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Gene-editing systems have emerged as bioengineering tools in recent years. Classical
gene-editing systems include zinc-finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENs), and clustered regularly interspaced short palindromic
repeats (CRISPR) with CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9), and these
tools allow specific sequences to be targeted and edited. Various modified gene-editing
systems have been established based on classical gene-editing systems. Base editors
(BEs) can accurately carry out base substitution on target sequences, while prime
editors (PEs) can replace or insert sequences. CRISPR systems targeting mitochondrial
genomes and RNA have also been explored and established. Multiple gene-editing
techniques based on CRISPR/Cas9 have been established and applied to genome
engineering. Modified gene-editing systems also make transgene-free plants more
readily available. In this review, we discuss the modifications made to gene-editing
systems in recent years and summarize the capabilities, deficiencies, and applications
of these modified gene-editing systems. Finally, we discuss the future developmental
direction and challenges of modified gene-editing systems.
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INTRODUCTION

The world’s population is increasing rapidly, so food security has been greatly challenged. With the
problem of climate change, the world’s arable land is also under threat. Therefore, increasing food
production per unit of cultivated land area is a crucial strategy to maintain global food security.

Improving crops is an important way of improving agricultural productivity. The traditional
breeding method obtains crops with excellent agronomic traits through natural mutation and
cross-breeding. This method has been widely used in human history, and many excellent crop
resources have been obtained (Liu et al., 2020). However, cross-breeding can only utilize traits
already acquired by natural mutations in the crop, limiting it at the genetic level (Witkin, 1969;
He et al., 2012). Chemical or radiation mutagenesis has been widely used to expand the gene pool
potential. Nevertheless, this method still requires considerable labor and time to identify and obtain
favorable traits through mutation breeding. In contrast, transgenesis allows transgenic elements to
be inserted into a plant genome to express or silence a target gene, generating better crop traits or
more efficient herbicide resistance and is labor-saving. However, genetic modification can also cross
species boundaries, favorable traits may disappear generation by generation in actual agricultural
production, and the insertion of exogenous fragments makes genetically modified crops subject to
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government supervision and public suspicion (Raman,
2017). Therefore, new methods of molecular breeding are
of great importance.

Unlike transgenesis, gene editing allows targeted gene
manipulation at a specific locus, so traits do not depend on
transgenic elements. This technique generates transgene-free
crops with favorable traits and stable inheritance in actual
agricultural production (Chiu et al., 2013). Currently, the
main gene-editing technologies include zinc-finger nucleases
(ZFNs), transcription activator-like effector nucleases (TALENs),
and clustered regularly interspaced short palindromic repeat
sequences (CRISPR) with CRISPR-associated protein 9 (Cas9)
(CRISPR/Cas9) (Hou et al., 2013; Joung and Sander, 2013;
Gupta and Musunuru, 2014). As the newly established gene-
editing system, CRISPR/Cas9 has been verified and applied
in crops including, rice, maize, wheat, tomato, and potato
(Jiang et al., 2013; Brooks et al., 2014; Shan et al., 2014;
Zhu et al., 2016). Classical gene-editing systems typically target
the crop genome, cause double-strand breaks, and then edit
at the target site during DNA repair of the crop itself.
Mutations obtained in this way are generally random and
negatively impact crop research and breeding. To better meet
the needs of crop research and breeding, gene-editing systems
have been modified in various ways. These modified gene-
editing systems include Cas13a, mitoTALENs, base editors
(BEs), and prime editors (PEs) and enable more accurate and
reliable gene editing while expanding target locations to include
RNA, mitochondrial, and chloroplast genomes (Komor et al.,
2016; Pereira et al., 2018; Anzalone et al., 2019). Multi-target
editing makes genome engineering possible, and several different
modification or transformation strategies make transgene-free
crops more efficient to obtain, where transgene-free crops have
significant commercial value. In this article, the modification and
characteristics of gene-editing systems are reviewed, and their
application in crops is introduced.

CLASSICAL GENE-EDITING SYSTEMS

Presently, various gene-editing tools are employed, among which
ZFNs and TALENs were developed earlier.

Zinc-finger nucleases are derived from a region containing
multiple zinc finger structures that can bind to DNA and from
a non-specific nuclease region. A single zinc finger recognizes
three specific bases, so by combining zinc finger structures,
the DNA binding domain can recognize specific sequences in
multiples of three bases. TALENs are similar to ZFNs in that
their DNA binding regions are composed of specific conservative
repeats, each of which contains 34 amino acids, and the 12th
and 13th amino acids form repeat variable di-residues (RVDs),
where one RVD can only recognize specific bases (Tomas et al.,
2011). After the ZFNs or TALENs specifically recognize the base
sequence, the target is cleaved by the nuclease domain, and the
genes are edited under the action of the plant’s own DNA repair
mechanism (Radecke et al., 2010; Gupta and Musunuru, 2014).
Typically, ZFNs or TALENs are often used in pairs to cause
double-strand breaks (DSB).

Clustered regularly interspaced short palindromic repeats-
CRISPR-associated protein 9 is essentially the immune
mechanism of bacteria or archaea and is composed of three
parts. The first is CRISPR RNA (crRNA) complementary to
the targeted sequence. The second is trans-activating crRNA
(tracrRNA), which binds both crRNA and Cas9. To make
CRISPR-Cas9 easier to use in practical applications, CRISPR-
Cas9 was modified at the molecular level. CrRNA and tracrRNA
were linked by stem-loop, combining the two into a single
guide RNA (sgRNA), which significantly reduced the structural
complexity of the CRISPR-Cas9 gene-editing system (Jinek et al.,
2012). The third part is Cas9, which contains two domains,
namely the HNH domain and the RuvC-like domain. The HNH
domain cuts the complementary strand of crRNA, while the
RuvC-like domain cuts the opposite strand of double-stranded
DNA. When CRISPR-Cas9 works, sgRNA carries the Cas9
protein to recognize the target containing a protospacer adjacent
motif (PAM) NGG at the 3′ end and cleaves, resulting in DSB
(Jacobs et al., 2015; Yu et al., 2016). Later, during DSB repair,
the sequence is inserted by action of homologous recombination
(HR), or the insertion, deletion, or alteration of bases is caused
by action of non-homologous end joining (NHEJ) (Figure 1A;
Bengtsson et al., 2017).

Cas12a is also used in CRISPR. The CRISPR-Cas12a (Cpf1)
system uses crRNA to target sequences and has unique
advantages. Firstly, Cas12a is smaller than standard Cas9, making
it easier to enter the nucleus for editing. Secondly, CRISPR-
Cas12a editing produces sticky ends, which is conducive to the
deletion of larger fragments and the joining of foreign fragments.
Thirdly, CRISPR-Cas12a can process pre-crRNA to form mature
crRNA, making its multi-target editing system easier to construct
and more efficient (Hu et al., 2017). Moreover, by modifying
crRNA, the editing efficiency of CRISPR-Cas12a is improved,
allowing it to edit genomic loci that have hitherto been difficult to
edit (Hu et al., 2020). However, the PAM sequence identified by
CRISPR-Cas12a is TTTV, resulting in only a 10th of the number
of target sequences in plant genomes compared to CRISPR-Cas9.
In addition, studies have shown that Cas12a is more sensitive to
temperature than Cas9, so it needs to be modified in the many
crops that grow at lower temperatures (Malzahn et al., 2019).

To date, classical gene-editing techniques have been applied
in many crops, including rice, corn, wheat, potato, tomato,
grape, and citrus, providing technical support for crop quality
improvement, resistance to biological stress, resistance to
abiotic stress, and re-domestication (Wang T. et al., 2019;
Xu et al., 2019).

MODIFIED GENE-EDITING SYSTEMS

Many modifications to the classic gene-editing systems have been
made to overcome their limitations. An example is CRISPR
interference systems and CRISPR activation systems, which
regulate gene expression rather than edit genes. Four strategies
have a high potential for modifications with gene editing
capability. The first strategy is to enable gene-editing systems to
be applied to RNA, mitochondrial, or chloroplast genomes. The
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FIGURE 1 | Structure and principle of different gene editing systems. (A) CRISPR-Cas9 cleave double-stranded DNA and causes DSB and the genes are edited
under the action of the plant’s own DNA repair mechanism. (B) Rp-loop structure promotes sgRNA entering the mitochondrial and CRISPR-MitoCas9 result
mitochondrial gene editing or genome degradation. (C) CRISPR-Cas13a cleaves ssRNA and causes ssRNA degradation. (D) The CBEs replaces bases with
cytosine deaminase and T-A replace C-G under the action of plant DNA repair. rAPOBEC1, rat cytidine deaminase; GUI, uracil glycosylase inhibitor. (E) The adenine
base editor replaces bases by adenine deaminase and G-C replace A-T under the action of plant DNA repair. TadA, wild-type Escherichia coli tRNA adenosine
deaminase. TadA*, mutant TadA. (F) nCas9(D10A) cleaves single strands of DNA to form Nick, and pegRNA acts as a template to replace the sequence under the
action of reverse transcriptase. Precise modification of target sequences by plant DNA repair. M-MLV, Moloney mouse leukemia virus reverse transcriptase.
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second strategy is to change the gene-editing ability so that the
gene-editing system can accurately complete the replacement of
bases or the replacement and insertion of long sequences. The
third strategy is multi-target editing, which would make genome
engineering possible. The fourth strategy is to integrate the
system with other transgenic elements or change transformation
strategies to make transgene-free crops more readily available.

Cas13: Tools for Editing RNA
In classical gene-editing systems, Cas9 and Cas12a are both type
II single-component effector proteins that target DNA. In the
progressive exploration of immunity in prokaryotes, the Type
VI system has been elucidated. This system is characterized by
the effector protein C2c2, which contains a higher eukaryotic
and prokaryotic nucleotide-binding (HEPN) domain. HEPN
domains are characterized by RNA enzyme activity, so C2c2 has
the ability to target and edit RNA, and was named Cas13a in
subsequent studies (Abudayyeh et al., 2016).

Cas13a targets sequences located 28 nt downstream of crRNA,
resulting in single-stranded RNA (ssRNA) degradation and
inhibiting target genes at the transcriptional level (Figure 1B).
In addition, the Cas13b system has been reported to significantly
improve its inhibitory efficiency compared with Cas13a in
mammalian cells (Cox et al., 2017). Interestingly, cleavage of
Cas13a also leads to degradation of non-target RNA in vitro
or in prokaryotic cells, which often leads to apoptosis, but is
highly specific in eukaryotic cells. In plants, Cas13a is suitable
for the modification of rice, with a maximal knockdown of 78%
(Abudayyeh et al., 2017).

Compared to gene silencing methods, such as RNAi
or artificial microRNA, Cas13 is highly specific and, more
importantly, does not depend on the plant’s own immune
function. RNAi or artificial microRNA pairs dsRNA with target
RNA in plants and binds with the plant Argonaute (AGO) and
Dicer-like (DCL) enzymes to form an RNA-induced silencing
complex (RISC), thus completing the silencing of target genes.
Therefore, RNAi or artificial microRNA cannot be used to
study genes related to the silencing system. Cas13 can complete
the silencing of target genes only by itself, without limitations
from target genes. In addition, Cas13 can also be used for
RNA virus inhibition. Studies have shown that Cas13 can
significantly inhibit Tobacco mosaic virus in tobacco leaves, so
Cas13 has a high breeding potential for disease resistance in crops
(Mahas et al., 2019).

Cas13 can also be modified to perform more complex
functions to meet production or research needs. dCas13 was
obtained by inactivating Cas13 by mutating the HEPN conserved
domain and fusing dCas13 with the human adenosine deaminase
acting on RNA 2 (ADAR2) deaminase domain to obtain a BE
for ssRNA in mammalian cells (Cox et al., 2017). Compared
with DNA editing, RNA editing is more prone to recovery and
post-transcriptional regulation, which makes it highly safe and
ensures its safety in the treatment of genetic diseases. However,
this also makes it difficult to use in agricultural traits. dCas13can
also fuse with fluorescent proteins to locate target RNA in cells,
providing a new tool for RNA localization studies (Abudayyeh
et al., 2017). Overall, Cas13 is more accurate than traditional

silencing methods such as RNAi, but its application in crops
needs further exploration.

Gene Editing in Mitochondria and
Chloroplasts
Mitochondria are responsible for plant respiration and are
associated with many secondary metabolites, so they could
greatly improve crop yield and quality if they can be modified
(Balaban et al., 2005). Chloroplasts are directly responsible for
photosynthesis and are directly related to crop yield (Chen et al.,
2020). However, mitochondria and chloroplasts have relatively
independent genomic and DNA repair systems and membrane
systems, making traditional gene-editing methods unsuitable.

The first established method to modify mitochondria used
TALENs, which were expressed in the nucleus and then
transferred to the mitochondria to edit the mitochondrial
genome. In rice and rape, mitoTALENs were used to precisely
knock out ORF79 and ORF125, which proved to be cytoplasmic
male sterility genes (Kazama et al., 2019). In Arabidopsis
thaliana, the mitoTALENs technique was used to destroy two
mitochondrial genes, AtP6-1 and AtP6-2, which proved that
conventional mitoTALENs were more effective than single-
molecule mito-compact TALENs (Arimura et al., 2020). mtZFNs
were also proven useful for mitochondrial gene editing in animal
cells (Gammage et al., 2018b). However, attempts to apply
CRISPR/Cas9 to mitochondrial genomes encountered some
difficulties, mainly because sgRNA was difficult to transport
through the mitochondria membrane into the mitochondrial
matrix (Gammage et al., 2018a). A recent study showed that
sgRNA with short hairpin structures could be transported
into the mitochondrial matrix at low levels and complete
mitochondrial genome editing (Loutre et al., 2018). In a further
improvement, by adding the 20-nucleotide stem-loop structure of
RNase P to the 5′ end of sgRNA, the efficiency of sgRNA entering
the mitochondrial matrix was effectively improved (Figure 1C;
Hussain et al., 2021). In general, current methods exist to edit
mitochondrial genomes, but they generally cause DSB, which
results in long sequence changes or overall degradation during
mitochondrial repair.

Although there is currently no CRISPR/Cas9-based
mitochondrial BE, sgRNA with stem-loop makes it possible
to establish this method. Due to difficulties encountered with
sgRNA in earlier studies, new methods were developed for
mitochondrial BEs. RNA-free DddA-derived cytosine base
editors (DdCBEs) were produced by fusing half of the split-
DddA transcription activator-like effector array protein with a
uracil glycosylase inhibitor (UGI). In human mitochondria, this
method can substitute C-G base pairs with A-T base pairs with
high precision and efficiency (Mok et al., 2019).

Another strategy for regulating mitochondria modifies
mitochondria-related RNA-binding proteins, which are often
involved in mitochondrial RNA editing. In A. thaliana, RNA
processing factor 2 (RPF2) was engineered to target NAD6
for cleavage, virtually eliminating NAD6 expression, leading
to the accumulation and activity of complex I (Colas et al.,
2018). In addition, RNA-binding proteins are involved in base
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conversion rather than RNA cleavage in mitochondria, providing
a possibility for mitochondrial RNA base conversion (Yang
et al., 2020). If the sgRNA transport method of Cas13 could be
established, high-precision mitochondrial RNA editing or a base
conversion system could also be established.

Compared with mitochondria, gene-editing systems in
chloroplasts have developed more slowly. Although there are
methods to transform chloroplasts and express sgRNA directly
in chloroplasts (Ralph Bock et al., 2019), gene editing in
chloroplasts is rarely reported. The first chloroplast gene editing
was completed in Chlamydomonas, and the donor DNA was
successfully integrated into psaA by transforming a plasmid
containing the Cas9 expression cassette and a plasmid containing
the donor DNA. Comparing single-target editing of intact Cas9
expression cassette samples with that of Cas9 or sgRNA deletion,
single nucleotide polymorphisms in intact Cas9 expression
cassette samples were not significantly increased, and no deletion
mutations were found (Yoo et al., 2020). This result suggests
that chloroplasts lack the NHEJ pathway, preventing the most
commonly used gene-editing strategies from being implemented
in chloroplasts.

Another feasible chloroplast gene-editing strategy is base
editing. DdCBEs have also been applied in chloroplasts. In
A. thaliana, ptpTALECDs were obtained by modifying DdCBEs
to make them suitable for A. thaliana, confirming that the
base editing system could efficiently edit 16S, rpoC1, and psbA
(Nakazato et al., 2021). As with mitochondria, chloroplast BEs
based on CRISPR-Cas9 have not yet been developed, but based on
what is available, the transformation of BEs in chloroplasts should
allow base editing.

In general, mitochondrial and chloroplast editing is still in its
infancy, and one of the difficulties lies in the shortcomings of
the mitochondrial and chloroplast repair mechanisms. A feasible
solution is to avoid DSB through BEs. However, mitochondrial
and chloroplast editing has great breeding potential, especially
for chloroplasts, which are the sites of photosynthesis and encode
many key proteins. Rubisco, for example, is a key enzyme in the
Calvin cycle. However, due to the complex biogenesis of its large
subunit, the exogenous expression has been unable to produce
good effects. Therefore, direct modification of Rubisco by gene
editing may radically improve crop yield (Bracher et al., 2017).

Base Editors: Precise Substitution of
Bases
Clustered regularly interspaced short palindromic repeats based
on NHEJ always produces random mutations with low accuracy,
and HR requires donor DNA, making the system complex and
inefficient (Hess et al., 2017). To overcome these limitations,
researchers are working to develop editing techniques with higher
efficiency, reliability, and accuracy. BEs are a newly developed
precise genome-editing technique that can achieve irreversible
base conversion at specific sites (Gao, 2018). After mutating
Cas9 (D10A), the Cas9 nickase (nCas9) had single-strand cutting
ability only. BEs are a complex consisting of the nCas9 protein,
guide RNA (gRNA), and a base deaminase domain capable of
converting specific base pairs (Komor et al., 2016).

Base editors are divided into two types, cytosine BEs (CBEs)
and adenine BEs (ABEs). CBEs were developed first and can
transform C into U. Thus, a U-G base pair can be converted into
a T-A base pair during DNA repair and replication. CBEs edit
bases by cytosine deaminase and contain UGIs. UGIs, derived
from Bacillus subtilis bacteriophages, can block the activity of
human uracil DNA glycosylase (UDG), preventing U from being
repaired to C and reverting to a C-G base pair (Figure 1D; Molla
and Yang, 2019). The earliest CBE does not contain a UGI and
uses the dead Cas9 (dCas9) mutant with no cutting capability,
making its C-T base-pair substitution inefficient at only 0.8–7.7%
(Komor et al., 2016). In a later version, the efficiency of CBE was
greatly improved by the addition of UGI and the replacement of
dCas9 with nCas9 (Chen et al., 2017).

Adenine BEs replace A with I, converting I-T base pairs
to C-G base pairs during DNA repair and replication. Unlike
CBEs, DNA glycosylase inhibitors are not required in ABEs;
however, natural adenine deaminases cannot accept DNA. With
further understanding of base deaminases, the heterodimer
formed by the fusion of RNA adenosine deaminase (TadA) and
its mutant deoxyadenosine deaminase (TadA∗, W23R, H36L,
P48A, R51L, L84F, A106V, D108N, H123Y, S146C, D147Y, R152P,
E155V, I156F, and K157N) was found to have a good catalytic
capacity for adenine deaminase (Gaudelli et al., 2017). A highly
efficient ABE was obtained by fusing this heterodimer with nCas9
(Figure 1E).

Compared with general gene editing, base editing requires
higher accuracy and is often used to edit specific bases on genes.
Therefore, diversification of the PAM sequence has been a hot
research topic. One strategy is to look for Cas9 proteins in other
species. Presently, the most widely used Cas9 is Streptococcus
pyogenes Cas9 (spCas9), whose PAM sequence is NGG (Yu et al.,
2016). However, Cas9 proteins with different PAM sequences
have been found in other species through homology comparison.
For example, the NmCas9 protein found in Neisseria meningitidis
recognizes the PAM sequence NNNGMTT (Hou et al., 2013).
StCas9 found in Streptococcus thermophilus recognizes the PAM
sequence NNAGAAW (Deveau et al., 2008). However, having
a longer PAM sequence does not increase the number of
targets. Another strategy is to modify spCas9 through protein
structure and protein-directed evolution. This strategy diversifies
the PAM sequence, resulting in NG, GA, GGA, NGC, NGT,
GAT, GAA, CAA, GAG, NGA, NNG, NGAG, and NGCG (Endo
et al., 2018; Hu et al., 2018a,b; Ge et al., 2019; Li J. et al.,
2019; Wang J. et al., 2019; Zhong et al., 2019; Qin et al.,
2020; Xu et al., 2020; Zhang et al., 2020). It is worth noting
that different modifications have different effects on specificity.
xCas9 improves the ability of DNA specific recognition and
reduces off-target efficiency, while SpRYCas9 improves off-target
efficiency (Hu et al., 2018a; Walton et al., 2020). Studies in
plants have shown that the editing efficiency of xCas9 on
atypical PAM sequences (GAA, GAT, and GAG) was lower
than for the typical PAM sequence (NGG), but Cas9-NG
maintained a higher editing efficiency on the atypical PAM
(NG), thus improving the BEs (Endo et al., 2018; Wang J.
et al., 2019). In addition to xCas9 and Cas9-NG, the PAM
sequence of the BEs was diversified to NAG, NGA, NNNRRT,
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NRRH, NRCH, and NRTH by mutating Cas9 in subsequent
studies (Hua et al., 2019; Li et al., 2021). In the latest
research, the CRISPR-SpRY Toolbox even breaks the restriction
of PAM sequences and can be edited PAM-free (Ren et al.,
2021). Other studies improved the editing efficiency of xCas9
through enhanced sgRNA.

Notably, shortening the PAM sequence can cause Cas9 to
target its own sgRNA sequence, thus reducing editing efficiency
or leading to off-target recognition, requiring optimization of the
sgRNA sequence (Zhang et al., 2020). Overall, the PAM sequence
diversity of BEs has been greatly enriched, vastly improving its
applicability in practical production.

Base Editors: Acquisition of Herbicide
Resistance and Agronomic Traits
Improvement
Presently, BEs have many applications in crops (Table 1); the
most effective and promising application is the acquisition of
herbicide resistance, mainly through accurate modification of
acetolactate synthase (ALS), one of the key enzymes in amino
acid biosynthesis. There are multiple bases in the ALS gene,
whose substitution causes plants to acquire resistance to different
herbicides (Durner et al., 1991). By CBE editing of Pro to Ser,
plants acquire sulfonamide herbicide resistance, which has been
widely used in crop cultivation. The strategy has been used
to achieve sulfonamide herbicide resistance in wheat (TaALS,
P174S), watermelon (ClALS, P190S), tomato (SlALS1, P186S),
and potato (StALS1, P186S); transgene-free plants were obtained
for watermelon, tomato, and potato (Shimatani et al., 2017;
Tian et al., 2018; Veillet et al., 2019b). Imidazolinone herbicide
resistance was achieved through the CBE mutation AtALS S653N
much later, mainly owing to the base mutation site being outside
the editing window, resulting in low editing efficiency. Finally,
imidazolinone herbicide resistance plants were obtained in A.
thaliana (Dong et al., 2020). In addition to editing OsALS
to achieve herbicide resistance, haloxyfop-R-methyl herbicide
resistance was achieved in rice by mutating C2186R in OsACC
using the ABE7.10 system (Li et al., 2018).

Several agronomic key traits have also been improved by BEs.
For example, the successful application of CBE to edit eIF4E
in A. thaliana has greatly improved the plant’s resistance to
disease (Bastet et al., 2019). OsSBEIIb and SSI were edited in rice
and potato, respectively, resulting in decreased starch synthesis
(Li et al., 2017; Veillet et al., 2019a). While gene inactivation
sometimes leads to plant death, precise replacement by base
editing modifies genes rather than inactivates them, making
base editing hugely advantageous for studying or improving
key genes in crops. However, there are still some shortcomings.
BEs, especially CBEs, have been widely used, and ABEs have
good specificity, but there is evidence that early CBEs are off-
target at the whole gene level, resulting in a large number
of C substitutions in plant genomes (Jin et al., 2019). To
reduce off-target effects, the deaminase domain in BE3 was
replaced with a member of the APOBEC3 cytidine deaminase
family. This modification proved to have good specificity in rice
(Jin et al., 2020).

Prime Editors: Precise Modification of
DNA Sequence
Non-homologous end joining always results in random DNA
repair, and base editing struggles to cover all sequence
modifications, so PE was invented to modify DNA sequences
precisely. PE is a versatile and precise genome-editing method
that uses nCas9 fused to an engineered reverse transcriptase,
while template RNA is linked to sgRNA to form prime editing
guidance RNA (pegRNA), which both specifies the target site
and encodes the desired editing sequence. After nCas9 cleaves
the single strand of DNA, template RNA paired with the
sequence near the editing site, and the pegRNA template
complementary strand is resynthesized under the action of
Moloney murine leukemia virus (M-MLV) to complete accurate
editing (Figure 1F; Anzalone et al., 2019). To date, PE has been
applied in rice, wheat, corn, and tomato (Jiang et al., 2020; Lin
et al., 2020; Lu et al., 2021a). However, prime editing efficiency
in plants was significantly lower than reported in human cells.
Therefore, various strategies have been undertaken to optimize
prime editing efficiency. Improvements to the components of
PE, including optimization of pegRNA length, alteration of
the engineered reverse transcriptase, and enhancement of the
pegRNA promoter were performed (Jiang et al., 2020; Lin et al.,
2020, 2021). Also, the same edits were made using different
pegRNA on the template and antisense strand (Lin et al., 2021).
These methods improved prime editing efficiency in plants. In
the latest study, pairs of pegRNA were able to precisely delete
710 bp or precisely replace a sequence of 108 bp (Anzalone
et al., 2021). In general, the great potential of prime editing
remains to be explored.

Multi-Target Editing: Genome
Engineering
For CRISPR/Cas9 systems, multi-target editing is easily
implemented with multiple sgRNAs. In plants, there are two
main strategies to obtain multiple sgRNAs: one strategy is
to use multiple promoters to express different sgRNAs, the
other strategy is to use specific sequences (tRNA, Cys4, and
HDV-HH) to separate different sgRNAs and cut them into
independent sgRNAs in vivo (Xing et al., 2014; Xie et al., 2015;
Gasparis et al., 2018). At present, multi-target editing is mainly
used for simultaneous editing of multiple genes or saturation
knockout of a single gene, which can sometimes lead to genomic
changes, such as deletion, duplication, or inversion of fragments
(Zhou et al., 2014).

Currently, gene editing mainly silences genes through early
termination of the coding frameshift, but this method produces
truncated proteins that, in some cases, are functional and can
affect research and breeding (Qing et al., 2020). In addition,
mutation of individual bases via gene editing sometimes fails to
cause changes in the secondary structure of lncRNA, so there will
be no functional changes. One way to avoid these disadvantages
is to delete these long fragments so that the gene disappears
completely. Although many large fragment deletion results have
been reported, these cases are often random and difficult to apply
in practice. A feasible approach is to design multiple targets
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TABLE 1 | Application and improvement of BEs.

Plant species Target gene BE PAM Editing efficiency (%) Contributions References

Oryza sativa FTIP1e
ALS

Target-AID NGG 4.3–85.7 Generation of imazamox
herbicide resistance

Shimatani et al., 2017

Oryza sativa NRT1.1B
SLR1

APOBEC1 NGG 2.7–13.3 Regulate the conversion and
utilization of nitrogen

Lu and Zhu, 2017

Oryza sativa OsCDC48
OsNRT1.1B
OsSPL14

PBE NGG 0.5–7.0 Improve editing efficiency by
using nCas9

Zong et al., 2017

Oryza sativa OsPDS
OsSBEIIb

BE3 NGG 20 Reduced starch synthesis Li et al., 2017

Oryza sativa OsCERK1
OsCERK2
OsCERK3

ipa1
pi-ta
BRT1

rBE3
rBE4

NGG NGA 10.5–38.9 Increase PAM sequence
diversity

Ren et al., 2017

Oryza sativa OsSPL14
OsSPL16
OsSPL17
OsSPL18

SLR1

ABE-P1 NGG 4.8–61.3 ABE was improved for rice Hua et al., 2018

Oryza sativa OsRLCK185
OsCERK1

rBE5 NGG 2.1–27.8 CBE is optimized for GC AC
sequences

Ren et al., 2018

Oryza sativa OsMPK6
OsMPK13
OsMPK2
OsMPK6
Tms9-1

rBE14
rBE15
rBE17
rBE18

NGG 4.30–62.26 Developed a
fluorescence-tracking adenine

base editor

Yan et al., 2018

Oryza sativa OsACC
OsALS

OsCDC48
OsDEP1,

OsNRT1.1B-T1

pABE NGG 5.8–59.1 Herbicide resistant rice was
obtained by ABE for the first

time

Li et al., 2018

Oryza sativa OsCDC48
OsNRT1.1B-T1

PBE NGG 44.1–82.9 Expand edit window Zong et al., 2018

Oryza sativa OsGL1-1
OsNAL1

PBE NGG 75 Intron shearing is interfered with
by BE

Li Z. et al., 2019

Oryza sativa OsNGN1 nSpCas9-NGv1-AID
nSpCas9-NGv1-AID

nSpCas9-NGv1-APOBEC-UGI

NG 6.3–91.1 Increase PAM sequence
diversity

Endo et al., 2018

Oryza sativa OsSPL14
OsSPL16
OsSPL18

GRF4
OsSPL17

sTOE1
OsIDS1
OMTN1

SNB
sSPL13

ABE-P1-5
CBE-P3
CBE-p5

pKKH-Cas9
pVQR-Cas9

NAG NGA NNNRRT 2.6–74.3 Increase PAM sequence
diversity

Hua et al., 2019

Oryza sativa OsDEP1 Cas9-NG (D10A)-PmCDA1 NG 30.4–45.0 Increase PAM sequence
diversity

Zhong et al., 2019

Oryza sativa IPA1
Pikh
WX

NRRH-eBE3
NRCH-eBE3
NRTH-eBE3

NRRH NRCH NRTH 2.08–79.17 Increase PAM sequence
diversity

Li et al., 2021

Oryza sativa OSPDS
OsALS

OsDSP1

CRISPR–SpRY PAM-free 5.3–79.0 Break the PAM sequence
constraint

Ren et al., 2021

Triticum aestivum TaLOX2 PBE NGG 1.5–5.2 Improve editing efficiency by
using nCas10

Zong et al., 2017

Triticum aestivum TaDEP1
TaGW2

pABE NGG 0.4–1.1 ABE was applied in wheat for
the first time

Li et al., 2018

(Continued)
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TABLE 1 | (Continued)

Plant species Target gene BE PAM Editing efficiency (%) Contributions References

Triticum aestivum TaALS
TaMTL

A3A-PBE NGG 16.7–22.5 Expand edit window Zong et al., 2018

Triticum aestivum TaALS PBE NGG 22–78 Improve screening efficiency
through co-editing

Zhang et al., 2019

Solanum tuberosum StGBSS-T6 A5A-PBE NGG 6.5 Expand edit window Zong et al., 2018

Solanum tuberosum SSI protein CBE NGG 71 Reduce potato starch content Veillet et al., 2019a

Solanum tuberosum StALS
StALS2

Target-AID NGG 100 Generation of sulfonylurea
herbicide resistance in
transegene-free potato

Veillet et al., 2019b

Solanum lycopersicum DELLA
ETR1

Target-AID NGG 26.2–53.8 Altered hormone regulation Shimatani et al., 2017

Solanum lycopersicum SlALS1
SlALS2

Target-AID NGG 71.4 Generation of sulfonylurea
herbicide resistance in
transegene-free tomato

Veillet et al., 2019b

Arabidopsis thaliana AtALS BE3 NGG 1.7–7.6 The edited plants were
obtained by subculture

Chen et al., 2017

Arabidopsis thaliana AtALS
AtPDS
AtFT

AtLFY

BE6.3
BE7.8
BE7.9
BE7.10

NGG 0.3–10 ABE has been verified in plants Kang et al., 2018

Arabidopsis thaliana eIF4E CBE NGG 67.9 Enhanced arabidopsis
resistance to disease

Bastet et al., 2019

Arabidopsis thaliana AtMTA PBE NGG 49.1 Intron shearing is interfered with
by BE

Li Z. et al., 2019

Arabidopsis thaliana AtALS CBE NGG 14.3–66.7 Generation of imidazolinone
herbicide resistant

Dong et al., 2020

Zea mays ZmCENH3 PBE NGG 0.3–3.7 Improve editing efficiency by
using nCas11

Zong et al., 2017

Citrullus lanatus ClALS BE3 NGG 22.6 Transgene-free tribenuron
herbicide resistant watermelon

was obtained by CBE in
watermelon

Tian et al., 2018

Brassica napus BnALS
BnPDS

BE6.3
BE7.8
BE7.9
BE7.10

NGG 0.6–8.8 ABE has been verified in plants Kang et al., 2018

with the expectation of achieving fragment deletion between the
targets. This strategy has been successfully established in rice
and soybean (Wang et al., 2017; Cai et al., 2018). Furthermore,
large fragment deletion efficiency can be significantly improved
using microhomology-mediated end joining in rice by designing
targets near microhomologous sequences (Tan et al., 2020).
However, the deletion of mature and efficient large fragments
is currently only reported in crops with high editing efficiency,
mainly rice and soybean, and there are few reports in crops with
low editing efficiency. The large fragment deletion method still
requires improvement.

Multi-target editing can also cause the inversion of large
segments of chromatin. In maize, by designing six targets,
three on each side, 75.5 Mb were inverted on chromosome 2,
simulating the mutation that occurs in nature in maize (Schwartz
et al., 2020). In addition, in rice, through the design of exquisite
targets, CP12 and PPO1 exchanged positions through a 911 kb
inversion, and a new expression box was formed between the
promoter of Ubiquitin2 and HPPD through a 338 kb duplication.
Due to the high expression levels of original CP12 and Ubiquitin2

in leaves, the change of promoter increased the expression levels
of PPO1 and HPPD by tens of folds, which enabled rice to have
sufficient herbicide resistance in field tests without adverse effects
on other important agronomic traits (Lu et al., 2021b). This
method confirmed a new strategy for upregulating target gene
expression independent of transgenic elements.

In summary, multi-target CRISPR/Cas9 has a high potential
for chromatin engineering, both to simulate natural mutations
and to make knockout results more reliable. However, chromatin
engineering can only be applied to crops with high editing
efficiency, such as rice. Application in other crops requires
optimization of editing efficiency or interference with DSB repair.

Modified Gene-Editing Systems Help
Obtain Transgene-Free Crops
Obtaining transgene-free plants can be of great value for the
commercialization of crops; in addition, transgene-free plants
can be more easily used for other gene function studies in
scientific research. Currently, CRISPR transgenic plants are
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obtained using Agrobacterium-mediated transformation. The
Cas9-expression cassette and sgRNA-expression cassette with
resistance screening genes are transferred into the plant genome,
resulting in transgenic plants expressing Cas9 and sgRNA,
allowing complete editing on the genome. Thus, the majority
of T0 plants contain transgenic elements. Traditionally, the
acquisition of transgene-free plants relies mainly on the genetic
segregation of plants after self-fertilization. If only one copy
of the CRISPR transgene is inserted into the genome in the
T0 plants, 25% of transgene-free plants can be obtained in
the T1 generation according to Mendelian genetics. However,
transgenes often result in multiple copies of insertions that may
be distributed on different chromosomes, making it extremely
difficult to obtain transgene-free plants by self-fertilization (Lowe
et al., 2009). Crossing T0 plants with wild-type plants would
effectively eliminate the transgene, but it takes an extra generation
to reach the goal of obtaining transgene-free and edited plants. In
general, there have been many experiments to isolate transgenic
free plants from the progenies of T0 plants using conventional
genetic segregation, but it is laborious and time-consuming.

In the isolation of transgene-free plants, the most time-
consuming and labor-intensive work is planting, sampling, DNA
extraction, and identification. Therefore, a method to identify
or screen whether the seeds are genetically modified would
avoid much unnecessary labor. An effective way to reduce the
workload is to marker transgenic plants by fluorescence. In
A. thaliana, by adding the mCherry fluorescent marker gene into
the transgenic elements, the red fluorescence of mCherry can be
used to identify and isolate transgene-free seeds (Figure 2A; Gao
et al., 2016). This method has also been applied in rice, effectively
reducing the amount of work required to obtain non-transgenic
plants (Chang et al., 2016). In addition, GFP fluorescent protein
has been used to identify transgenes. Through the 2A peptide,
a picornavirus, which has been shown to have self-splitting
properties in various animal cells and tissues, linking GFP to Cas9
can produce transgenic elements expressing both Cas9 and GFP
without the addition of a promoter. This method can also be
used to analyze the expression of Cas9 because Cas9 and GFP are
expressed simultaneously by protein translation, which enables a
side-analysis of editing efficiency through fluorescence intensity
(Wang and Chen, 2020).

Direct transgene-free seeds can also be obtained by self-
elimination. The BARNASE gene encodes a toxic protein with
nuclease activity, whose expression can kill plant cells. The
promoter of REG2 was found to be specifically expressed
in early rice embryos, while the rice male gametophyte-
specific lethal protein CMS2 can disrupt mitochondrial function
during the development of male gametophytes, leading to
male sterility. By adding a REG2: BARNASE and 35S: CMS2
expression cassette into the transgenic element, the transgenic
male gametes and embryos were directly killed, thus ensuring
that the seeds obtained were non-transgenic (Figure 2B; He
et al., 2018). Compared with fluorescence screening, this
method can directly obtain non-transgenic seeds without manual
screening. However, the death of many seeds will lead to a
decrease in the number of plant progeny, reducing the sample
size obtained.

Agrobacterium mediates transient transgene expression when
transgenic elements enter plant cells (Amoah et al., 2001; Krenek
et al., 2015). With the help of transient transgene expression,
sgRNA and Cas9 can be edited directly in plant cells without
integrating the transgenic elements into the plant genome,
providing a method for directly obtaining transgene-free plants
in the T0 generation (Figure 2C). Using this strategy, transgene-
free plants have been successfully obtained in tobacco, tomato,
and potato (Chen et al., 2018; Danilo et al., 2019; Veillet et al.,
2019b). The key point of this strategy is to stop using antibiotic
screening after plants are edited through transient transformation
so that transgene-free cells can survive. In general, 4.9–10% of
transgene-free edited plants could be obtained by this method.
The biggest advantage of this method lies in the direct acquisition
of transgene-free edited plants in the T0 generation, without
the need to separate transgenic elements in the plant progeny.
However, there are four types of T0 plants: edited plants with
transgenic elements, edited plants without transgenic elements,
unedited plants containing transgenic elements, and wild-type
plants. It is laborious to identify and isolate these four types
of plants, and the number of edited plants would decrease
significantly due to non-resistance screening, so this strategy
remains expensive. One possible modification is to combine
transient transformation with fluorescent proteins to screen
non-transgenic plants during tissue culture, thereby reducing
unnecessary labor.

In animal cells, the most commonly used method is to
combine purified recombinant Cas9 with in vitro transcribed
sgRNA to form cas9-sgRNA RNP complex in vitro and deliver
the complex in vivo with gene gun or microinjection (Burger
et al., 2016; Suzuki et al., 2018). RNP can also be used to edit
plants, typically in protoplasts. Compared with plasmids, RNP
does not require transgenic elements, so all the obtained plants
are transgene-free (Figure 2D). Edited protoplasts have been
obtained from apple and soybean using this strategy (Malnoy
et al., 2016; Kim et al., 2017). However, compared with the
production of edited protoplasts, the regeneration of protoplasts
into plants is complicated, and many plants cannot complete
this process. Methods of editing cells by bombarding immature
embryos or calli with gene guns and regenerating plants by tissue
culture also exist, but these methods do not enable plants to
acquire resistance genes and, therefore, cannot be screened with
antibiotics or herbicides. Under the condition of no selection
pressure, the proportion of edited plants obtained by this method
is low, so requires much effort to screen. Therefore, this method
has not been widely adopted in the laboratory.

The low efficiency of RNP may be because most cells are
not transformed when bombarding calli with RNP owing to
the structure of calli. It is possible to improve this efficiency if
a new RNP conversion method is established. In animal cells,
one potential strategy is to encapsulate RNP by adenovirus
proteins and use viral mechanisms to transform RNP into cells.
A large amount of RNP can be wrapped in the virus, significantly
improving the transformation efficiency. The efficiency of both
Cas9 knockout and base editing can be significantly improved
by this method (Baisong et al., 2019; Pin et al., 2019). At
present, this method has not been applied in plants, and
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FIGURE 2 | Strategies to help obtain transgene-free plants. (A) Fluorescence labeling screening. (B) Self-elimination. (C) Agrobacterium mediate transient transgene
expression. (D) Bombardment-mediated RNP delivery.

further research is needed to select and understand how to
encapsulate the virus.

CONCLUSION AND FUTURE
PERSPECTIVES

Traditional breeding methods are no longer able to meet the food
security challenges posed by population growth owing to their
highly laborious and time-consuming techniques. Compared
with traditional breeding, molecular breeding, especially gene-
editing systems, has the advantages of being highly efficient
and safe. At present, classical gene-editing systems have
been successfully applied to improve disease resistance, stress
resistance, and quality traits of crops (Wang T. et al.,
2019). Gene-editing systems have also achieved some success
in plant synthetic biology and plant microbial engineering
(Gao, 2021).

However, classical gene-editing systems have their limitations.
They often rely on NHEJ to make editing random, which results
in poor performance when studying lethal genes (Zhang et al.,
2021). Also, changes in individual bases mean that the secondary
structure of RNA often does not change, making studies on plant
lncRNAs rely on the deletion of large fragments, which has a very
low probability. In contrast, the modified gene-editing system

gives researchers more options. BEs can precisely replace bases,
while PEs can precisely replace or insert sequences at target sites,
which allow lethal genes to be modified rather than inactivated,
thus preventing crop death. Genomic engineering can make
lncRNA knockout more efficient and reliable. Cas13 has a more
precise and broad range of targets that can replace traditional
gene silencing techniques. Mitochondrial and chloroplast editing
regulates photosynthesis and respiration, including key genes for
crop yield. Optimized transgene-free access makes it easier to
commercialize edited crops. In general, with the efforts of many
researchers, modified gene-editing systems provide new technical
means for crop research and breeding.

Like classical gene-editing systems, many modified systems are
limited by species. The vast majority of systems performed well in
rice but poorly in other species. On the one hand, as the main
grain, rice is of high research value, so is often selected as the
research target. But on the other hand, the same gene-editing
system tends to be more efficient in rice and significantly less
efficient in other crops, showing species-specificity. Therefore,
the optimization of gene-editing systems for different species has
high research value and will be an important research direction
in the future. In addition to promoter and codon preference,
a possible cause of the inefficiency is crop culture temperature,
which is lower for most crops than rice. There is evidence
that both Cas9 and Cas12a are temperature sensitive. Therefore,
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lifting the temperature limit may be helpful for the optimization
of gene-editing systems.

The combination of different CRISPR modifications can also
significantly increase the power of gene-editing systems. For
example, paired pegRNAs PEs obtained by combining multi-
target editing with PEs can modify longer sequences than classical
PEs. BEs have excellent performance in mitochondrial and
chloroplast editing owing to the defect in DSB repairability.
PAM-free causes CRISPR to target itself and edit, which
reduces editing efficiency and increases off-target recognition. If
PAM-free is combined with Agrobacterium-mediated transient
expression or bombardment-mediated RNP delivery, this
deficiency may be overcome, and transgene-free plants could
be obtained directly. However, compared with classical gene-
editing, the editing efficiency of modified gene-editing systems
will be reduced, and combinations of modified gene-editing
systems may lead to lower editing efficiency. Improving
transformation efficiency and screening efficiency could
compensate for this issue.

Many gene-editing systems have high potential. Therefore, it
is expected to see further applications of gene-editing systems in
crop research and breeding in the future, which could contribute
enormously to solving the problem of human food security.
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