusion algorithm with
the MSCKF_VIO algorithm in the x-axis.

data analysis and final results are given in the experiments and
results section.

Signal Fusion
In the signal fusion stage, we fuse the signals from IMU,
ODOM, VIO, and GPS inputs based on the extended
Kalman filtering algorithm in a loosely coupled manner.
Then the fusion algorithm is used to estimate the real position
and attitude information of the ground farm robot, and
outputs the fused and filtered combined odometer (ODOM
combined) information. The update of the positional attitude
information, covariance information, and timing update are
introduced as follows.

(1) Position-attitude update.
All sensor sources have their own reference coordinate
system and may drift with time. To solve this problem,
we replace the absolute position pose information with the
relative position pose difference.

(2) Covariance update.
As the robot moves over a larger and larger range,
the uncertainty of its position pose gradually increases,
the covariance increases accordingly, and the absolute
covariance of position pose become less meaningful;
therefore, the sensors release a period of covariance change
to update the covariance, i.e., the covariance of velocity.

(3) Timing update.
It is assumed that the initial update moment of the
farm robot to the filter is t_0. In this case, the filter
subscribes to the fused position information at t_1, IMU
information at t_2, ODOM information at t_3, GPS
information at t_4, etc. Then the IMU, ODOM, and GPS
information are interpolated at t_0 and t_1, t_0 and t_2,
and t_0 and t_3, respectively. The EKF filter will use the
information obtained from these linear interpolations to

calculate the integrated odometer data updated by the
filter at time t_1.

Algorithm Input
The Rosario Dataset (Pire et al., 2019) is a class of publicly
available datasets in agriculture (Figure 2), this dataset is
used for mobile robots in agricultural scenarios in terms of
agricultural sensor fusion, SLAM, etc. This dataset is provided
by a weeding mobile robot equipped with a stereo camera,
GPS-RTK sensor, and IMU (Figure 3A) for agricultural field.
Figure 3B represents the dataset coordinate system, which
means that the world coordinate system completes the pose
transformation and turns to the map coordinate system. It is
assumed that the initial update moment of the farm robot
to the filter is t_0. In this case, the filter subscribes to the
fused position information at t_1, IMU information at t_2,
ODOM information at t_3, GPS information at t_4, etc. The
collected information is fused with odometry, inertial, and visual
information for further processing. Consequently, the results
are generated by deriving environmental data covering highly
repetitive scenes, reflection and burn images, direct sunlight
scenes, and rough terrain scenes.

This dataset has a relatively universal character, including
a range of different farmland scenes, and is suitable for the
study of this paper. For this reason, the dataset is used as the
initial input dataset for the proposed algorithm. In the dataset,
Ground Truth is the real motion trajectory of the robot, i.e., the
standard trajectory.

EXPERIMENTAL RESULTS AND
ANALYSIS

In this paper, the Rosario Dataset is used to simulate the trajectory
of the robot in the spatial Cartesian coordinate system by using
the starting position of the robot as the zero point. All the data
mentioned in the paper are obtained by running the proposed
algorithm for the farming scenario.

Based on the unified dataset, the proposed approach analysis
can be divided into the following three aspects.

(1) Judging the algorithm accuracy by comparing the
trajectories of the fusion algorithm proposed in this paper
with other algorithms.

(2) Judging the robustness of the proposed fusion algorithm
based on the output trajectory by introducing Gaussian
distribution noise to disable specific sensors.

(3) Changing the fusion judgment condition of VIO
algorithm, output trajectory and observe the influence
of different judgment conditions on the proposed
fusion algorithm.

It should be noted that in the following simulation diagrams,
the X direction represents the left and right transverse direction
of the vehicle body, Y represents the front and rear longitudinal
direction of the vehicle body.
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FIGURE 5 | Comparison of the fusion algorithm with the MSCKF_VIO
algorithm for zooming in on the x-axis local trajectory.

FIGURE 6 | Comparison of the overall trajectory in y-axis between the fusion
algorithm and the MSCKF_VIO algorithm.

Experimental Simulation and Analysis for
Trajectory Accuracy
Comparison of the Proposed Loosely Coupled
Extended Kalman Filter Multi-Sensor Fusion
Algorithm With the MSCKF_VIO Algorithm
There are three trajectories in the following figures. From
Figures 4–9, the trajectory of loosely coupled extended Kalman
filter algorithm is represented by Fusion, the trajectory of
MSCKF_VIO is represented by MSCKF_VIO, and the standard
trajectory is represented by ground truth, respectively. Where the
Figures 5, 7, 9 intercept the part of t-axis coordinates from 0 to
150 s in Figures 4, 6, 8.

(1) Comparison of trajectories in the x-axis direction.

FIGURE 7 | Zoomed-in comparison of the y-axis local trajectories of the
fusion algorithm and the MSCKF_VIO algorithm.

FIGURE 8 | Comparison of the overall trajectory in z-axis between the fusion
algorithm and MSCKF_VIO algorithm.

(2) Comparison of trajectories in the y-axis direction.
(3) Comparison of trajectories in the z-axis direction.
(4) Analysis of the figures.

By analyzing Figures 4–9, it can be found that when the
robot first starts to run, the difference of the three trajectories
is not large and the error is within the acceptable range.
However, with the increase of running time, the trajectory error
between the MSCKF_VIO algorithm and the standard trajectory
is increasing. Furthermore, the speed of error increase is also
improving. In contrast, the fusion algorithm proposed in this
paper reflects its superior stability and higher accuracy in the
overall trajectory.
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FIGURE 9 | Zoomed-in comparison of the z-axis local trajectories of the
fusion algorithm and the MSCKF_VIO algorithm.

FIGURE 10 | Overall trajectory comparison of fusion algorithm with IMU and
ODOM fusion algorithm in x-axis.

Comparison of the Proposed Loosely Coupled
Extended Kalman Filter Based Multi-Sensor Fusion
Algorithm With Inertial Measurement Unit and ODOM
Fusion Algorithm
There are three trajectories in the following figures.
Figures 10–16 show the trajectory of the proposed loosely
coupled EKF algorithm (denoted as Fusion), IMU-ODOM, and
the standard trajectory (denoted as ground truth), respectively
by IMU-ODOM. By comparing the trajectories of the Fusion
algorithm, MSCKF_VIO algorithm and IMU and ODOM fusion
algorithm proposed in this paper with the standard trajectories,
the accuracy of the two algorithms can be judged.

FIGURE 11 | Overall trajectory comparison of fusion algorithm with IMU and
ODOM fusion algorithm in y-axis.

FIGURE 12 | Comparison of y-axis local trajectory of fusion algorithm with
IMU and ODOM fusion algorithm.

(1) To make a more accurate analysis of the results, Figure 12
intercept the part of t-axis coordinates from 200 to 300 s in
Figures 11, 14 remove the standard trajectory and intercept
the part of t-axis coordinates from 400 to 500 s.

(2) Comparison of the trajectory in the y-axis direction.
(3) Comparison of trajectories in z-axis direction.
(4) Analysis of the figures.

By analyzing from Figures 10–13, in the x-axis trajectory, the
accuracy of fusion algorithm of IMU and ODOM is obviously
lower than the accuracy of the proposed fusion algorithm; in the
y-axis trajectory, the difference in accuracy between the two is not
significant. Since the car body moves in the plane, this paper only
considers the x and y axes of the two-dimensional plane in the
IMU-ODOM fusion simulation, and its value is zero compared
to the real value in the z-axis trajectory.
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FIGURE 13 | Overall trajectory in z-axis of fusion algorithm with IMU and
ODOM fusion algorithm.

FIGURE 14 | Comparison of z-axis local trajectory of fusion algorithm with
IMU and ODOM fusion algorithm.

Analysis of the Tables
In this paper, the results of different sensor fusion methods are
quantitatively compared with standard trajectories, the average
value and mean square deviation of the absolute value are shown
in Tables 1, 2.

According to the conclusions drawn from the previous
analysis with Tables 1, 2, it is concluded that the stability and
robustness of proposed fusion algorithm are significantly
superior to the MSCKF-VIO algorithm and the IMU-
ODOM fusion algorithm, and it can be found that the
trajectory of fusion is closer to the real trajectory than those
obtained by other algorithms, and thus the accuracy of the
proposed fusion algorithm is better than IMU and ODOM
fusion algorithm.

FIGURE 15 | Comparison of the overall trajectory in the x-axis after VIO failure
and when all sensors are working normally.

FIGURE 16 | Comparison of local trajectory in x-axis after VIO failure and
when all sensors are working normally.

Experiments for the Robustness of the
System
The robustness of the system reflects its characteristic of
maintaining certain performance under certain parameter
uptake. In this paper, the robustness of the system
is verified by adding Gaussian distribution noise to
disable a specific sensor, and then the trajectory with
sensor disablement is compared to the trajectory without
the disturbance.

In this part, we disable the sensors GPS and VIO respectively
when t ∈ [200, 300].
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TABLE 1 | Average of absolute value of errors in x, y, and z directions.

Comparison

Axis Fusion-
groundtruth

MSCKF-
groundtruth

IMU-
groundtruth

x/m 4.5948 20.9995 45.2532

y/m 14.9209 75.3966 75.0033

z/m 4.7763 54.2210 0.8808

TABLE 2 | Mean square deviation of errors in x, y, and z directions.

Comparison

Axis Fusion-
groundtruth

MSCKF-
groundtruth

IMU-
groundtruth

x/m 2.6959 35.0502 25.8619

y/m 2.2211 96.6908 44.9099

z/m 2.2949 77.0708 0.2860

Visual Inertial Odometry Is Disturbed by
Continuous Noise, While Other Sensors
Operate Normally
In the following Figures 15–18, the Fusion trajectory represents
the trajectory when all sensors are working normally, the
VIO inference trajectory represents the trajectory when the
VIO is disabled by noise interference, while Figure 16 is the
trajectories for Figure 15 t ∈ [200, 210] and t ∈ [200, 300]
sections and enlarged to allow a more accurate judgment of the
results.

(1) Trajectory comparison in x-axis direction.
(2) Comparison of the trajectory in the y-axis direction.
(3) Comparison of trajectory in z-axis direction.

FIGURE 17 | Comparison of the overall trajectory in y-axis after VIO failure
and when the sensor is working normally.

FIGURE 18 | Comparison of the overall trajectory in z-axis after VIO failure
and when all sensors are working normally.

FIGURE 19 | Comparison of overall trajectory in x-axis after GPS failure and
when all sensors are working normally.

Global Positioning Navigation System Is
Continuously Disturbed by Noise, Other Sensors Are
Working Normally
From Figures 19–22, the Fusion trajectory represents the
trajectory when all sensors are working normally, the
GPS represents the trajectory when the GPS is disabled by
interference, while Figure 20 are the trajectories of Figure 19
t ∈ [200, 300] sections and enlarged to allow a more accurate
judgment of the results.

(1) Comparison of trajectory in x-axis direction.
(2) Comparison of the trajectory in the y-axis direction.
(3) Comparison of trajectory in z-axis direction.
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FIGURE 20 | Comparison of the local trajectory in x-axis after GPS failure and
when all sensors are working normally.

FIGURE 21 | Comparison of the overall trajectory in y-axis after GPS failure
and when the sensor is working normally.

Analysis of the Results
In this paper, we disable the sensors GPS and VIO respectively
when t ∈ [210, 300], and enlarged the section of figure when t ∈
[200, 300]. In this way, we compare the two output trajectories
and find that the robustness of the fusion algorithm proposed in
this paper is better.

The above analysis of Figures 15–22 shows that the GPS
or VIO failure does not have much effects on the proposed
algorithm results, and it can be thus concluded that the proposed
algorithm has excellent robustness ability to remain stable under
a continuous disturbance.

FIGURE 22 | Comparison of the overall trajectory in z-axis after GPS failure
and when the sensor is working normally.

FIGURE 23 | Comparison of the overall trajectory of the output x-axis with
different thresholds.

Effects of Different Judgment Conditions
of Visual Inertial Odometry Algorithm
Fusion on the System
Comparison of the Trajectories of the Fusion
Algorithm Under Different Judgment Conditions
In the process of sensor fusion, this paper defines a threshold
value for VIO sensors and sets judgment conditions based on
this threshold value. If the VIO signal greater than this value, it is
judged that the VIO data is not suitable for fusion, and the fusion
algorithm of the VIO data is terminated.

In this paper, by changing the threshold value and observing
the output trajectory, we study the influence of different
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FIGURE 24 | Comparison of output x-axis local trajectories under different
thresholds.

FIGURE 25 | Comparison of the overall trajectory of the output y-axis under
different thresholds.

thresholds judgment conditions on the trajectory results of the
proposed fusion algorithm.

In the following Figures 23–27, the Fusion trajectory
represents the output trajectory when the threshold value is
not changed, which is also the Fusion trajectory in all previous
simulations with a threshold value of 0.3. VIO-3 represents the
output trajectory with a threshold value of 3. VIO-7 represents
the output trajectory with a threshold value of 7. VIO-15
represents the output trajectory with a threshold value of 15. And
VIO-30 represents the output trajectory with a threshold of 30.
Figures 24, 27 are the local trajectory results of t ∈ [100,200]
sections from Figures 23, 26, respectively.

(1) Comparison of trajectories in the x-axis direction.
(2) Comparison of trajectories in the y-axis direction.
(3) Comparison of trajectories in z-axis direction.

FIGURE 26 | Comparison of the overall trajectory of the output z-axis under
different thresholds.

FIGURE 27 | Comparison of output z-axis local trajectories under different
thresholds.

Analysis of Results
In this paper, by changing the defined threshold value of
VIO in the proposed algorithm and thus changing the fusion
judgment condition, we observe the output trajectory results
and analyze the effects of different thresholds on the overall
algorithm outputs.

It can be seen from Figures 23–27 that, as the threshold value
increases, the range of judging the VIO data to meet the fusion
condition also increases. Based on the comparison between the
output trajectories corresponding to different threshold values
and the Fusion trajectories, it is observed that the trajectories on
the x-axis and z-axis gradually approach the standard trajectories.
It is thus inferred that the accuracy of the proposed fusion
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algorithm is improved with the increase of the threshold value
within a certain range.

From the above experimental results, it can be concluded
that the proposed multi-sensor fusion algorithm has a higher
stability compared with traditional VIO algorithms such as
MSCKF_VIO and the fusion algorithm of IMU and ODOM
fusion algorithm. In addition, it also has excellent robustness.
As the working time of the robot increases, the algorithm
can still maintain a relatively stable trajectory, make up
for the shortcomings of a single VIO, and thus solves the
possible target loss and trajectory drift. It should be noted
that, although the accuracy of the proposed algorithm has
been greatly improved compared with the traditional VIO
algorithm, there is still much room for accuracy improvement.
Based on the relationship between the accuracy of the
algorithm output trajectory and different threshold values, it
is meaningful to find an optimal threshold values, in order
to stabilize the trajectory errors in a small interval and
make the algorithm output trajectory close to the standard
trajectory.

CONCLUSION

This paper proposes a loosely coupled EKF MSF algorithm for
designing navigation systems. A series of experiments verified
that the proposed algorithm has favorable robustness and stability
against other methods. The proposed method provide reference
significance for tasks such as navigation, localization, and path
planning of agricultural robots.

In the future, we will establish a more extensive and complex
dataset that are closer to practical applications, in order to further

improve the robustness and accuracy of the algorithm under fast
motion and more complex random scenarios. It is also interesting
to find an optimal threshold values, in order to stabilize the
trajectory errors in a small interval and make the algorithm
output trajectory close to the standard trajectory.
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