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Soil salinity is a major environmental stress that restricts the growth and yield of crops.
Mining the key genes involved in the balance of rice salt tolerance and yield will be
extremely important for us to cultivate salt-tolerance rice varieties. In this study, we report
a WUSCHEL-related homeobox (WOX ) gene, quiescent-center-specific homeobox
(OsQHB), positively regulates yield-related traits and negatively regulates salt tolerance
in rice. Mutation in OsQHB led to a decrease in plant height, tiller number, panicle length,
grain length and grain width, and an increase in salt tolerance. Transcriptome and
qPCR analysis showed that reactive oxygen species (ROS) scavenging-related genes
were regulated by OsQHB. Moreover, the osqhb mutants have higher ROS-scavenging
enzymes activities and lower accumulation of ROS and malondialdehyde (MDA) under
salt stress. Thus, our findings provide new insights into the role of rice WOX gene family
in rice development and salt tolerance, and suggest that OsQHB is a valuable target for
improving rice production in environments characterized by salt stress.
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INTRODUCTION

Soil salinity is one of the most widespread and significant soil problems worldwide, as salt hampers
plant growth and development and hinders crop yield. As the primary source of food for more
than half of the world population, rice is affected by salinity stress in varying degrees throughout
all the developmental stages (Nam et al., 2015; Saini et al., 2018; He et al., 2019). Especially, rice
is more sensitive to salinity during early seedling growth and flowering than other growth stages
(Nam et al., 2015; Qin et al., 2019). Therefore, the growth ability of rice seedlings under salt stress
conditions is considered an indicator of salt tolerance, and improving the salt tolerance of rice
seedlings could increase the utilization of saline-alkali land and alleviate the world food crisis. Salt
tolerance in rice is a polygenic trait controlled by quantitative trait loci (Ismail and Horie, 2017;
Qin et al., 2020). Dissecting the key genes involved in rice salt tolerance and yield is an important
objective to accelerating rice breeding.

Reactive oxygen species (ROS) is a versatile signal molecule that could be rapidly induced
by a variety of environmental stresses (Miller et al., 2010; Lv et al., 2018). Generally, low
concentrations of ROS function as signal molecules to regulate many biological processes, whereas
high concentrations of ROS damage proteins, lipids, DNA, and carbohydrates (Miller et al., 2010;
Xu et al., 2018; Yang and Guo, 2018). Therefore, maintaining an appropriate level of ROS is
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essential for plant growth and development. To avoid excessive
accumulation of ROS and cause oxidative damage to cells,
plants have evolved defense systems that include ROS-scavenging
enzymes, such as superoxide dismutase (SOD), ascorbate
peroxidase (APX), glutathione peroxidase (GPX), and catalase
(CAT) (Foyer and Noctor, 2005). Various studies have shown
that salt stress leads to excessive accumulation of ROS, and
enhancing the activity of ROS-scavenging enzymes can improve
the salt tolerance of plants (Lu Z. et al., 2007; Saini et al.,
2018). For example, overexpression of OsAPXa or OsAPXb in
Arabidopsis enhances tolerance to salinity stress (Lu Z. et al.,
2007). Knockdown GPX1 leads to enhanced photosynthesis
impairment in response to salinity in rice (Lima-Melo et al.,
2016). Transgenic rice plants overexpression APX exhibit
reduced ROS accumulation and enhanced salt tolerance (Teixeira
et al., 2006; Hong et al., 2007; Zhang et al., 2013).

The WUSCHEL related homeobox (WOX) gene family is
one of plant homeobox (HB) transcription factor families
(Yang et al., 2017). WOX genes have been shown to function
in coordinate gene transcriptional related to shoot and root
meristem establishment and organogenesis (Zhao et al., 2009; Hu
and Xu, 2016; Cheng et al., 2018). In Arabidopsis, AtWOX5 is
specifically expressed in the quiescent center (QC) and acts as
a key regulator of the root stem cell population (Sarkar et al.,
2007; Forzani et al., 2014; Savina et al., 2020). AtWOX9 is
essential to maintaining cell division and preventing premature
differentiation in vegetative shoot apical meristem and early
embryogenesis (Wu et al., 2005, 2007; Skylar et al., 2010). In rice,
OsWOX3A modulates lateral root development and root hair
formation through regulating auxin-transport gene expression
(Yoo et al., 2013; Cho et al., 2016). OsWOX4 is involved in
meristem maintenance and acts as a key regulator in early leaf
development and primary root elongation (Ohmori et al., 2013;
Yasui et al., 2018; Chen et al., 2020). OsWOX11 promotes crown
root and shoot development by modulating cell proliferation in
crown root meristem and shoot apical meristem (Zhao et al.,
2009; Zhou et al., 2017; Cheng et al., 2018). Quiescent-center-
specific homeobox (OsQHB), a homolog of AtWOX5, is involved
in specification and maintenance of QC cell in root apical
meristem and controlling lateral root primordium size (Kamiya
et al., 2003; Kawai et al., 2022). All these studies suggest that WOX
genes play an important role in regulating plant development.

As sessile organisms, plants must cope with various stresses
in their environment to ensure the optimal combination of
proliferation and survival. Accumulating studies show that WOX
genes are associated with plant abiotic stress responses (Cheng
et al., 2016; Liu H. et al., 2021; Wang L. Q. et al., 2021). In poplar,
PagWOX11/12a positively regulates drought and salt tolerance by
enhancing ROS scavenging capacity (Liu R. et al., 2021; Wang
L. Q. et al., 2021). Knock-down of GhWOX4 in cotton decreases
the drought tolerance (Sajjad et al., 2021). In rice, overexpression
of OsWOX11 enhances drought tolerance by promoting root
hair growth and development (Cheng et al., 2016). In addition,
several rice WOX genes are responsive to salt stress (Cheng et al.,
2014), implying that WOX genes might involve in improving
the salt tolerance of rice. In the present study, we demonstrate
that OsQHB coordinately regulates salt tolerance and yield of

rice. Transcriptome analysis and physiological and biochemical
indices show that OsQHB negatively regulates salt tolerance by
improving ROS scavenging capacity. Thus, our researches enrich
the functions of WOX genes in rice, and precisely manipulation
of OsQHB could be useful to improve rice yield under salt stress.

RESULTS

OsQHB Is a Nuclear Localization Protein
and Mainly Expressed in Root and Shoot
Apical Meristem
WOX transcription factors play important roles in key
developmental processes and in response to different abiotic
stresses (Cheng et al., 2016; Jha et al., 2020; Wang L. Q. et al.,
2021). Rice genome contains at least 13 WOX genes (Zhang et al.,
2010). Among them, OsQHB encodes 200 amino acids including
a homeodomain (HD) with 66 amino acids at the N-terminal
(Supplementary Figure 1A). Phylogenetic analysis of rice and
Arabidopsis WOX families indicated that OsQHB showed the
highest similarity to AtWOX5 (Supplementary Figure 1B
and Supplementary Table 1), which is specifically expression
in the QC cells and is essential for stem cell maintenance
in different meristems (Sarkar et al., 2007; Pi et al., 2015).
β-glucuronidase (GUS) staining analysis using transgenic rice
plants harboring OsQHB promoter-GUS construct showed
that the transcription of OsQHB was detected in QC and stele
of the root apexes, stem base, and crown root primordium
(Figures 1A–D). Subsequently, the subcellular localization of
OsQHB was investigated by fusing the OsQHB coding sequence
with GFP and transiently expressed in rice protoplasts. The
fluorescent signals of OsQHB-GFP fusion protein were found
in the nucleus, as revealed by co-localization with the nuclear
marker DAPI (4′,6-diamidino-2-phenylidone) (Yu et al., 2013;
Figure 1E). These results suggest that OsQHB might be involved
in the maintenance of the QC cells through a mechanism similar
to that of AtWOX5.

OsQHB Positively Regulates
Yield-Related Traits
To study the function of OsQHB, we generated knockout
mutants in the Nipponbare (NIP) background via CRISPR-
Cas9 mediated genome editing and isolated three alleles for
further investigation. The osqhb-1 and osqhb-2 mutant plants
contained a 5-bp and 8-bp deletion, whereas the osqhb-3 mutant
plants contained a 1-bp insertion, in the coding region of
the target gene, correspondingly, leading to a frame shift in
the open reading frame and the generation of a premature
stop codon (Supplementary Figures 2A,B). We also generated
overexpression (OE) lines containing the coding region of
OsQHB under the control of the CaMV35S promoter, the
increased expression of the target gene was confirmed by qPCR
(Supplementary Figure 2C). Although the expression of OsQHB
was significantly increased in OsQHB-OE plants, whereas the
OsQHB protein was increased slightly in OsQHB-OE plants
(Supplementary Figure 2D), suggesting that OsQHB may be
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FIGURE 1 | OsQHB expression and protein subcellular localization. (A–D) The tissue-specific expression of OsQHB revealed by promoter-GUS analysis. 3-d-old
OsQHBp-GUS transgenic seedlings was used for GUS staining. At least 10 samples were observed for each organ and representative ones are presented.
(A) 3-d-old seedling, (B) Primary root, bar = 100 µm, (C) Stem base, Bar = 200 µm. (D) crown root primordium. Bar = 200 µm. (E) Subcellular localization of
OsQHB in rice protoplasts. Protoplasts were derived from etiolated shoots. Fluorescence from GFP and DAPI was detected by confocal microscopy. Merged
indicates co-localization of OsQHB with DAPI. Bar = 5 µm. DAPI, 4′,6-diamidino-2-phenylindole.

rapidly degraded by the ubiquitin system or the proteasome.
To verify this hypothesis, we treated OsQHB-OE plants with
MG132 (an inhibitor of the ubiquitin proteasome system) and
then detected the OsQHB protein levels. The results showed
that MG132 treatment significantly increased the accumulation
of OsQHB protein (Supplementary Figure 2D), indicating that
OsQHB is rapidly degraded by the ubiquitin proteasome system,
and implying that OsQHB is essential for plant development
and plants must maintain low levels of OsQHB protein to
ensure normal growth.

Next, we investigated the agronomic traits of OsQHB
overexpressed plants and osqhb mutants. At maturation stage,
the osqhb mutants were shorter and the OsQHB-OE plants were
slightly taller than wild-type plants (Figures 2A,B). The number
of effective tiller and panicle length in wild-type and OsQHB-
OE plants were identical, whereas osqhb mutants produced less
effective tiller and smaller panicle than the wild type (Figures 2C–
E). The total number of grains per panicle was significantly
reduced in osqhb mutants, whereas slightly increased in OsQHB-
OE plants, compared to that of the wild type (Figure 2F). All these

analyses indicate that modulation of OsQHB expression affects
yield-related traits in rice.

The grain size was also examined in osqhb mutants and
OsQHB-OE plants using well-filled grains. The grain length
and grain width was significantly reduced in osqhb mutants,
whereas increased in OsQHB-OE plants, compared with those
in the wild type (Figures 3A–C). The thousand-grain weight of
various plants was further measured. The results showed that
osqhb mutants had significant reductions, whereas the OsQHB-
OE plants had significant increases in this parameter (Figure 3D).
These results indicate that OsQHB positively regulates the
grain size and thousand-grain weight in rice, implying that
manipulation of OsQHB could be useful to improve rice yield.

OsQHB Is Involved in Abiotic Stress and
Hormone Response
The promoter sequence of OsQHB contains many putative
hormone- and stress-response cis-elements, such as ABRE
element (4 hits), AuxRR core (2 hits), P-box (1 hit), G-box
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FIGURE 2 | Mutation in OsQHB reduced plant height, tiller number, panicle length, and number of grains per panicle. (A) Phenotypic comparison of field-grown
wild-type and OsQHB transgenic plants. Bar = 10 cm. (B,C) Plant height (B) and tiller number (C) of field-grown wild-type and OsQHB transgenic plants. Values are
means ± SD (n ≥ 20). * and ** indicates significant difference compared to NIP at P < 0.05 and P < 0.01 by Student’s t-test. (D) Panicle phenotypes of wild-type
and OsQHB transgenic plants. Bar = 2 cm. (E,F) Panicle length (E) and number of grains per panicle (F) of wild-type and OsQHB transgenic plants. Each value is
average of 20 plants. Bars indicate SD. ** indicates significant difference compared to NIP or ZH11 at P < 0.01 by Student’s t-test.

FIGURE 3 | OsQHB positively regulates grain size. (A) Phenotypic comparison of well-filled grains of wild-type and OsQHB transgenic plants. Bar = 1 cm. (B–D)
Grain length (B), grain width (C) and 1,000-grain weight (D) from well-filled grains. Values are means ± SD of three replicates. * and ** indicates significant difference
compared to NIP or ZH11 at P < 0.05 and P < 0.01 by Student’s t-test.
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(6 hits), and MYB recognition site (1 hit) (Figure 4A). ABRE
element is associated with ABA response (Nakashima and
Yamaguchi-Shinozaki, 2013), G-box and MYB recognition site
with drought response (Ezer et al., 2017), AuxRR core with auxin
response, and P-box with gibberellin response (Sakai et al., 1996;
Hwang et al., 2010; Wang Y. et al., 2011; Ambawat et al., 2013;
Wei et al., 2013; Zhang et al., 2020; Dutta et al., 2021). These
elements are contained in the promoter of OsQHB suggests that
OsQHB might be involved in modulating hormone response and
stress tolerance.

Furthermore, we examined the responses of OsQHB to various
abiotic stresses and hormone treatments by β-glucuronidase
(GUS) staining. Considering that OsQHB is mainly expressed
in root tips, we selected root tips for GUS staining. Our results
showed that the GUS staining was significantly repressed by NaCl
and weakly induced by osmotic stress (PEG6000) and ethylene,
but apparently not affected by abscisic acid (ABA) treatment,
respectively (Figures 4B–E). Numerous studies have shown that
ABA and ethylene play important roles in regulating salt and
drought tolerance (Pan et al., 2012; Liang et al., 2019; Liu C. Y.
et al., 2019; Luo et al., 2020). Collectively, these results indicate
that OsQHB might be associated with ethylene- and ABA-related
environmental stimuli in rice.

OsQHB Negatively Regulates Salt
Tolerance Through Modulating ROS
Scavenging
Salt stress is a major environmental problem globally by affecting
plant growth and causing crop production. Increasing numbers
of studies have shown that the WOX gene family plays a role
in salt tolerance (Wang L. Q. et al., 2021). As salt represses
OsQHB transcription, we hypothesized that OsQHB is involved
in regulating salt tolerance in rice. To verify this, we treated
wild type, osqhb, and OsQHB-OE seedlings with NaCl. After
10 days of treatment with 120 mM NaCl, osqhb seedlings were
obviously less affected than NIP seedlings by salt stress, whereas
OsQHB-OE seedlings were all wilted to death (Figure 5A).
After recovery for 10 days in non-salt conditions, the survival
rate of osqhb seedlings was significantly higher, and that of
OsQHB-OE seedlings was significantly lower, than that of the
wild-type seedlings (Figures 5B,C). These results indicate that
OsQHB negatively regulates the response of rice to salt stress
at seedling stage.

To elucidate the molecular mechanisms regulated by OsQHB,
we compared the transcriptomes of wild type, osqhb, andOsQHB-
OE seedlings using transcriptome deep sequencing (RNA-seq).
Totally 1079 differential expressed genes (DEGs) were identified
in osqhb mutants, including 525 up-regulated DEGs and 554
down-regulated DEGs (Figure 6A and Supplementary Table 2).
Gene Ontology (GO) enrichment analysis showed that these
OsQHB-regulated DEGs were involved in stress response,
regulation of metabolic and cellular biosynthetic process, ion
transport, and kinase activity (Figure 6B), indicating that
OsQHB is involved in a variety of biological processes and
molecular functions, including those associated with abiotic
stress responses.

Previous studies have shown that salt stress leads to over-
production of ROS, and enhanced ROS scavenging capacity
can improve salt tolerance in plants (Steffens, 2014; Xu et al.,
2018; Yang and Guo, 2018). Thus we analyzed the expression
of ROS scavenging-related genes in transcriptome data and
found that multiple peroxidase (PRX) genes were regulated by
OsQHB (Figure 6C and Supplementary Table 2), this regulation
was further confirmed by qPCR (Figure 6D). PRX genes play
diverse roles in plant physiology by scavenging ROS (Liu R.
et al., 2021). These results indicate that OsQHB regulates the
expression of ROS scavenging-related genes, which could further
affect ROS accumulation.

To investigate whether ROS levels were altered in wild
type, osqhb, and OsQHB-OE seedlings under salt treatment, we
measured ROS levels in wild type, osqhb, andOsQHB-OE seedling
leaf. Nitro blue tetrazolium (NBT) staining showed that the
osqhb mutants accumulated less O2− in the leaves compared
with wild-type plants under salt stress (Figure 7A). On the
contrary, the OsQHB-OE plants accumulated much more O2−

in the leaves compared with wild-type plants under salt stress
(Figure 7A). Further determination of H2O2 content showed
that the H2O2 content of osqhb mutants was lower, while
that of OsQHB-OE plants was higher, than that of wild type
after salt treatment (Figure 7B). Malondialdehyde (MDA) is an
important product of lipid peroxidation, which represents the
degree of oxidative damage to the plant cell (Qin et al., 2016).
Salt stress significantly increased the MDA content in wild-type
(Figure 7C). This tendency was weakened in osqhb mutants,
but enhanced in OsQHB-OE plants (Figure 7C). These results
indicate that knocking out OsQHB leads to the reduction of
ROS accumulation under salt stress, thereby improving the salt
tolerance of rice seedlings.

Salt tolerance is tightly related to the activities of ROS-
scavenging enzymes. Therefore, we measured the activities of
ROS-scavenging enzymes after exposed to NaCl. As shown in
Figures 7D,E, after exposed to salinity stress, the activities
of antioxidant enzymes in all the three genotypes were
significantly increased, whereas the osqhb mutants showed a
higher antioxidant enzymes activities and the OsQHB-OE lines
showed a lower antioxidant enzymes activities, as compared
with wild-type plants (Figures 7D,E), indicating that the OsQHB
mutation leads to enhancement of salt tolerance in rice seedlings
by enhancing the activities of antioxidant enzymes.

DISCUSSION

Maintaining stable, high yields under fluctuating environmental
conditions is a long-standing goal of crop improvement.
However, due to internal trade-off mechanisms in plants,
high yields and high biotic/abiotic resistance are usually
incompatible (Deng et al., 2017). Therefore, dissecting genes
that simultaneously regulate grain size and salt resistance is
a promising strategy for improving both grain yield and salt
tolerance in crop. In the present study, we demonstrated that
OsQHB positively regulates yield-related traits but negatively
regulates salt tolerance in rice. Further investigations showed that
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FIGURE 4 | Expression of OsQHB under stress and hormone treatments. (A) Distribution of major stress-related cis-elements in the promoter region of OsQHB.
(B–E) GUS staining of 3-d-old transgenic lines contained OsQHBp-GUS treated with 100 mM NaCl (B), 10% PEG6000 (C), 10 µL/L Ethylene (D), or 1 µm ABA (E)
treatment. Bar = 100 µm.

OsQHB regulates salt tolerance by enhancing ROS scavenging
capacity. Our findings deepen our understanding of the functions
of rice WOX gene family in response to salt stress and provide
useful genes for improving yield and salt tolerance in rice.

WOX is a transcription factor family that plays a critical role
in plant growth and development (Zhao et al., 2009; Hu and Xu,
2016; Chen et al., 2020). Accumulating studies show that WOX
genes are associated with plant abiotic stress responses (Cheng
et al., 2016; Liu H. et al., 2021; Wang L. Q. et al., 2021). In poplar,
PagWOX11/12a positively regulates drought resistance through
modulating ROS scavenging (Liu R. et al., 2021). Here, we showed
that mutation in OsQHB weakened the accumulation of ROS
under salt stress. Correspondingly, the osqhb mutants exhibited
higher ROS-scavenging enzyme activity after salt treatment.
Transcriptome and qPCR analysis showed that ROS scavenging-
related genes were regulated by OsQHB, indicating that OsQHB
improves rice salt tolerance by enhancing ROS scavenging

capability through possibly regulating ROS scavenging-related
genes expression. These findings deepen our understanding of the
role of WOX genes in salt resistance. Further investigations will
be required to determine how ROS scavenging-related genes are
regulated by OsQHB to enhance salt tolerance.

The root system architecture of crops can affect their
production, particularly in abiotic stress conditions (Uga et al.,
2013; Kitomi et al., 2020). Numerous studies have shown that
WOX gene family improves crop resistance to abiotic stress
by modulating root system architecture (Cheng et al., 2016;
Wang L. Q. et al., 2020). In Arabidopsis, AtWOX5 is specifically
expressed in QC and acts as a root stem cell organizer (Sarkar
et al., 2007). Loss of AtWOX5 function in the root stem cell niche
causes terminal differentiation of columella stem cells (Sarkar
et al., 2007). OsQHB is a homolog of AtWOX5, suggesting that
OsQHB and AtWOX5 may have similar functions. Previous
studies have shown that OsQHB is involved in the specification
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FIGURE 5 | OsQHB negatively regulates salt tolerance of rice. (A) Phenotypes of wild-type and OsQHB transgenic plants under salt stress. 3-week-old wild-type
and OsQHB transgenic plants were treated with or without 120 mM NaCl for 10 days. (B,C) Survival rates of the plants shown in panel (A) after recovery for
10 days. Approximately 50–60 seedlings were used per experiment. Data are the mean ± SD of 3 biological replicates. ** indicates significant difference compared
to NIP or ZH11 at P < 0.01 by Student’s t-test.

and maintenance of QC cells in the root apical meristem, and
overexpression of OsQHB leads to abnormal root formation
(Kamiya et al., 2003). In this study, our results show that OsQHB
is localized in the nuclear and specifically expressed in QC cells of
the root and stem base, which is consistent with previous reports
(Kamiya et al., 2003). Stem base is where the crown root initiates
(Zhao et al., 2009), and our results show that OsQHB is also
expressed at the crown root primordial, indicating the important
role of OsQHB in rice root development. Moreover, OsQHB
negatively regulates salt tolerance in rice seedlings by enhancing
ROS scavenging capability, suggesting that OsQHB could be
useful for the controlled breeding of root system architectures

that are adapted to the salinity conditions. Subsequent studies
should focus on dissecting the function and regulatory network
of OsQHB in root development.

Rice is considered to be a salt-sensitive species and salt-
activated inhibition of plant growth may represent a positive
mechanism to help plants adapt to salinity stress (Chinnusamy
et al., 2005; Achard et al., 2006; Wang J. et al., 2020), this
means that the development of superior crop cultivars with both
high yields and high abiotic stress resistance is a tremendous
challenge for crop breeding. Identifying key genes involved in
the balance of rice salt tolerance and yield and discovering
favorable alleles for these genes could be used to enhance
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FIGURE 6 | Transcriptome analysis reveals differentially expressed genes (DEGs) in OsQHB transgenic plants. (A) Number of DEGs up- and down-regulated in
osqhb mutants. (B) Gene ontology (GO) analysis of OsQHB-regulated genes. (C) Heat map of the microarray expression profiles of ROS scavenging genes in
OsQHB transgenic plants. (D) Quantitative real-time PCR (qPCR) analysis of ROS scavenging genes in 3-d-old wild-type and OsQHB transgenic seedlings. OsActin1
was used as an internal control. Three biological replicates were performed with similar results, and a representative experiment is shown. Samples were collected
from three independent experiments. Bars indicate ± SD. The asterisks indicate significant differences compared to NIP or ZH11 (∗∗P < 0.01, Student’s t-test).

both yield and abiotic stress resistance in rice. In this study,
our results showed that knocking out OsQHB enhances the
salt tolerance of rice seedling by improving ROS scavenging
capability. Moreover, mutation in OsQHB significantly reduced
yield-related traits, whereas overexpression of OsQHB had no
obvious effect, likely due to rapidly degradation of OsQHB
protein by the ubiquitin proteasome system, as revealed by
MG132 treatment. Therefore, precisely manipulation of OsQHB
represents a promising strategy for improving both grain yield
and stress tolerance in rice. Further study should focus on
mining favorable alleles of OsQHB and elucidating the molecular
mechanism by which OsQHB is degraded.

Taken together, our research presents new insights into the
roles of OsQHB in improving yield and salt tolerance in rice,
and dissecting the underlying mechanism and mining favorable

alleles of OsQHB will facilitate the practical use of OsQHB in
breeding superior crop cultivars with both high yields and high
salt resistance.

MATERIALS AND METHODS

Plant Material and Growth Conditions
OsQHBp-GUS transgenic line was described previously (Ni et al.,
2014). osqhb allelic mutants in the Nipponbare (NIP) background
were generated by using CRISPR/Cas9 (Xu et al., 2017).
Briefly, the target region 5′-GGAGCAGGTGAAGGTCCTGA-
3′ was introduced into the pHUN4c12 vector backbone, and
the recombinant vector was transformed into Agrobacterium
strain EHA105-pSOUP for rice transformation. To generate the

Frontiers in Plant Science | www.frontiersin.org 8 May 2022 | Volume 13 | Article 848891

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-848891 April 28, 2022 Time: 14:30 # 9

Zhou et al. OsQHB Confers Salt Tolerance

FIGURE 7 | Loss of OsQHB function enhanced the ROS scavenging capability under salt stress. (A) NBT staining of 3-week-old wild-type and OsQHB transgenic
plant leaves treated with or without 120 mM NaCl treatment for 3 days. (B,C) Hydrogen peroxide (H2O2) (B) and malondialdehyde (MDA) (C) contents in leaves of
3-week-old wild-type and OsQHB transgenic plants treated with or without 120 mM NaCl treatment for 3 days. (D,E) Ascorbate peroxidase (APX) (D) and
Superoxide dismutase (SOD) (E) activities in leaves of 3-week-old wild-type and OsQHB transgenic plants treated with or without 120 mM NaCl treatment for
3 days. For (B) to panel (E), the data are shown as mean ± SD. n = 3 biological replicates. Statistically significant differences are indicated by different letters in
panels (B–E) (P < 0.05, one-way ANOVA with Tukey’s test).

overexpression transgenic plants, the coding sequence of OsQHB
was amplified by PCR and cloned in-frame with a Flag-tag into
pCAMBIA1307 under the control of the CaMV 35S promoter
(Wang J. et al., 2013). The recombinant plasmids were introduced
separately into NIP or Zhonghua 11 (ZH11) via Agrobacterium-
mediated transformation.

Rice seeds were imbibed in Petri dishes with sterile distill water
at 37◦C for 48 h. The germinated seeds were sown in a bottomless
96-well plate in a container of Yoshida’s culture solution (Cui
et al., 2015) or in growing trays filled with soil. The plants were
grown in a growth chamber under a 14 h light (30◦C)/10 h dark
(25◦C) photoperiod, with a light intensity of∼150 µmol m−2 s−1

(white light) and 60% relative humidity. To assess salt-tolerance
of rice seedlings, 3-week-old seedlings were treated with 120 mM
NaCl solution for 10 days, and then transferred to water without
NaCl for an additional 10 days. Subsequently, the survival rate of
rice seedlings was counted (surviving seedlings indicated plants
with green leaves).

For propagation and investigation of agronomic traits, the
plants were cultivated at the Experimental Station of the Chinese
Academy of Agricultural Sciences in Beijing during the natural
growing seasons.

Phylogenetic and Promotor Analysis
Arabidopsis WOX proteins sequences were available at the
Arabidopsis genome sequence database1 and rice WOX proteins
sequences were downloaded from the National Center for

1http://www.Arabidopsis.org/

Biotechnology Information (NCBI) database2. Full-length
protein sequences of all WOX proteins were aligned by
multiple sequence alignment program of the Clustal X, and
then phylogenetic tree was constructed by MEGA 6 software
according to the following parameters: neighbor-joining method,
500 bootstraps (Tamura et al., 2007).

For promoter analysis, the promotor sequence (2,000 bp
upstream of ATG) of OsQHB was uploaded to the PlantCARE
database3 to identify stress related cis-elements as previously
reported (Yang and Guo, 2018).

Quantitative Real-Time PCR and
β-Glucuronidase Staining
Total RNA was extracted from leaf tissues using an Ultrapure
RNA Kit (CWBIO, China) according to the manufacturer’s
instructions. ∼2 µg total RNA was reverse transcribed using
HiScript II Q RT SuperMix (Vazyme, China) according to
the manufacturer’s instructions. qPCR was performed on
an optical 96-well plate with Bio-Rad iQ5 system using
SYBR Green Real-time PCR Master Mix reagent (Vazyme,
China) as previously described (Zhang et al., 2012). The rice
Actin1 gene was used as an internal standard to normalize
gene expression. The primers used for qPCR are listed in
Supplementary Table 3.

2http://www.ncbi.nlm.nih.gov/protein
3http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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For GUS staining, 3-d-old OsQHBp-GUS seedlings were
immersed in GUS staining buffer (50 mM sodium phosphate,
pH 7.0; 10 mM EDTA; 0.5 mM K3[Fe (CN)6]; 0.5 mM K4[Fe
(CN)6]; 0.1% [v/v] Triton X-100; and 1 mM 5-bromo-4-chloro-
3-indolyl-β-D-glucuronic acid). The samples were vacuumed in
a vacuum pump for 30 min, and then stained in 37◦C for 2 d.
After dehydrated in 75% (v/v) ethanol to remove the chlorophyll,
the root tip was sectioned and photographed under a stereoscopic
microscope.

Subcellular Location
To determine the subcellular localization of OsQHB, the full
coding sequence of OsQHB was cloned into the pAN580-GFP
vector under the control of the CaMV 35S promoter. Rice
protoplasts prepared from etiolated shoots were transfected with
OsQHB-GFP (Jiang et al., 2018). After incubated at 28◦C for
16–20 h, equal volumes of DAPI (4′,6-diamidino-2-phenylidone)
staining solution and protoplast suspension were mixed, and
the fluorescence signal was observed with a confocal laser
scanning microscope.

Nitro Blue Tetrazolium Assay for the
Superoxide Anion
The leaves of 3-week-old seedlings were immersed in 20 mM
phosphate buffer (pH 6.1) containing 2 mM NBT. After
vacuumed in pump for 1 h, the samples were stained in 37◦C
for 12 h and then transferred to 75% (v/v) ethanol to stop
the reaction. The material was photographed under a light
stereomicroscope.

Superoxide Dismutase and Ascorbate
Peroxidase Activity Measurement
Ascorbate peroxidase and SOD activities were determined
according to the instruction of the superoxide dismutase assays
kits (Solarbio, China) and the ascorbate peroxidase assays kits
(Solarbio, China). In brief, 0.1 g of normal or salt-stressed
rice leaves from 3-week-old seedlings were harvested, ground
in liquid nitrogen, and extracted by extraction buffer. After
centrifuged at 8,000 g (SOD) for 10 min or 13,000 g (APX) for
20 min, the supernatant was used for SOD and APX activity
measurement. The absorbance values were measured at 560 and
290 nm, respectively. SOD and APX activities were calculated
from the formula provided with the SOD and APX assay kit
(Solarbio, China).

Measurement of Hydrogen Peroxide and
Malondialdehyde Contents
H2O2 content was determined using the method described
previously (Wang Y. et al., 2019). Briefly, 0.1 g rice leaves from 3-
week-old seedlings with or without salt treatment were harvested
and homogenized in 1 ml cold acetone. Then, H2O2 content was
determined using a hydrogen peroxide assay kit (Solarbio, China)
according to the manufacturer’s instructions.

To measure MDA, 0.1 g of normal or salt-stressed rice leaves
were homogenized in 1 ml 0.1% (w/v) trichloroacetic acid (TCA)
followed by centrifugation at 8,000 g for 10 min at 4◦C. Four

volumes of 0.5% (w/v) thiobarbituric acid (TBA) in 20% (w/v)
TCA were added to one volume of supernatant; the mixture
was incubated at 100◦C for 1 h. The reaction was terminated by
incubating the mixture on ice for 15 min, and the absorbance
was measured by spectrophotometry at 450 nm, 532 and 600 nm.
The content of MDA was calculated according to the formula
provided in the MDA assay kit (Solarbio, China).

Transcriptome Analysis
The primary roots of 3-d-old OsQHB overexpression line, osqhb
mutant, and wild-type seedlings were collected and extracted
using the TRIzol method (TIANGEN BIOTECH, China) and
treated with RNase-free DNase I (TaKaRa, Japan). mRNA was
purified from total RNA using poly-T oligo-attached magnetic
beads and then subjected to RNA-seq library construction for
the transcriptome experiments using NEBNext R© UltraTM RNA
Library Prep Kit for Illumina R© (NEB, United States). Multiplex
paired-end adapters were used for multiplex libraries. The library
quality was assessed on the Agilent Bioanalyzer 2100 system. The
library preparations were sequenced on an Illumina Hiseq 4000
platform by the Beijing Allwegene Technology Company Limited
(Beijing, China) and paired-end 150 bp reads were generated.
After removing adaptor and low-quality reads, clean reads were
mapped to rice genome MSU7.0 using TopHat, and analyzed
using Cufflinks according to Trapnell et al. (2012). Poisson-
dispersion model of fragment was used to conduct statistical
analysis (FDR < 0.05) and responsive genes were identified
by fragments per kilobase per million reads (FPKM) requiring
more than twofold change between two samples. Three biological
replicates were used, and their repeatability and correlation were
evaluated by the Pearson’s Correlation Coefficient (Schulze et al.,
2012). The transcriptome data from this study can be found in the
National Center for Biotechnology Information Sequence Read
Archive (NCBI SRA) under the accession number PRJNA801123.

Primer Sequences
The primers used in this study are shown in
Supplementary Table 3.
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