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Sunflower is one of the most important oil crops in the world, and drought stress

can severely limit its production and quality. To understand the underlying mechanism

of drought tolerance, and identify candidate genes for drought tolerance breeding,

we conducted a combined genome-wide association studies (GWAS) and RNA-seq

analysis. A total of 226 sunflower inbred lines were collected from different regions of

China and other countries. Eight phenotypic traits were evaluated under control and

drought stress conditions. Genotyping was performed using a Specific-Locus Amplified

Fragment Sequencing (SLAF-seq) approach. A total of 934.08M paired-end reads were

generated, with an average Q30 of 91.97%. Based on the 243,291 polymorphic SLAF

tags, a total of 94,162 high-quality SNPs were identified. Subsequent analysis of linkage

disequilibrium (LD) and population structure in the 226 accessions was carried out based

on the 94,162 high-quality SNPs. The average LD decay across the genome was 20 kb.

Admixture analysis indicated that the entire population most likely originated from 11

ancestors. GWAS was performed using three methods (MLM, FarmCPU, and BLINK)

simultaneously. A total of 80 SNPs showed significant associations with the 8 traits (p

< 1.062 × 10−6). Next, a total of 118 candidate genes were found. To obtain more

reliable candidate genes, RNA-seq analysis was subsequently performed. An inbred line

with the highest drought tolerance was selected according to phenotypic traits. RNA

was extracted from leaves at 0, 7, and 14 days of drought treatment. A total of 18,922

differentially expressed genes were obtained. Gene ontology and Kyoto Encyclopedia

of Genes and Genomes analysis showed up-regulated genes were mainly enriched

in the branched-chain amino acid catabolic process, while the down-regulated genes

were mainly enriched in the photosynthesis-related process. Six DEGs were randomly

selected from all DEGs for validation; these genes showed similar patterns in RNA-seq

and RT-qPCR analysis, with a correlation coefficient of 0.8167. Through the integration

of the genome-wide association study and the RNA-sequencing, 14 candidate genes

were identified. Four of them (LOC110885273, LOC110872899, LOC110891369,

LOC110920644) were abscisic acid related protein kinases and transcription factors.
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These genes may play an important role in sunflower drought response and will be used

for further study. Our findings provide new insights into the response mechanisms of

sunflowers against drought stress and contribute to further genetic breeding.

Keywords: sunflower, drought stress, genome-wide association studies (GWAS), RNA-seq, single-nucleotide

polymorphisms (SNPs), specific-locus amplified fragment sequencing (SLAF-seq)

INTRODUCTION

Sunflower (Helianthus annuus. L) belongs to the Compositae
family (Schilling and Heiser, 1981), and is native to North
America (Schilling and Heiser, 1981). As one of the major oilseed
crops in the world, sunflower is considered an important source
of high-quality oil and dietary fiber for human health (Khan et al.,
2015). The world harvested area of sunflower seed has increased
by 20% (from 23.07 million hectares to 27.87 million hectares),
and the production has increased by more than 50% (from 31.45
million tons to 50.23 million tons) from 2010 to 2020 (FAO,
2021). China is the sixth-largest sunflower-producing country in
the world. The main production areas of sunflowers in China are
in the northwest region, such as Inner Mongolia Autonomous
Region and Xinjiang Uygur autonomous region. The sunflower
is an important economic source for local farmers, and the status
of sunflower production directly affects farmers’ living standards.

The global average temperature has risen by about 0.85◦C
from the year 1880 to 2012 (Adopted, 2014), resulting in a series
of extreme weather events, such as heavy rains, flooding, drought,
and desertification. Among them, drought is the most serious
abiotic stress limiting global agricultural production (Wilhite
and Buchanan-Smith, 2005). A persistent drought can cause a
large number of deaths and force large-scale migration, while
severe droughts can even impact human civilization (Ault, 2020).
With the continued climate change and population growth,
drought may pose a serious threat to global and regional food
security in the coming decades (Riddell et al., 2018). Due to the
strong root system, the sunflower was considered to be relatively
tolerant to water stress. They are often seeded on beds and
ridges with poor moisture conditions where many other crops
are unable to survive (Hussain et al., 2018). As a result, it is more
susceptible to drought stress leading to yield reduction (Pasda
and Diepenbrock, 1990; Adeleke and Babalola, 2020; Grasso
et al., 2020). Studies have shown that drought stress in sunflower
seedlings can lead to severe yield loss (Mwale et al., 2003; Rauf
and Ahmad Sadaqat, 2008).

The sunflower drought stress response behavior involves a
series of changes in morphological, physiological, and molecular
levels. The drought stress negatively influenced seed germination
and seedling emergence at the germination stage (Kaya et al.,
2006). Drought stress at the vegetative stage reduces plant
height (PH), leaf surface area (LSA), and biomass production
while causing pollen sterility at the reproductive stage (Turhan
and Baser, 2004; Hussain et al., 2008). From a physiological
perspective, drought affects the uptake of water and nutrition,
leads to a reduction of relative water content (RWC), and
the turgor of cells (Hussain et al., 2008, 2016; Ibrahim et al.,

2016). Plants respond to drought stress by reducing water
evaporation through stomatal closure. As a result, it also reduces
the photosynthetic rate (Flexas et al., 2004). The decreased
photosynthesis rate leads to a decrease in CO2 fixation, which
affects the regeneration of the final acceptor of the electron
transport chain (NADP+). The leaked electrons flow to O2 to
produce reactive oxygen species (ROS) (Flexas et al., 2004). ROS
cause oxidation of membrane lipids, resulting in decreased cell
membrane stability. The decrease in cell membrane permeability
results in the accumulation of the relative electrical conductivity
(REC) and malondialdehyde (MDA) (Gunes et al., 2008). From
the molecular level, plants involve a series of pathways for
signal perception, transduction, gene expression, and other
stress metabolites to accommodate drought. Drought-induced
genes can mainly be classified into two groups. The first
group constitutes genes whose products directly function in
tolerance to stress, such as LEA proteins, osmolytes, proline
(Pro), CAT, POD. Another group includes genes playing a role in
signal transduction as well as the regulation of gene expression
including various transcription factors (TF), protein kinases
(PK), and transcriptional regulators (TR) (Lata et al., 2015).

Some agronomic measures can mitigate the damage of
drought impact on plants, such as exogenous applications
of plant hormones, osmotic regulators, and mineral nutrients
(Salami and Saadat, 2013; Rabert et al., 2014). However, these
changes are not heritable, and need additional labor, capital,
and technology investment. Coping with drought through the
breeding approach is usually the most effective and economical
strategy. The genetic modification within the plant is heritable.
Once a gene is introduced into a breeding material, it will be a
permanent source of drought tolerance (Rauf, 2008). Drought
tolerance in plants is a complex quantitative trait involving
many micro-effective genes (Blum, 2011). Molecular-based plant
drought resistance breeding is a hot spot in recent years (Wang
and Qin, 2017). Previous studies on the molecular mechanism
of sunflower drought resistance were mostly based on linkage
analysis (Kiani et al., 2007; Poormohammad Kiani et al., 2009;
Haddadi et al., 2011). However, the linkage analysis population
was on two parents with significantly different phenotypes
and the recombinant inbred lines (RILs). Only genes in RILs
that show a significant difference between parental lines could
be detected.

Genome wide association study (GWAS) is an observational
study to detect associations between genetic variants and traits
in individuals (Togninalli et al., 2018). Compared to linkage
analysis, GWAS uses a natural population, which eliminates
the need to construct a population. Therefore, the time
consumption is greatly reduced. The use of natural populations
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allows GWAS to simultaneously detect many natural allelic
variations (Ma et al., 2018). In addition, the natural population
contains all the historical recombination information and thus
provide relatively higher detection accuracy than bi-parental
populations (Kofsky et al., 2020). GWAS has been widely used
in plant drought research, such as wheat (Triticum aestivum L.),
cotton (Gossypium herbaceum L.), rice (Oryza sativa L.), and
potato (Solanum tuberosum L.) (Ma et al., 2016; Mwadzingeni
et al., 2017; Hou et al., 2018; Tagliotti et al., 2021). RNA-
sequencing (RNA-Seq) is another attractive omics tool to identify
differentially expressed genes (DEGs) under different conditions.
Further analysis can provide insight into the changes in the DEGs
expression level, important biological processes, and pathways
(Zhang et al., 2017). Combining GWAS with RNA-seq can
decrease the higher false-positive rate (FDR) inherent in GWAS
analysis, and improve the accuracy of gene selection (Xie et al.,
2019; Wang et al., 2022). However, to our knowledge, there are
no relevant studies on sunflowers.

Molecular marker-based genotyping is an important step in
GWAS analysis. Most traditional molecular markers were based
on sequence length polymorphism. However, it could not be
used for large-scale genotyping due to low throughput (Sun
et al., 2013b). Whole gene sequencing technology is restricted
in its use for non-model organisms due to population size and
price (Muir et al., 2016). One strategy to reduce the sequencing
cost was to reduce representation libraries (RRL). Specific
length amplified fragment sequencing (SLAF) is one of the
representative techniques, which uses specific enzymes to digest
the genomes, and select a given size range of restriction fragments
based on personalized research purposes (Sun et al., 2013b).
This approach maintains the marker density while reducing the
volume of sequencing, lowering the cost.

In this study, we performed a GWAS analysis of 226 sunflower
varieties based on SLAF-seq. Then, a drought-tolerant accession
was selected for RNA-seq analysis. Several important candidate
genes were obtained using a combined analysis. Our research
objectives were to (1) investigate the phenotypic variations
among accessions under different water conditions; (2) develop
new drought-related SNPs and identify genetic variants; (3)
understand gene expression patterns under different drought
stress time points, and reveal important biological processes
and pathways; (4) obtain important genes associated with
drought tolerance.

MATERIALS AND METHODS

Plant Materials and Growth Condition
A total of 226 sunflower inbred lines were collected from different
countries (Australia, U.S.A., and France) and different provinces
in China (Inner Mongolia, Ningxia, Xinjiang, Liaoning, Jilin).
Seventy-three of them were provided by the Inner Mongolia
Academy of Agriculture and Animal Husbandry, and 153 were
kept in our laboratory. The experiment was conducted in the
summer of 2019 at the Inner Mongolia Agricultural University,
China (111.71, 40.82, 1,000m above sea level). Seeds with fully
mature, healthy, and uniform sizes were sorted for drought-
stress experiments. After sterilization with 0.2% (w/v) mercuric

chloride (HgCl2), all seeds were rinsed several times with distilled
water and soaked in deionized water for 24 h. Then the seeds were
sown in plastic flowerpots (25 × 19 × 16 cm) filled with 3 kg soil
(sandy soil and organic humus in a ratio of 2:1). Each pot was
planted with 10 seeds and each accession had 6 pots. To avoid
interference from natural rainfall and other factors, all pots were
placed in a greenhouse (light/dark cycles: 14 h/10 h; 28/22◦C; 45
± 5% relative humidity) without water and nutritional limitation.

Experimental Design and Drought
Treatments
When seedlings grew to the stage of three leaves, six pots of
each accession were randomly and equally divided into two
groups. Each group contained three pots as three biological
replicates. The different watering regime was imposed on these
two groups. One group continued to irrigate with sufficient water,
and maintain the soil moisture content of 30 ± 2% as a control
group (WW). Another group kept the soil moisture content to
10 ± 2% as a treatment group (DS). The soil moisture content
of each pot was determined at 9 a.m. every day using the weight
method described by Soni and Abdin (2017) and supplemented
with water according to the target soil moisture content.

Phenotypic Evaluation and Statistical
Analysis
The experiment lasted for 15 days, then 5 plants were randomly
selected from each pot for phenotypic evaluation. Plant height
(PH) was measured directly with a ruler. Leaf surface area
(LSA) was calculated by the leaf area co-efficient method (Alza
and Fernandez-Martinez, 1997). Root shoot ratio (RSR) was
measured by the gravimetric method. Total root length (RL),
root volume (RV), and root surface area (RSA) were measured
with an LA-S root scanner (Wanshen Testing Technology Co.,
Ltd., Hangzhou, China). The relative water content (RWC) was
detected using the saturate water method by Galmes et al.
(2011). The chlorophyll concentration was assessed using a
SPAD chlorophyll meter (TYS-A, TOP Instrument Co., Ltd.,
Hangzhou, China).

Data were analyzed using SPSS software (SPSS for Windows,
V20.0.0, SPSS, Chicago, Illinois). Normality distribution was
preliminarily assessed by a one-sample Kolmogorov-Smirnov’s
goodness-to-fit test (K-S test). For statistical differences between
WW and DS growth condition, the Student t-test (normal
distribution) and Wilcoxon signed-rank test (non-normal
distribution) was used. Spearman non-parametric correlations
were used to determine the correlation coefficient and statistical
significance. Corrplot and Pheatmap R package were used to
visualize the correlation.

Genomic DNA Extraction and Restriction
Enzyme Selection
Total genomic DNA was extracted from 100mg of fresh
leaves by the CTAB method with a plant genomic DNA
kit DP305 (Tiangen Biotech, China). To ensure it met the
requirements for SLAF-seq (concentration≥ 20 ng/µl; volume≥
30/µl), the concentration and quality of DNA were determined
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using a Nanodrop 2000 spectrophotometer (Thermo Scientific,
Waltham, MA, USA).

The SLAF-seq technique requires breaking the genome
into small fragments using restriction enzymes. Then selecting
restriction fragments of a specific length range (defined as SLAF-
seq) for sequencing. To evaluate the number of target fragments
produced via different combinations of restriction enzymes, a in
silicon pre-experiment for enzyme selection was conducted. The
criteria for enzyme selection were as follows: (1) the proportion
of restriction fragments located in repetitive sequences is as low
as possible; (2) The restriction fragments are distributed evenly
on the genome as far as possible; (3) Consistency between the
length of restriction fragments and the specific experimental
system (Davey et al., 2013); (4) The number of restriction
fragments with lengths 364–464 pb (SLAF tags in sunflower)
should exceed 300,000.

SLAF Library Construction and High
Throughput Sequencing
The SLAF library construction and high-throughput sequencing
were performed as described by Sun et al. (2013b). After a
series of polymerase chain reactions (PCR), adapter ligation
reactions, and agarose gel purification, the SLAF-tags were
isolated and subjected to PCR amplification following the guide
of Illumine sample preparation. The paired-end sequencing
was performed on an Illumina HiSeq 2500 platform (Illumina
Inc., San Diego, CA, USA) at Beijing Biomarker Technologies
Corporation (Beijing, China). Sequencing quality was estimated
by measuring the guanine-cytosine (GC) content and Q30 ratio.
A Q value of 30 represents a 0.1% error probability and 99.9%
confidence level. Reads with >90% identity were clustered into
a single SLAF-tag using BLAT software, and SLAF-tags with a
sequence that varied across samples were defined as polymorphic
SLAF tags (Zhang et al., 2018). To test the accuracy of the
restriction enzyme digestion protocol, we used the genome of
Oryza sativa ssp. japonica as a control (374.30Mb, http://rapdb.
dna.affrc.go.jp/).

SNP Genotyping and Linkage
Disequilibrium Analysis
All reads were processed for quality control and filtered using
Seqtk (https://github.com/lh3/seqtk) software. High-quality
paired-end reads were aligned to the reference genome (https:
//ftp.ncbi.nlm.nih.gov/genomes/all/annotation_releases/4232/1
00/GCF_002127325.1_HanXRQr1.0/) using Burrows-Wheeler
Aligner (BWA) software (Li and Durbin, 2009). SNP calling
was conducted using the HaplotypeCaller function of Genome
Analysis Toolkit (GATK) (McKenna et al., 2010). The VCF files
obtained by GATKwere converted to PLINK files using VCFtools
(v0.1.16) (Danecek et al., 2011). SNPs with an integrity ratio
of <0.8 and MAF <0.05 were filtered out via PLINK software
(v1.90b6.21) (Purcell et al., 2007). Linkage disequilibrium
(LD) was estimated by measuring the squared allele frequency
correlations (r2) (VanLiere and Rosenberg, 2008) between pairs
of SNPs via PLINK software, with r2 = 1 indicating complete LD,
and r2 = 0 indicating absent LD. LD decay extent was defined as

the physical genomic distance at which the r2 decreased to half
of its maximum value. PopLDdecay software (Zhang et al., 2019)
was used to visualize the mean r2 of all chromosomes within the
100 kb region.

Population Structure Analysis
Based on the filtered SNPs, population analysis, phylogeny
analysis, and principal component analysis (PCA) were
performed in turns. Admixture software v1.3.0 (Alexander
et al., 2009) was used to analyze the population structure. The
number of underlying population groups K was predefined as
1–13 using the maximum likelihood estimation approach. The
cross-validation errors (CV) for each K value were calculated.
The K value with the lowest CV error was selected as the optimal
number of populations. The Pophelper R package was used
to make multiline plots (Francis, 2017). The genetic distances
were calculated using VCF2Dis-1.45 (https://github.com/BGI-
shenzhen/VCF2Dis). The FastME (v 2.0) software (Lefort et al.,
2015) was used to convert the mat file obtained in the previous
step into a distance matrix file (∗nwk). The phylogenetic trees
were constructed using the neighbor-joining method in the iTOL
server (https://itol.embl.de/) (Letunic and Bork, 2021). PCA was
performed using PLINK software by the –pca function. The
first three components were used to plot the PCA via the rgl (v.
0.107.14) R package (Adler et al., 2003).

Genomic-Wide Association Study
The GWAS analysis was conducted using three methods: mixed
linear model (MLM), Fixed and random model Circulating
Probability Unificatin (FarmCPU), and Bayesian-information
and Linkage-disequilibrium Iteratively Nested Keyway (BLINK)
in GAPIT R package (Lipka et al., 2012). The phenotypic data
of each accession was represented using two indices: stress
tolerance index (STI) (Fernandez, 1992), and stress susceptibility
index (SSI) (Fischer and Maurer, 1978). These were calculated
as follows:

STI =
Ysi × Ypi

Ypi
2

SSI =
1− Ysi

Ypi

1− Ysi

Ypi

where Ysi = performance of a genotype under stress; Ypi =

performance of the same genotype under control conditions;
Ysi =mean Ysi of all genotypes, Ypi =mean Ypi of all genotypes.

The first three principal components were used as covariates.
The GAPIT uses genotype data to automatically generate kinship
matrix and calculate population structure according to the needs
of different methods. For the identification of true marker-trait
association, the significant p-value was set as p< 1.062× 10−6 (p
= 0.1/n; n = total markers used, which is roughly a Bonferroni
correction, corresponding to −log10(p) = 5.97, blue line in the
Manhattan plots) (Zhou et al., 2017). The Manhattan plot was
used to show the correlation between SNP and phenotypic traits.
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The Quantile-quantile (Q-Q) plot was used to display the level
of difference between observed and predicted values. Both the
Manhattan plots and Q-Q plots were constructed using CMplot
R package (Yin, 2018).

GWAS Candidate Gene Search and
Combined Analysis
The region of GWAS candidate genes was defined by
the average LD decay distance. Genes located within
20 kb flanking regions on either side of the significantly
associated SNPs were considered as candidate genes.
Function annotations were conducted using the Eggnog
(Huerta-Cepas et al., 2019) and Pfam (Bateman et al.,
2004) software. The blast software was used to search for
Arabidopsis thaliana genes homologous to candidate genes in
the TAIR database (https://www.arabidopsis.org). Transcription
factors (TF), protein kinase (PK), and transcriptional
regulators (TR) were identified using iTAK software
(Zheng et al., 2016).

Material Screening and RNA-Sequencing
To reveal important biological processes and significant
pathways involved in sunflower drought-response, and narrow
down the candidate genes, RNA-seq was conducted. We
screened the 226 GWAS accessions based on phenotypic
evaluation results. A comprehensive drought tolerance
coefficient value (D-value) was used to evaluate the drought
tolerance of all accessions (Li et al., 2015). The D-value
integrated the results of multi-traits measured under two
watering regimes and can represent the comprehensive
drought tolerance of an accession. Finally, an inbred line
with the highest D-value was selected and named “K58”
(Zilong et al., 2021).

The drought stress experiment was the same as GWAS.
Young leaves were sampled at 0, 7, and 14 days after drought
treatment. Total mRNA was isolated using the RNA prep
pure plant kit DP411 (Tiangen Biotech, China) according to
the instruction manual. A total of 1 µg RNA per sample
was used for cDNA library construction. Sequencing libraries
were generated using NEBNext UltraTM RNA Library Prep
Kit for Illumina (NEB, USA) following the manufacturer’s
recommendations. The quality of libraries was assessed through
the Agilent Bioanalyzer 2100 system. After the quality test,
all samples were sequenced in the Illumina Novaseq 6000
system, and 150-bp paired-end sequences were obtained
(raw reads). Clean reads were obtained by eliminating reads
containing ploy-N, reads containing adapter and low-quality
reads from raw reads. The Q30, GC content of clean reads were
calculated simultaneously.

Analysis of Differentially Expressed Genes
Differentially expressed genes analysis was conducted using
the HISAT2-Stringtie(merge)-DESeq2 pipeline. High-quality
clean reads were aligned to the reference genome using the
Hisat2 software (version 2.2.1) (Kim et al., 2015) with default
parameters. In the gene count step, we used a “Transcript
merge mode” via StringTie software (Pertea et al., 2015). Briefly,

the alignment files (∗.BAM) of each sample was converted
to GTF file using StringTie software. Then all the GTF files
were merged into one single file containing a non-redundant
set of transcripts. This file was then used as a reference
to recalculate the count for each gene. With this model,
novel genes/transcripts can be identified that differ from the
reference genome.

A python script [prepDE.py (https://ccb.jhu.edu/software/
stringtie/dl/prepDE.py)] was used to generate a gene count
matrix from the GTF file of each sample. Normalization and
differential expression analysis were performed using DESeq2
R packages (Love et al., 2014). By default, DESeq2 computes
a Benjamini-Hochberg adjusted p-value (Padj) to control the
false discovery rate (FDR) (Anders and Huber, 2012). The “Fold
Changes” of a gene is the FPKM ratio at day 7 (or 14) to that at
day 0. For comparison purposes, we take the logarithm of the fold
change and calculate the absolute value (|log2(Fold Changes)|).
The |log2(Fold Changes) | of a gene equal to 1 means that the
expression level of this gene has doubled or halved. Genes with
Padj ≤ 0. 01 and |log2(Fold Changes) | ≥ 1 was considered
as DEG.

Enrichment Analyses of Gene Ontology
and KEGG Pathways
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed to reveal the
biological functions and pathways of DEGs. The sequence file
of each gene was input into Eggnog software (version 2.0.1)
to obtain gene annotation (Huerta-Cepas et al., 2019). GO
and KEGG analysis was conducted using the ClusterProfiler
(version 4.0.0) R package (Yu et al., 2012). Only GO-terms
or KEGG pathways with p-value < 0.05 were screened
for subsequent analysis. The REVIGO program (http://
revigo.irb.hr/) was used to remove redundant GO-terms
(Supek et al., 2011).

RT-qPCR Validation
To validate RNA-seq results, reverse transcription quantitative
PCR (RT-qPCR) was conducted on 6 randomly selected DEGs
with three technical replicates. Experimental samples are the
same as for RNA-seq. Reverse transcription was conducted using
Biomarker Script II 1st Strand cDNA Synthesis Kit (Biomarker
Technologies, Beijing, China) with Oligo d(T)23 VN as a
primer, and qPCR reactions were performed with Biomarker
2X SYBR Green Fast qPCR Mix (Biomarker Technologies,
Beijing, China) on the FTC-3000 qPCR system (Funglyn Biotech
Inc., Toronto, ON, Canada). Gene expression levels were
calculated using the method of 2−11Ct according to Livak
and Schmittgen (Livak and Schmittgen, 2001), and standard
deviation was calculated among three biological replicates.
The 18S rRNA gene was used as the endogenous control
(Ebrahimi Khaksefidi et al., 2015).

Combined Analysis of GWAS and RNA-Seq
To reduce the number of candidate genes, we
conducted a combined analysis. The two gene sets
obtained by GWAS and RNA-seq were subjected to the
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intersection operation. Genes within the intersection were
considered to be important genes and were investigated
in depth.

RESULTS

Phenotypic Variation Among Accessions
Drought stress led to different degrees of changes in all
phenotypic traits (Figure 1; Table 1). Drought stress inhibited
plant height (PH). Mean PH was 31.37 cm (ranged from 15.07
to 56.10 cm) at WW condition, whereas it was 22.23 cm (ranged
from 6.4 to 38.55 cm) under DS conditions. Over 90% of the
accessions (208/226) had a decrease in PH under drought stress.

Mean leaf surface area (LSA) was 46.34 cm3 (ranged from
4.62 to 143.62 cm3) for the WW condition compared with 24.21
cm3 (ranged from 3.73 to 65.36 cm3) for the DS condition. Over
88% (200/226) of the accessions had a decrease in LSA under
drought stress.

The root-shoot ratio (RSR) increased slightly under the DS
condition compared with in WW condition. Mean RSR was 0.16
(ranged from 0.05 to 0.79) under DS condition, whereas it was
0.12 (ranged from 0.02 to 0.62) underWW condition, with 71.7%
(162/226) of the accessions showing an increased RSR under DS
conditions. Notably, drought stress significantly increased three
root-related traits, the average root length (RL), root volume
(RV), and root surface area (RSA) increased by 44.1, 131, and
76.4% under DS condition compared with plants under WW
condition. Among the 226 accessions, 77.4% (175/226), 83.2%
(188/226), 83.2% (188/226) of them showed an increased RL, RV,
and RSA under drought conditions, respectively. Drought stress
has relatively little effect on the relative water content (RWC) of
sunflower leaves, and the mean value was reduced from 0.74%
under WW condition to 0.69% under the DS condition, with
a reduction rate of 7.3%. Among 226 sunflower plants, 83.6%
(189/226) had lower RWC under the DS condition. Similarly,
the SPAD value was also decreased slightly in DS compared to
WW, with a reduction rate of 5.7%. Mean values were 31.08
(ranged from 22.1 to 39.77) and 29.31 (ranged from 18.6 to 38.67)
under WW and DS, respectively, and 72.6% (164/226) accessions
showed a decreased SPAD value under DS condition.

The coefficient of variation (CV) was used to describe the
variance within accessions. In this study, the CV of some traits
was very high, the average CV among all traits were 40.36%,
varying from 11.94 to 71.86%. It shows that our experiment
materials have strong heterogeneity. RSR had the highest CV
values (61.42–65.49%) while the SPAD value showed the lowest
CV values (11.94–14.09%) (Supplementary Table 1).

The correlation between the same indicator under different
conditions is shown in Supplementary Figure 1. The correlation
coefficients of LSA and SPAD were higher than 0.6 in the
WW vs. DS, while the correlation coefficients of RSA, RL, and
RSR were all lower than 0.1. The correlation between different
indicators under the same condition is shown in Figure 2.
The three root-related indexes (RL, RV, and RSA) showed
positive correlation under both WW and DS growth conditions.
Under DS conditions, RV was positively correlated with RSA
(spearman Cor. = 0.776). whereas negatively correlated with

PH (spearman Cor. = −0.59). Under WW conditions, LSA is
positively correlated with SPAD with a spearman correlation
coefficient of 0.61.

SLAF-Sequencing, Genotyping, and
Linkage Disequilibrium
Enzyme digestion efficiency is an important indicator of SLAF-
seq quality. According to the results of the pre-experiment,
Hae III was selected to digest the genomic DNA. The enzyme
digestion efficiency of control genome Oryza sativa ssp. japonica
was 94.12%, indicating the enzyme digestion reaction was
normal. A total of 934.08MB paired-end reads were obtained,
with an average Q30 of 91.97% (89.04–93.44%) and a GC
content of 43.67% (42.13–45.56%) (Supplementary Table 2).
The mapping rate and the proper mapped rate were 98.20 and
90.96%, respectively (Supplementary Table 3).

A total of 565,668 SLAF tags were obtained, 243,291
of them were polymorphic SLAF tags. These SLAF-tags
were evenly distributed on 17 chromosomes (Figure 3;
Supplementary Table 4). SLAF tags on chromosome 13
had the highest polymorphic rate (48.25%), while chromosome
12 had the lowest polymorphic rate (38.85%). A total of 2,124,143
population SNP markers were developed via GATK software
(Supplementary Table 5; Figure 4). After quality control,
94,162 high-quality SNPs were obtained for subsequent analysis
(Supplementary Table 6; Figure 5). Chromosome 10 harbored
the highest proportion of SNPs (8.68%, 8,173 of 94,162), while
the shortest chromosome 6 contained the lowest proportion
of SNPs (3.08%, 2,898 of 94,162). There were 31.37 SNP per
1MB on average across 17 chromosomes. Chromosome 10
had the highest SNPs/Mb ratio (47.68 SNPs per Mb), while
chromosome 6 had the lowest SNPs/Mb ratio (19.56 SNPs per
Mb) (Supplementary Table 6). LD was estimated as the r2 value,
r2 ranged from 0.135 on chromosome 6 to 0.218 on chromosome
10, with an average of 0.174, revealing differences in the level of
LD among chromosomes (Supplementary Table 7). The average
distance of LD decay was about 20 kb (Figure 6).

Genetic Diversity and Population Structure
Divergence of the 226 accessions during evolution was the major
factor leading to high rates of false positive errors in GWAS
analysis (Yu and Buckler, 2006). The admixture software was
used to analyze the population structure, and the CV for K
= 1–13 was examined. The results showed that when K =

11, the CV dropped to the lowest value (0.659), suggesting
the entire population most likely originated from 11 ancestors
(Figures 7, 8A). The phylogenetic tree has divided the accessions
into 7 main clusters with identical tree topologies (Figure 8B).
PCA analysis revealed that all the 11 principal components had
eigenvalues of over 1, and the first 8 principal components can
explain 85.73% of the total variance. The first three principal
components PC1 (with variance explain 15.71%), PC2 (with
variance explain 13.55%), and PC3 (with variance explain
11.77%) were displayed in Figure 8C. All these results showed
that our experimental materials are highly heterogeneous and is
ideal for GWAS analysis.
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FIGURE 1 | Vioplot visualizing the 8 physiological traits of sunflower in response to different water treatments. Y-axis represent the density distribution of all 226

samples. WW, well-water growth condition; DS, drought-stress growth condition.

Genome-Wide Association Analysis
The GWAS was performed on 8 traits using 3 methods (MLM,
FarmCPU, BLINK). A total of 80 SNPs were detected under

the significance threshold of p < 1.062 × 10−6. Among them,
59 were obtained by STI, and 22 were obtained by SSI, and
there was only one common SNP between the two indicators
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TABLE 1 | Descriptive statistics values for traits of 226 sunflowers under drought stress.

Traits Trt. Min. Max. Mean SD. CV. (%) Skewness Kurtosis

Plant height WW 15.07 56.10 31.37 5.80 18.48 0.50 1.56

DS 6.40 38.55 22.23 6.16 27.72 0.25 −0.65

Leaf surface area WW 4.62 143.62 46.34 33.30 71.85 0.91 0.30

DS 3.73 65.36 24.21 14.03 57.93 0.71 −0.31

Root shoot ratio WW 0.02 0.62 0.12 0.08 61.42 3.24 14.85

DS 0.05 0.79 0.16 0.11 65.49 3.21 13.05

Root length WW 32.56 314.68 89.47 40.83 45.63 1.63 5.11

DS 49.66 279.06 128.90 46.76 36.28 0.96 0.86

Root volume WW 0.04 0.56 0.22 0.11 46.99 1.21 1.53

DS 0.05 1.69 0.52 0.35 67.17 1.01 0.88

Root surface area WW 3.33 41.79 15.50 7.04 45.43 1.00 1.03

DS 4.22 73.59 27.34 13.19 48.23 0.74 0.88

Relative water content WW 0.23 1.43 0.74 0.11 14.59 0.84 11.26

DS 0.49 0.96 0.69 0.09 12.54 0.10 0.19

SPAD WW 22.10 39.77 31.08 4.38 14.09 0.19 −0.97

DS 18.60 38.67 29.31 3.50 11.93 0.18 0.42

Trt., Treatment; Min., Minimum; Max., Maximum; SD, Standard deviation; CV, Coefficient of variance; CK, Well water condition; DS, Drought stress condition.

FIGURE 2 | Spearman’s correlation analysis between the 8 drought-related traits under two water condition. Left: Under WW growth condition. Right: Under DS

growth condition. WW, well-water growth condition; DS, drought-stress growth condition; PH, plant height; LSA, leaf surface area; RSR, Root shoot ratio; RL, Root

length; RV, Root volume; RSA, Root surface area; RWC, Relative water content; SPAD, SPAD value. * and **Significant at the 0.05 and 0.01 probability levels between

genotypes, respectively.

(Supplementary Figures 2, 3; Supplementary Table 8). A total
of 19, 44, and 33 SNPs were discovered by MLM, FarmCPU,
and BLINK methods, respectively. For 8 phenotypic traits, LSA
detected the most associated SNPs (27), followed by RWC
detected 13, SPAD, RSR, and PH detected 12, 11, and 11,
respectively. RL, RV, and RSA were detected 2, 4, and 3 SNPs,
respectively. A total of 118 genes were found within the 20 kb
of 80 significant SNPs, 85 of them were protein-coding genes
(Supplementary Table 9).

RNA-Sequencing and Expression Analysis
A total of 70 Gb clean data were obtained after filtering
and quality control. The Q30 of each library ranged from
93.57 to 94.97%, and the GC content ranged from 44.86
to 45.68% (Supplementary Table 10). A total of 18,922
DEGs were obtained (Supplementary Table 11), 6,698 of
them were newly discovered. In general, there were more
DEGs under 14 days of drought stress compared with
the 7 days, and down-regulated DEGs were more than
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FIGURE 3 | Specific length amplified fragments (SLAF) tags distribution. (A) Distribution of all 565,668 SLAF tags on sunflower genome based on 226 accessions.

The colors indicate the number of SLAF tags within a 1Mb window. (B) The number of SLAF tags and polymorphic SLAF tags on each chromosome.

FIGURE 4 | Distribution of all 2,124,143 single nucleotide polymorphisms (SNPs) on sunflower genome. The colors indicate the number of SNPs within a 1Mb

window.

up-regulated DEGs (Figure 9). From day-7 to day-14, the
up-regulated DEGs were increasing from 3,848 to 7,174, whereas
the down-regulated DEGs were increasing from 5,201 to
8,521, respectively.

Enrichment Analysis
GO Analysis
The up-regulated genes were enriched in 46, 90 GO-terms at
7, 14 days. On day-7, the most significant GO-terms were
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FIGURE 5 | Distribution of filtered SNPs among the 17 chromosomes. The colors indicate the number of SNPs within a 1Mb window.

cellular amino acid catabolic process (GO:0009063), branched-
chain amino acid catabolic process (GO:0009083), and seed
maturation (GO:0010431). On day-14, the most significant GO-
terms were leaf senescence (GO:0010150), aging (GO:0007568),
and carboxylic acid catabolic process (GO:0046395). For down-
regulated genes, there were 127, and 199 GO-terms enriched
at 7, 14 days. On day-7, the most significant GO-terms
were cellular polysaccharide metabolic process (GO:0044264),
cell wall biogenesis (GO:0042546), and photosynthesis, light
reaction (GO:0019684); At day-14, the most significant GO-
terms were photosynthesis (GO:0015979), photosynthesis, light
reaction (GO:0019684), and plastid organization (GO:0009657)
(Supplementary Figure 4).

KEGG Analysis
Up-regulated genes were enriched in 13 and 48 significant KEGG
pathways at 7 and 14 days. On day-7, the most significant
pathways were Valine, leucine and isoleucine degradation,MAPK
signaling pathway—plant, and FoxO signaling pathway; On day-
14, the most significant pathways were valine, leucine, and
isoleucine degradation, MAPK signaling pathway—plant, and
longevity regulating pathway. For down-regulated genes, there
were 36, 48 significant KEGG pathways enriched at 7, 14 days.
On day-7 and day-14, the most significant KEGG pathways
were both related to photosynthesis, such as photosynthesis
proteins (BR:ko00194), photosynthesis-antenna proteins, and
photosynthesis (Supplementary Figure 5).

RT-qPCR Validation
To validate the accuracy of RNA-seq, RT-qPCR was performed.
Six genes were randomly selected from all DEGs. The
primer sequence was shown in Supplementary Table 12.
Correlation analysis showed that RNA-seq was closely related
to RT-qPCR results. The correlation coefficient (R2) was
0.8167, endorsing our RNA-seq data were reliable (Figure 10;
Supplementary Figure 6).

Candidate Genes Identification
By integrating the results of GWAS and RNA-seq analysis, a total
of 18 common genes were obtained, 14 of them were protein-
coding genes (Table 2; Figure 11). These genes are distributed on
chromosomes 4, 5, 8, 9, 10, 11, 12, 13, 16, and 17. Two genes are
associated with both LSA and PH. One gene is associated with
both LSA and SPAD. Their details are as follows.

Candidate Genes Associated With Plant Height
There were 2 candidate genes that were screened using combined
analysis. Both of them were located on chromosome 13.
The LOC110899235 gene encoding “inosine-uridine preferred
nuclear hydrate” is homologous to the AT5G18860.2 gene in
Arabidopsis thaliana. Another LOC110899238 gene encoding
“ABC transporter c family member 3-like” is homologous to the
AT3G13080.1 gene in Arabidopsis thaliana. Both two genes were
down-regulated with the extension of drought stress time in K58.
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FIGURE 6 | The mean LD decay rate was estimated by the squared allele

frequency correlations (r2) using all pairs of SNPs located within 100 kb of

physical distance in genomic regions in a population of 226 sunflower

accessions.

FIGURE 7 | Estimation of cross-validation (CV) errors for K values ranging

from 2 to 13. The CV errors declined rapidly from K = 2 ∼ 11 and reached the

lowest value at K = 11.

Candidate Genes Associated With Leaf Surface Area
There were 8 common candidate genes associated with LSA,
2 of which were also associated with PH. The function of the
gene LOC10936334 located on chromosome 4 was annotated
as “Jacalin-like lectin domain”, which is homologous to the
AT1G73040.1 gene in Arabidopsis thaliana, and its expression
level continues to decrease under drought stress in K58. Gene
LOC110941963 located on chromosome 5 was annotated as
“microtubule-associated protein RP EB family member”, which

was homologous to the AT3G47690.1 gene in Arabidopsis
thaliana. This gene was down-regulated after 14 days of drought
stress in K58. At 19.52 kb upstream of an SNP (S10_123892851)
on chromosome 10, a gene (LOC110885273) encoding “Serine
threonine-protein kinase” was identified. It is worth noting that
the gene was also associated with SPAD. This gene belongs to the
protein kinase family of RLK-Pelle_SD-2b, and is homologous
to the Arabidopsis AT4G32300.1 gene. RNA-seq showed it was
down-regulated with the extension of drought stress in K58. Gene
LOC110894816 encoding “Equilibrative nucleotide transporter”
were down-regulated at 7, 14 days in K58, which is homologous
to AT1G70330.1 in Arabidopsis thaliana. Gene LOC110920644
belongs to the PLATZ transcription factor family. It was up-
regulated at 7 days and down-regulated at 14 days of drought
stress in K58. Gene LOC110891369 encoding “receptor-like
protein kinase” was sharply up-regulated at 14 days. This protein
kinase belongs to the RLK-Pelle_SD-2b RLK-Pelle_CrRLK1L-1
protein kinase family.

Candidate Genes Associated With Root-Shoot Ratio
There were 2 candidate genes obtained by combined analysis.
One gene LOC110937937 encoding “Component of the
peroxisomal and mitochondrial division machineries” was
up-regulated at 14 days post drought stress, another gene
LOC110915715 encoding “Protein of unknown function
(DUF1666)” were continuously down-regulated with the
drought stress.

Candidate Genes Associated With Three Root

Related Traits
Notably, there are relatively fewer SNPs related to three root
traits (RL, RV, and RSA). No genes were found within the 20 kb
region of RL associated SNPs. The combined analysis identified
2 genes associated with RV and 1 gene associated with RSA.
For RV, gene LOC110877324 on chromosome 9 was annotated
as “Belongs to the UDP-glycosyl transferase family”, which was
down-regulated in K58 after 14 days of drought stress. Another
gene (LOC110917707) located on chromosome 16 was annotated
as “domain presence in VPS-27, Hrs and Stam”, which was up-
regulated in K58 after 14 days of drought stress. These two genes
are homologous to the AT2G18570.1 gene and AT2G38410.1
gene in Arabidopsis thaliana, respectively.

For RSA, gene LOC110872899 was located on chromosome
8, and annotated as “Inactive leucine-rich repeat receptor-like
serine threonine-protein kinase”. This gene is homologous to the
Arabidopsis AT1G10850.1 gene. It was slightly up-regulated in
K58 at 7 days and then sharply down-regulated at 14 days of
drought stress.

Candidate Genes Associated With Relative Water

Content
LOC110941862 is the unique gene screened by the combined
analysis. This gene encodes the “Topless-related protein”, which
is homologous to the AT1G15750.3 gene in Arabidopsis thaliana.
RNA-seq results showed that this gene was continuously down-
regulated in K58 under drought stress.
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FIGURE 8 | Population structure analysis phylogenetic tree construction, and principal component analysis (PCA) of the 226 sunflower accessions. (A) Population

structure of sunflower accessions estimated by ADMIXTURE, each row represents a given number of clusters (K, K = 2–13), each vertical column represents one

individual and each colored segment in each column represents the percentage of the individual in the population. (B) The unrooted neighbor-joining three a of 226

sunflower accessions. Each branch indicates a sample, and the length of the branches represents the genetic distance, (C) PCA scatter plots shows the distribution

of 226 sunflower accessions defined by the eigenvectors of the first three principal components (PC). The three axes represent PC1, PC2, and PC3 respectively. Each

dot represents a sample.

DISCUSSION

Global climate change threatens crop production worldwide.
Plants adopt diverse strategies to combat drought stress such
as reducing the stomatal conductance, decreased photosynthetic
rate, accumulation of different osmoprotectants, activation of
stress-responsive genes and transcription factors, etc. (Farooq
et al., 2009; Kaur and Asthir, 2017). Drought resistance is a
complex quantitative trait. One difficulty in drought-tolerant
genetic breeding is the unequivocal evaluation of plant response
to soil-water deficits (Pereyra-Irujo et al., 2007). Based on the
previous research, we evaluated 8 phenotypic traits among 226
accessions under WW and DS conditions. Compared to the WW
condition, the average PH, LSA, RWC, and SPAD value were
decreased, while RSR and three root related traits (RL, RV, RSA)
were increased under the DS condition.

It has long been known that drought stress at the vegetative
stage impedes phenotypic traits like PH, LSA, whereas an
increase in RL at the expense of above-ground dry matter occurs
resulting in higher RSR (Petcu et al., 2001; Hussain et al.,
2010; Javaid et al., 2015). In our results, the change trends of
mean PH, RL, RSR, and LSA were consistent with previous

FIGURE 9 | Number of differentially expressed genes (DEGs) in different

drought stress time.

studies. However, the mean RV increased under drought, which
was not consistent with a previous study. Geetha et al. (2012)
found that the RV decreased by 40.2% under drought stress
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FIGURE 10 | Correlation between results of RT-qPCR and RNA-seq for select

DEGs.

among 29 sunflower varieties, while we found 83% of accessions
have an increase in RV. This may be due to differences in the
genotypes of the study materials. Different genotypes of plants
have different adaptability to drought stress (Petcu et al., 2001).
Even in the most consistent trend of variation in PH (92%
decreased under drought stress), there were still 16 accessions
increased under drought stress. These specific materials may
include important drought-tolerance genes and will be good
sources for our drought tolerance molecular breeding. In some
previous studies, the relationship between SPAD and chlorophyll
content per unit leaf area is fitted as linear regression. SPAD
value is often used to represent chlorophyll content (Costa et al.,
2001; Martínez and Guiamet, 2004). Our results show that under
WW growth conditions, SPAD value is positively correlated with
LSA. It demonstrates that a larger LSA has more chlorophyll,
which increases the photosynthetic rate (Espina et al., 2018).
The correlation coefficients of LSA and SPAD in WW vs. DS
conditions were higher than 0.6, indicating that drought affects
these two traits more by environment than by genotype. The
correlation coefficients of RSA, RL and RL were very low,
indicating that they were more influenced by genotype.

Studies have shown that the genetic relatedness of the
mapping population can increase the false positive risk of
GWAS results (Ali et al., 2020). A population with enough
genotype and trait diversity is considered to be the expected
GWAS population (Flint-Garcia et al., 2005). In this study, the
population panel consisting of 226 accessions were collected
from different ecological regions. Three population structure
analysis methods (admixture, phylogenetic, and PCA) were
conducted. Results showed that 226 sunflowermaterials had large
genetic differences and were an ideal GWAS population. Linkage
disequilibrium (LD) is the basis of GWAS (Ali et al., 2020).When
LD declines rapidly with distance, LD mapping is potentially
very precise (Gaut and Long, 2003). Since our materials have
high genetic variability, the LD-decay distance is about 20 kb.
Overall patterns of LD decay show chromosome specificity.
Chr10 showed the highest LD value, followed by Chr7, Chr5,

Chr13, and Chr17. This result is consistent with a previous study
conducted by Filippi et al. (2020). They have reported different
patterns of LD across chromosomes, with Chr10, Chr17, Chr5,
and Chr2 showing the highest LD. The extended LD in Chr10
and Chr5 were also reported by other researchers (Cadic et al.,
2013; Mandel et al., 2013). Owens et al. showed that the extended
LD on Chr10 could be the result of the wild introgression in the
fertility restoring male lines (Owens et al., 2019).

GWASmethods have evolved over years. Several newmethods
are being developed to improve the statistical power and
reduce the computational time. FarmCPU uses a set of markers
associated with a casual gene as a co-factor instead of kinship
to avoid overfitting and eliminate confounding between kinship
and testing markers iteratively (Liu et al., 2016). More recently,
along with improvements in statistical power and reduction
in computing time compared to FarmCPU, the new method
called BLINK is set to eliminate FarmCPU requirement that
quantitative trait nucleotides (QTNs) are evenly distributed in
the genome (Huang et al., 2019). In the present study, we used
3 methods simultaneously to conduct GWAS. The FarmCPU
method detected 44 SNPs, the BLINK method detected 33
SNPs, and the MLM method detected the lowest of 19 SNPs,
respectively. There were 12 SNPs found simultaneously by
FarmCPU and BLINK method, and only 3 common SNPs were
found by 3 methods. Most SNPs were only found in one method.
Therefore, it may be prudent to use multiple methods to conduct
a GWAS survey (Nida et al., 2021).

STI and SSI are two commonly used evaluation indexes in
the study of plant abiotic stress. According to the research
of Mehdi GHAFFARI, STI is more efficient for identifying
drought-resistant lines, and SSI is more efficient for identifying
drought-sensitive lines (Ghaffari et al., 2012). Applying both
indicators simultaneously could provide a complete and accurate
assessment of drought tolerance. Strangely, the calculation
methods of STI in different articles are inconsistent (Sukumaran
et al., 2018; Khanzada et al., 2020; Chaurasia et al., 2021). In
the present study, we carefully chose a scientific STI calculation
method for GWAS analysis. A total of 80 significant SNPmarkers
associated with 8 phenotypic traits were detected, 22 of themwere
detected using SSI, and 59 of them were detected using STI, only
one common SNP was detected by both of the two indexes.

To further understand the biological processes, pathways, and
gene expression patterns in sunflowers under drought stress, we
conducted an RNA-seq analysis. Based on the phenotypic traits, a
drought-tolerant plant was selected from the GWAS population.
We sampled the leaves at 0, 7, and 14 days after drought stress. A
total of 18,922 differentially expressed genes were obtained.

There was a noticeable consistency between the results
of GO and KEGG analysis. For example, up-regulated genes
were enriched in GO-terms such as cellular amino acid
catabolic process (GO:0009063), branched-chain amino acid
catabolic process (GO:0009083), while KEGG analysis showed
“Valine, leucine and isoleucine degradation” was the most
significant pathway. Down-regulated genes were enriched in
photosynthesis (GO:0015979), photosynthesis, light reaction
(GO:0019684) according to GO analysis, while KEGG analysis
showed down-regulated genes enriched in pathways such as
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TABLE 2 | Detail information of 14 genes obtained by combine-analysis of GWAS and RNA-seq.

Traits Gene name Chromosome Gene_start Gene_end Description iTak Families

(PH/LSA)-STI LOC110899235 13 138759411 138769673 Inosine-uridine preferring

nucleoside hydrolase

LOC110899238 13 138795923 138801286 ABC transporter C family

member 3-like

(LSA/SPAD)-

(SSI/STI)

LOC110885273 10 123870286 123873341 Serine threonine-protein kinase PK RLK-Pelle_SD-2b

LSA-SSI LOC110894816 12 55570908 55573165 Equilibrative nucleotide

transporter

LOC110936334 4 60470023 60472767 Jacalin-like lectin domain

LOC110941963 5 200316650 200319863 Microtubule-associated protein

RP EB family member

LOC110891369 11 160106964 160111888 Receptor-like protein kinase PK RLK-

Pelle_CrRLK1L-1

LOC110920644 17 8881157 8883452 PLATZ transcription factor TF PLATZ

RSR-SSI LOC110937937 4 169924932 169927583 Component of the peroxisomal

and mitochondrial division

machineries. Plays a role in

promoting the fission of

mitochondria and peroxisomes

LOC110915715 16 39633096 39638580 Protein of unknown function

(DUF1666)

RV-STI LOC110877324 9 29925998 29927713 Belongs to the

UDP-glycosyltransferase family

LOC110917707 16 74795170 74799439 Domain present in VPS-27, Hrs

and STAM

RSA-STI LOC110872899 8 68366663 68376805 Inactive leucine-rich repeat

receptor-like serine

threonine-protein kinase

PK RLK-Pelle_LRR-III

RWC-SSI LOC110941862 5 195719872 195730082 Topless-related protein

The content in brackets indicates simultaneous, for example, (PH/LSA)-STI, indicating that this gene is recognized by both PH-STI and LSA-STI.

Photosynthesis proteins (BR:ko00194), Photosynthesis—antenna
proteins, Photosynthesis. The branched-chain amino acids
(BCAAs), including isoleucine, leucine, and valine, are essential
for plants (Binder et al., 2007). Pires et al. (2016) results
highlight that catabolism of BCAA appears to play an important
role in the mechanism of tolerance to short-term drought,
most likely by delaying the onset of stress. Our results also
proved that the degradation of BCAA may be an important
mechanism of sunflower drought resistance. Abiotic stress
damage the thylakoid membrane, disturb its functions, and
ultimately decrease photosynthesis. Down-regulated expression
of photosynthesis-related genes under drought stress has been
reported in several plants, such as Arabidopsis (Bechtold et al.,
2016; Bouzid et al., 2019), wheat (Derakhshani et al., 2020),
and grapevines (Franck et al., 2020). In a previous study,
Escalante et al. found a down-regulation of photosynthesis-
related genes in the aerial part of sunflowers (Moschen
et al., 2017). However, another study revealed that the
expression levels of photosynthesis-related genes were increased
under drought stress in sunflowers (Escalante et al., 2020).
This difference may be caused by differences in drought
intensity and genotype, and our results were identical with
the former.

With the development of high-throughput technologies,
omics research is also undergoing a shift from a single-omics to
a large-scale multi-omics approach (Liu et al., 2020). Through
the multi-omics approach, researchers can obtain a deeper
understanding of the fundamental biological processes, a more
accurate prediction of the response variable, and gain further
insight into mechanistic aspects of the system (Cavill et al., 2015).
By integrating the transcriptome and metabolome, Sebastián
Moschen et al. (2017) gained a deeper insight into the sunflower
drought-response mechanism. The integration of genomic and
transcriptomic analysis has also been reported in many recent
studies. This approach can be used as an effective way to
identify candidate genes. For example, eight salt stress-related
candidate genes were identified by a combination of GWAS
analysis and transcriptome analysis in Alfalfa (Medicago sativa
L.) (He et al., 2021). Seven candidate genes for seminal root
length in maize (Zea mays L.) were identified by integrating the
results of the GWAS, the common DEGs, and the co-expression
network analysis (Guo et al., 2020). Using a combined analysis,
we identified 18 common genes.

The total genes in the sunflower reference genome were
81,496, and we found 18,922 DEGs via RNA-seq. According to
this proportion, we should find at least 29 DEGs among the 118
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FIGURE 11 | Expression profiles of 14 drought response candidate genes.

genes of GWAS. However, the number of common genes that
we have found was relatively small (18). This is because among
the 18,922 DEGs, only 12,124 of them exist in the reference
genome and the rest are novel genes. A subsequent chi-square
test using this number found no significant difference between
the two proportions (P = 0.908). Nonetheless, the proportion
of overlapped genes was still lower than we expected. The
reason we speculate is that GWAS candidate genes are mainly
regulatory genes that act in all accessions. A slight regulation of
expression level under drought stress, which did not reach the
threshold of significant difference, can affect the physiological
processes in plants, whereas the DEGs of RNA-seq are mainly a
series of drought-responsive functional genes that are regulated
in K58 under drought stress. The difference in the class and
function of the genes from these two gene sets results in a
low percentage of overlapping genes. Of course, this needs
further confirmation.

Among these 18 genes, 14 are protein-coding genes, of
which 3 are encoding PK and 1 encodes TF. These genes
may play an important role in drought response in sunflowers.

The LOC110885273 gene encodes G-type lectin S-receptor-
like serine/threonine-protein kinase (LecRLKs). The protein
kinase is involved in plant responses to biotic and abiotic
stresses (Bonaventure, 2011; Singh et al., 2012; Zhao et al.,
2016). Overexpression of G-type LecRLKs enhances the drought
tolerance of Arabidopsis thaliana (Sun et al., 2013a), which may
be achieved by controlling stomata size through interaction with
abscisic acid (ABA) (Arnaud et al., 2012). Pan et al. (2020)
identified a LecRLKs gene OsESG1 in rice and found it could
be induced by treating with PEG, NaCl, and ABA. However,
we found the LOC110885273 gene was down-regulated under
drought stress, which may lead to the decrease of SPAD value
under drought stress.

The receptor like kinase (RLKs) family has been defined as
the most abundant gene family in Arabidopsis. Leucine rich
repeat-RLKs (LRRRLKs) are the largest group of receptor-
kinases in Arabidopsis, which is widely involved in responses
to various biotic and abiotic stresses (Diévart and Clark, 2003;
Lehti-Shiu et al., 2009). Osakabe et al. (2005) found that an
LRRRLKs gene (RPK1) is involved in the early steps in the
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ABA signaling pathway through a gene knock-out experiment.
The overexpression of receptor-like kinase rich in the Leucine
Repetition gene improves the Arabidopsis thaliana drought
resistance (Xing et al., 2011). Receptor-like cytoplasmic kinase
GUDK and OsSIK1 were shown to enhance drought tolerance
in rice (Ouyang et al., 2010; Harb et al., 2020). In the present
study, a down-regulated LRRRLKs gene LOC110872899 was
identified, which is located at chromosome 8, and associated
with RSA, maybe the mechanism of this gene in sunflower
drought tolerance response is different. Another receptor-like
protein kinase gene LOC110891369 was up-regulated at 14-
days of drought stress in K58, which belongs to the family of
RLK-Pelle_CrRLK1L-1, and is associated with LSA.

PLATZ transcription factors play important roles in plant
growth, development, and biotic and abiotic stress responses.
Liu et al. (2021) reveal that PLATZ4 interacts with AITR6 to
increase ABA sensitivity and drought tolerance in Arabidopsis by
regulating the expression of different genes. Zenda et al. (2019)
identified a PLATZ gene (Zm00001d051511) in maize. It was
up-regulated in tolerant line YE8112, whilst down-regulated in
drought-sensitive line after drought stress. This result indicated
the TF genes could be the key contributors to drought stress
tolerance in the drought-tolerantmaize inbred line. This different
expression pattern was also proved in Ray’s research on rice
(Ray et al., 2011), PLATZ (LOC_Os10g42410) gene was down-
regulated in panicle, while up-regulated in vegetative tissues
under drought stress. Even in the same tissue at the same time,
it was found that the expression levels of two PLAZT genes were
up-regulated and down-regulated, respectively, which indicated
the complexity of drought stress regulation. In this study, a
PLAZT gene LOC110920644, which is related with LSA, was
up-regulated at the early stage in K58 under drought stress.

ABA is an important hormone for plant drought response
(Zotova et al., 2018). The cell ABA level increases under drought
stress, leading to stomatal closure and active several stress-
responsive genes (Cutler et al., 2010). Drought stress increased
ABA levels in sunflowers have been reported (Robertson et al.,
1985). In this study, the functions of the four TF/PK genes are
all related to ABA, indicating the important role of the ABA-
dependent process in the drought response of sunflowers.

CONCLUSION

Sunflower is one of the most important oil crops in the world,
which is often grown as a rainfed crop. Water limitation at
the seedling stage can severely reduce stand establishment and
negatively impact yields. However, the molecular mechanism
underlying drought resistance is still not fully understood. In
this study, we used SLAF-seq to perform GWAS for 8 important
phenotypic traits in 226 sunflower inbred lines. Using three
methods (i.e., MLM, FarmCPU, and BLINK) for sunflower
grown in two conditions (i.e., well-water and drought stress), we
identified a total of 80 SNP displaying a significant association
(p < 1.062 × 10−6). Candidate genes were searched in the
20 kb up/down-stream of each SNP. There were 85 protein-
coding candidate genes possibly related to the 8 important

phenotypic traits. Next, we conducted an RNA-seq based on a
drought-tolerance inbred line (K58). A total of 18,922 DEGs
were identified on 7 and 14 days after drought treatment.
Up-regulated genes were mainly enriched in BCAA catabolic
process, while down-regulated genes were mainly enriched in the
photosynthesis process. Using a combined analysis, we found 14
common genes between GWAS and RNA-seq, three of themwere
PK genes, and one of them was TF gene. LOC110885273 was
associated with LSA and SPAD, belongs to the RLK-Pelle_SD-
2b protein kinase family. LOC110872899 belongs to the RLK-
Pelle_LRR-III protein kinase family and is associated with RSA.
LOC110891369 belongs to the RLK-Pelle_CrRLK1L-1 protein
kinase family and is associated with LSA. The PLAZT gene
LOC110920644 is related to LSA, and belongs to PLAZT TF
family. Through functional analysis, there are 4 genes involving
the ABA-dependent drought response pathway of plants.

The integrative analysis of omics data is a promising
approach to identify candidate genes for complex traits. This
study is the first attempt to combine GWAS and RNA-seq to
explore the genetic mechanism of sunflower drought tolerance
to our knowledge. We will further validate the functions of
these genes, possibly by overexpression or by CRISPER/Cas
genome editing. Our research reveals the phenotypic and
molecular mechanisms of drought response in sunflowers.
The results will be useful for the genetic enhancement of
drought-resistant sunflowers.
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