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Grape disease is a significant contributory factor to the decline in grape yield, typically
affecting the leaves first. Efficient identification of grape leaf diseases remains a critical
unmet need. To mitigate background interference in grape leaf feature extraction and
improve the ability to extract small disease spots, by combining the characteristic
features of grape leaf diseases, we developed a novel method for disease recognition
and classification in this study. First, Gaussian filters Sobel smooth de-noising Laplace
operator (GSSL) was employed to reduce image noise and enhance the texture of
grape leaves. A novel network designated coordinated attention shuffle mechanism-
asymmetric multi-scale fusion module net (CASM-AMFMNet) was subsequently applied
for grape leaf disease identification. CoAtNet was employed as the network backbone
to improve model learning and generalization capabilities, which alleviated the problem
of gradient explosion to a certain extent. The CASM-AMFMNet was further utilized
to capture and target grape leaf disease areas, therefore reducing background
interference. Finally, Asymmetric multi-scale fusion module (AMFM) was employed to
extract multi-scale features from small disease spots on grape leaves for accurate
identification of small target diseases. The experimental results based on our self-
made grape leaf image dataset showed that, compared to existing methods, CASM-
AMFMNet achieved an accuracy of 95.95%, F1 score of 95.78%, and mAP of 90.27%.
Overall, the model and methods proposed in this report could successfully identify
different diseases of grape leaves and provide a feasible scheme for deep learning to
correctly recognize grape diseases during agricultural production that may be used as
a reference for other crops diseases.

Keywords: CASM-AMFMNet, coordinate attention shuffle mechanism asymmetric, multi-scale fusion module,
grape leaf diseases, GSSL, image enhancement
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INTRODUCTION

Grape is a popular fruit worldwide with multiple nutritional
components. The active compounds in grape extracts have
antioxidant, antibacterial, anti-inflammatory, and anti-
carcinogenic activities and thus utilized to generate products
that can alleviate and treat hypertension (Sabra et al., 2021). The
continuous improvement of living standards and high demand
for grapes have been important driving factors in the progressive
development of the grape planting industry and growing areas
of grape cultivation over recent years. However, grapes are easily
susceptible to weather, environmental variables, insect pests,
bacteria, and fungi during the cultivation process (Ampatzidis
et al., 2017), with frequent risk of black rot, black measles, leaf
blight, downy mildew, and other grape leaf diseases that seriously
affect growth and contribute significantly to reduction of grape
quality and yield, resulting in huge financial losses to farmers.

Infection patterns of grape diseases are usually manifested on
the leaves (Chouhan et al., 2020), which can be easily collected
and examined to characterize diseased spots. Traditionally, grape
leaf diseases are evaluated via visual inspection by fruit farmers
and plant protection experts (Pound et al., 2017), which is
associated with problems of strong subjectivity, slow speed, a
high misidentification rate, poor real-time performance, and
high dependence on advice by experts (Bock et al., 2010).
Since grape leaves display small spot areas in the early stages
of disease, manual detection is difficult. In addition, when
collecting grape leaf images in the natural environment, some
disease spots of the leaves are obscured, resulting in fewer
details of features that are identifiable. Evaluation of leaf disease
via visual inspection is a considerable challenge (Chouhan
et al., 2018). However, accurate early identification of the
symptoms of grape disease and effective control spread should
aid in successfully minimizing losses. Therefore, timely and
efficient machine learning methods to identify the disease spots
of grape leaves are extremely helpful for farmers to rapidly
assess the disease type and extent of infestation. Appropriate
prevention and control can reduce the impact of disease, in
turn, improving the yield and quality of grapes and safeguarding
the economic benefits of fruit farming. At present, three
major problems exist in identification of grape leaf diseases.
(1) Imaging of grape leaf has issues of edge blurring and
noise. For instance, among the grape leaf images we obtained,
inconspicuous contrast, blurred edges, and noise were prevalent,
which affect leaf recognition by the network, and in severe cases,
the recognition and extraction of disease features, leading to
inaccurate classification of grape leaf diseases. (2) Images have
background interference. When analyzing grape leaf images,
shape, size, and color of spots of different diseases are usually
extracted. However, complex backgrounds can affect feature
extraction. The network extracts the interference factors in
the background as features, leading to inaccurate classification.
(3) Grape leaf disease spots are extremely small. Since the
grape leaves are relatively small and some disease spots
themselves are minute at the beginning, small and dense disease
spots may also appear on the same leaf, making detection
difficult and leading to lack of extracted feature information.

Consequently, misclassification of different grape leaf diseases is
relatively common.

To solve the problem of blurred edges and noise in grape leaf
images, Liu et al. (2018) proposed a novel adaptive-rendering
approach based on feature reconstruction to eliminate Monte
Carlo noise while preserving image details. However, the edge
information of images obtained with this method becomes
blurred. Clinton (2017) used Sobel algorithms to detect the edges
of blurred images, which improved image quality and facilitated
restoration, but the image edges detected with this method were
discontinuous, and the lines were thick, resulting in loss of some
edge details. Cruz et al. (2017) applied a small-window median
filter to remove noise in the leaf image dataset. This method
effectively preserved the sharp edges of plant leaves, but the
effect of Gaussian noise removal in the background was not
ideal. In this study, the Gaussian filters Sobel smooth de-noising
Laplace operator (GSSL) algorithm was applied to preprocess
the image and process the grape leaf image using multiple steps,
including ideal high-pass filter, Sobel operator, and smooth filter.
The images obtained exhibited clear edges, obvious contrast, and
less noise. At the same time, the texture features of diseased grape
leaves were preliminarily enhanced.

To resolve the problem of image background interference,
Gao and Lin (2019) proposed an accurate and fully automatic
segmentation method for medicinal plant leaf imaging under
complex backgrounds. However, this method was not successful
when applied to gray images. An algorithm combining simple
linear iterative cluster (SLIC) with support vector machine
(SVM) was proposed by Sun and colleagues (Huang et al., 2018)
to extract a saliency map of tea leaf disease under complex
backgrounds (Sun et al., 2019). This procedure uses simple
linear iterative clustering for preprocessing to separate significant
regions from the background. However, errors can occur when
separating the background and disease regions, resulting in loss
of a number of the features at the preprocessing stage.

For the problem of small leaf disease spots, Liu et al. (2020a)
proposed improved deep convolutional neural networks based
on convolutional neural network (CNN) for grape leaf disease
recognition using depthwise separable convolution to establish
the first two convolutional layers, designated DICNN. Deep
separable convolution is used to reduce the model parameters
and over-refinement. Next, the concept structure is employed to
improve the extraction performance of multi-scale convolution
for disease points. Finally, the dense connection strategy is
introduced to promote the fusion of multidimensional features
between the concept structures for alleviating the problem
of gradient disappearance and facilitating feature reuse and
propagation. However, when the simplest CNN is used as
the model backbone, the gradient descent algorithm can be
easily applied to make the training results converge to the
local minimum rather than the global minimum. The pooling
layer loses considerable valuable information and overlooks
the correlation between the local and global layers. On
the other hand, in a complex environment, precise disease
location of grape leaves is not achieved and the disease can
easily be confused with a similar background, resulting in
reduced accuracy of identification. The use of deep separable
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convolution significantly reduces the model parameters but
simultaneously decreases the model capacity, leading to lower
accuracy of disease recognition. The presence of accumulating
perception structures also increases the difficulty of using
the model in downstream tasks and amount of calculation.
Xie et al. (2020) proposed a rapid DR-IACNN with higher
feature extraction capability to identify grape leaves based on
the detection algorithms of GLDD and fast R-CNN. Firstly,
the use of Resnet improved the backbone. A double RPN
structure was designed to achieve better feature extraction of
small lesions through upsampling and downsampling. Disease
features were extracted by introducing the inception-v1 and
inception-ResNet-v2 modules and Se blocks to obtain further
features. While this method facilitates network focus on the
diseased points of grape leaves rather than the background,
drawbacks of the Resnet model include a large number of
parameters and high volume of the model after training.
Despite the increased accuracy of identification of diseases
from grape leaf images, several problems, such as large
network parameters, complex calculations, and poor real-time
performance, remain to be resolved. SE blocks only consider
reweighting the importance of each channel by simulating the
channel relationship while disregarding location information,
consistently resulting in significant classification errors for
grape leaf diseases.

In view of the above issues, we proposed CASM-AMFMNet
based on CoAtNet to improve the identification and classification
of grape leaf diseases. Firstly, CoAtNet effectively combined the
convolution and attention layers to achieve a better balance
between recognition accuracy and efficiency and showed better
generalization ability and capacity of the network model. As
a backbone, CoAtNet initially extracted the local edge features
of disease images, such as contour and color. The CASM
module was effectively used to solve the problems existing in
the traditional SE block, embed location information into the
channel attention system so that the network could perform
over a wide range, and avoid computational overheads to
accurately locate, capture, and extract feature information used
to distinguish between diseases and reduce the interference
of complex background information. Finally, the AMFM
module, which could process the input image position and
semantic information on different scales that were then
rescaled and combined with the module input, was introduced
to extract multi-scale features of small targets. Our model
effectively reduced the quantity of calculations and training
time of the network.

The main contributions of this study are as follows:

1. A new algorithm GSSL is proposed to enhance grape
leaf imaging. The method initially grayscales the image
and subsequently processes high-pass filtering and the
grayscale image using the Sobel operator to obtain the
mask. Simultaneously, the grayscale image is smoothed and
denoised, and the image obtained is processed using the
Laplace operator to enhance grape leaf details. Finally, a
preliminary texture-enhanced grape leaf image is generated
using this image and the mask.

2. To reduce the background interference in grape leaf
images and improve the extraction of small disease spots,
we have proposed a new network, CASM-AMFMNet.
The design is as follows: (a) A coordinate attention
shuffle mechanism (CASM) suitable for retaining accurate
disease location information along two different spatial
directions, and capturing the domain of interest is utilized
to extract feature information for disease discrimination.
The module uses the input grape leaf disease image feature
maps to perform group convolution (GC), and each sub-
feature map captures specific semantic information on
network training. Meanwhile, adding a channel shuffle
at the end of the module can effectively improve the
correlations between different channels in the group
convolution and integrate feature information on each
channel, improve the network fit, and merge the extracted
image features with fewer numbers of parameters to obtain
higher model accuracy. The module assigns weights to the
feature maps according to different semantic information.
The weight of the channel in which the grape leaf
disease features are located is the largest, which effectively
suppresses the interference of analogs and extracts disease
features under complex background interference. (b)
An asymmetric multi-scale fusion module (AMSM) was
designed, which assigns multi-scale perceptual fields in
the main network and effectively extracts details such as
the shape and contour of small grape leaf disease spots.
The ACB on each branch can enhance the robustness of
the model to flipped or rotated images, improve training
accuracy, and further reduce the number of parameters
and computational efforts of the model. The module
may be used to better focus on smaller spots that are
easily overlooked when performing feature extraction
and extract features while improving the precision of
small target extraction and reducing the training time
required by the network.

3. Our method achieved an accuracy of 95.95% in
identification of five grape leaf samples, F1 score of
95.78%, and mAP of 90.27%. Furthermore, the model had
a good discriminatory power for distinguishing between
healthy and diseased leaves, facilitated classification of
grape leaves in complex environments, and effectively
extracted small disease spot targets. This technique could
also be used with good results in public datasets. Rapid and
accurate identification and classification of leaf diseases
should effectively reduce loss of grape production in
agriculture.

RELATED WORK

To reduce the harmful effects of diseases in plants, many experts
and scholars have recently focused on exploring the utility of
artificial intelligence in identifying and classifying plant diseases
rapidly and effectively. These studies have made significant
contributions to the recognition of plant diseases, especially
grape leaf diseases. For instance, Kundu et al. (2021) developed
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the framework of “automatic and intelligent data collector and
classifier” by integrating IoT and deep learning to precisely
predict blast and rust diseases in pearl millet. Padol and co-
workers used the SVM classification technique for grape leaf
diseases. The K-means clustering segmentation algorithm was
initially used to identify the region of disease and extract texture
and color features, followed by a classification technique for
stratification of leaf disease categories (Padol and Yadav, 2016).
This method showed an accuracy of 88.89%. The group of
Narvekar used the SGDM matrix method to analyze grape
leaf diseases and systematically discussed effective methods for
disease detection via leaf feature inspection (Narvekar et al.,
2014). Their method was able to achieve accurate disease
detection with little computational effort. Peng et al. (2021)
performed extraction with CNN plus support vector machine
(SVM) to diagnose grape leaves based on fused deep features.
Using this method, the SVM classifier could be trained to achieve
the same classification accuracy as the CNN model. Leaf GAN
utilized by Liu et al. (2020b) to analyze four different grape
leaf disease images successfully overcame the overfitting problem
and improved identification accuracy. Jaisakthi and colleagues
further used different machine learning techniques such as SVM,
AdaBoost, and Random Forest tree (Liu et al., 2020b), to identify
grape leaf diseases. Their results showed that SVM was able
to achieve 93% accuracy (Jaisakthi et al., 2019). Each of the
above methods has its own merits, and network models using
SVM classifier and CNN clearly have the ability to successfully
classify grape leaf diseases. However, identification of grape
leaf diseases needs to be optimized in many areas to achieve
higher classification accuracy. In addition, grape leaf images
with blank backgrounds have mainly been used as the datasets
for experiments to date, which are conducive to classification
of simple images and less suitable for complex backgrounds.
Meanwhile, the current network is inadequate for recognition
of small target diseases and leads to generation of errors. Here,
we propose a model better adapted to extract features of grape
leaf small target diseases under complex backgrounds based on
CASM-AMFMNet. The specific scheme of grape leaf disease
identification and classification is presented in Figure 1.

MATERIALS AND METHODS

Data Acquisition
Grape leaf data used in this study were classified into five
categories: (1) healthy, (2) black rot, (3) black measles, (4)
leaf blight, and (5) downy mildew. The dataset was mainly
derived from two sources. One part was collected from the
Tianlu vineyard (Changsha, China), which incorporated images
of healthy, black rot, leaf blight, and downy mildew leaves
from different periods taken on both sunny and cloudy days.
We constantly changed the shooting angles and distances
and collected grape leaf images of different colors, sizes, and
backgrounds. To ensure accuracy of recognition, the grape leaves
filled the image to the maximum extent. The other part of
the dataset included leaves of different grape varieties with
black measles along with the above diseases from a complex

environment, comprising several orchards located using websites
such as Kaggle (2021) and Google, among which 2,603 images
were screened. Using the available information and by consulting
relevant scholars, we reorganized and reclassified the collected
images, screened those that were categorized, and deleted blurred
images. Ultimately, 3,409 grape leaf images were collected from
both dataset sources. The numbers and ratios of different
categories of grape leaf images are shown in Table 1.

Five types of grape leaves were analyzed in this study. Healthy
grape leaves were dark green and palm shaped with a surface
free of disease spots and clear veins. Black rot is a fungal disease
(Tomoiaga and Chedea, 2020) usually occurring at the leaf
margin. After their appearance, disease spots gradually expand
to circular spots that are gray-white in the center and brown
on the outer edge, with a grayish-brown margin. At the later
stages of the disease, small dots arranged in a ring appear on
the disease spots. During early infection with black measles
caused by fungal complexes, such as Phaeoacremonium (Nerva
et al., 2019), light green spots are formed between leaf veins
that continue to expand to the end of branches, and eventually
become tiger striated. At the initial disease stage, leaf blight
caused by fungi, such as Pestalotiopsis (Nuthan et al., 2021),
presents as light-brown, irregular, and angular small spots, which
then expand into circular or oval brown spots with a brown or
tan center and a dark brown margin with a water-stained outer
edge. Downy mildew [caused by Plasmopara viticola (Berk. &
Burt.) Berl. & De Toni belonging to the order Peronosporales,
a pathogen of grape-specific oomycetes (Fawke et al., 2015)]
produces small, indistinct, yellowish watery spots with indistinct
edges in the early stages of infection, which gradually expand
into light green or yellow-brown spots on the front of leaves.
Images of individual grape leaf diseases clearly show distinct
spot characteristics. However, black rot and leaf blight have
relatively similar features. Some leaf images show many tiny spots
in both the early and later stages of infection, and therefore,
extraction of their specific characteristics is important for disease
recognition and management.

Convolutional neural networks require a large number
of samples for model training, and acquisition of large
quantities of disease images is a considerable challenge.
Therefore, we expanded the dataset in this study using image
transformation algorithms (Ghosal et al., 2018) to increase
the sample number, prevent overfitting in the network, and
improve the performance of the model (Pawara et al., 2017;
Barbedo, 2018). We employed the algorithms of perspective
transformation, geometric transformation (Sladojevic et al.,
2016) [e.g., horizontal and vertical mirroring flip (Wang et al.,
2017)], and intensity transformation (e.g., contrast increase and
decrease and brightness enhancement and decrease) (Khan et al.,
2018) to increase the number of grape disease images with a
view to simulating the real collection environment and improving
diversity and accuracy. With the aid of “vertical mirroring,”
“horizontal mirroring,” “contrast reduction by 10%,” “contrast
increase by 10%,” “Grayscale value increase by 45,” “Grayscale
value reduction by 45,” “perspective transformation,” and “image
transposition” processes, grape leaf diseases were imaged. Taking
the grape leaf downy mildew image as an example, the eight
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FIGURE 1 | A working principle diagram of the system.

TABLE 1 | Number and proportion of grape leaf images.

Category Example Number (Before) Proportion/ % (Before) Number (After) Proportion/ % (After)

Healthy 814 23.88 3,166 20.02

Black rot 725 21.27 3,148 19.89

Black Measles 669 19.62 3,175 20.06

Leaf blight , 674 19.77 3,154 19.93

Downy Mildew 527 15.46 3,181 20.10

transformed images are shown in Figure 2. Original downy
mildew leaves are usually light green. The disease spots could
be enhanced by adjusting the contrast of disease spots and leaf
colors. Through perspective transformation, the disease spot
could be enlarged, which facilitated observation of the water stain

shape. Different angle transformation methods were utilized to
examine the shapes of the diseased leaves from different angles.
At the same time, the brightness transformation simulated leaf
images in different environments, leading to enhancement of
disease characteristics.
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FIGURE 2 | Eight transformation images of downy mildew as an example.

FIGURE 3 | A Gaussian filters Sobel smooth de-noising Laplace operator (GSSL) enhancement effect chart for five grape leaves.

Evaluation Indicators
To determine the effectiveness of our method and quantitatively
analyze the accuracy of grape leaf image recognition and
classification, evaluation criteria used on the one hand were
accuracy Equation (1), precision Equation (2), recall Equation
(3), and mAP Equation (4) for assessment of the model
performance. On the other hand, considering the limitations of
storage and computational power during network operation, FPS
(the number of grape leaf images recognized by the model per
second, representing speed of detection), recognition time used
per batch of images, param, MFLOPs, and FLOPs were also used
as criteria for model evaluation.

Accuracy =
TF + TP

FP + TN + TP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

mAP =
∫ 1

0
P(R)dR (4)

TP indicates the number of accurately identified grape leaf
disease categories, TN the number of incorrectly identified
non-grape leaf diseases, FP the number of correctly identified
non-grape leaf diseases, and FN the number of grape leaf
diseases that were not correctly identified. Precision indicates
the proportion of all correctly predicted grape leaf images to
the number of true correct samples and incorrectly predicted
correct samples within the data. Recall signifies the proportion
of grape leaf images of all predicted correct samples in relation
to all true correct samples. For comprehensive evaluation
of the model, the harmonic average F1 score of precision
and recall was applied as the evaluation index, as shown in
Equation (5).

F1 =
2 ∗ precision ∗ recall

precision+ recall
(5)
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FPS representing the number of images detected by the model
per second (speed of detection) can be obtained from Equation
(6) below.

FPS =
N
T

(6)

In Equation (6), N represents the number of recognized
samples and T the time required to test all samples.

For the evaluation index of the image quality, we selected
grayscale mean, peak signal-to-noise ratio (PSNR), and entropy
to quantitatively analyze the quality of image enhancement and
compare with the visual effects. The grape leaf image with a high
mean gray value is bright overall, which is easier to identify than
an image with a low mean gray value. Larger PSNR corresponds
to lower distortion of the grape leaf image. Larger entropy values
are correlated with richer texture information. Mean, PSNR, and
entropy are calculated using Equations (7–9).

mean =
1

X × Y

X∑
i=1

Y∑
j=1

R(i, j) (7)

PSNR = 10× lg
(

MAX2

MSE

)
(8)

entropy =
225∑
i=0

P(i)× log2 p(i) (9)

Here, X × Y represents the total number of pixels in the
image, R(i,j) is the pixel value of the image point (i,j), R(i,j), and
f (i,j) are grayscale values of the output and input images at point
(i,j), respectively, MSE is the mean square error, and 255 is the
maximum gray level. P(i) denotes the proportion of pixels with
gray value i to total pixel number.

Gaussian Filters Sobel Smooth
De-Noising Laplace Operator
The images of grape leaves in the dataset have a number
of issues, such as inconspicuous contrast, blurred edges, and
noise. Therefore, the acquired grape leaf images need to be
pre-processed via filtering, noise reduction, and enhancement.

We have proposed a GSSL algorithm to denoise and enhance
grape leaf images in this study. Compared with the traditional
preprocessing method, our procedure does not need to segment
the background and leaves but deepens the edge contours
of grape leaves, reduces image noise, and uses multi-step
combination processing, such as ideal high-pass filter, Sobel
operator, and smooth filter. Useful information from the image is
extracted to the maximum extent possible and the noise reduced.
Through image superposition, the authenticity of the original
image is retained, and image distortion is effectively prevented
while highlighting useful information. The image is obtained as
E(i,j), as shown in the Equation (10).

E(i, j) =

{√
s2
i + s2

j ×

[ 1∑
m=−1

1∑
n=−1

k(m, n)p(i−m, j− n)

+ f (i, j)
]}
+ f (i, j) (10)

Here, k(m,n) is the Laplace operator mask of 3×3, p(i,j) the
gray value after smooth filtering, si and sj the gradients of the
image in the horizontal and vertical directions, respectively, and
f (i,j) the gray value of the input image at point (i,j). The specific
workflow of the GSSL algorithm is as follows:

Step 1: The data of grape leaf images are normalized. Color
images are converted into grayscale, and the normalized and
grayscale-processed grape leaf images used as the input for
subsequent steps.

Step 2: The mask required is obtained and a simple detailed
enhancement image acquired in two steps.

1. First, the ideal high-pass filter is used to process the input
image. Through this step, the high-frequency part of the
grape leaf image in the frequency domain space, i.e., edge
details, can be extracted. Next, the image extracted with
the ideal high-pass filter is added to the input image
to obtain a simple edge enhancement image. The Sobel
operator is subsequently used as the convolution kernel for
the convolution operation on the image obtained in the
previous step to acquire edge information for use as a mask.

2. The input grape leaf image is smoothed, denoised, and
processed with the Laplace operator to highlight minor
details. Incorporation of this result into the input image
generates a preliminary detail-enhanced image.

Step 3: Image calculation. The mask image processed in Step
1 is multiplied by the initial enhanced image obtained in Step
2 for efficient extraction of edge and detailed information from
the grape leaf image. The input image is then added to obtain
an enhanced grape leaf image. A representative enhanced image
obtained with the GSSL algorithm is shown in Figure 3.

As observed from the figure, grape leaf image processed using
GSSL displays a certain shape of dark spots with an obvious
edge contour. For example, “black measles” and “leaf bright” can
clearly be utilized to detect the location of the spots. Although
the disease contour is not obvious, colors of spots are easily
distinguishable from the healthy leaf surface. The veined texture
of all enhanced grape leaves is also more prominent, weakening
the background-independent factors and reducing noise in the
image, which increases the convenience of subsequent extraction
of grape leaf characteristics by the neural network model.

Coordinated Attention Shuffle
Mechanism-Asymmetric Multi-Scale
Fusion Module Net
In the images of grape leaf disease we collected, most of the
grape leaves that have diseases show background interference.
This entails that the whole network is vulnerable to impeded
recognition, resulting in the incorrect localization of the
identified disease areas. In addition, some of the diseased areas
are almost integrated with the grape branches in the background,
or their leaf shapes and contour after leaf curling are easily
confused with the shapes and contours of the flowers in the
background, resulting in recognition errors, which reduces the
recognition accuracy of the grape leaf diseases.
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Therefore, the reduction of the impact of a complex
background on disease recognition and the realization of the
feature extraction of small disease spots of grape leaf diseases
are problems that need urgent solution. In response, this paper
designs a CASM-AMFMNet for grape leaf disease identification
and classification. First, the network proposes a backbone based
on CoAtNet. Then, the CASM module is used to accurately
capture location information for grape leaf diseases and to
focus on their essential features to reduce complex background
information. Finally, AMFM is used to give the main network
multi-scale perceptual fields, extracting subtle features such as
disease spot shapes and contours in all directions as much as
possible to improve the accuracy of the network recognition
of small targets, effectively reducing the amount of parameter
computation and reducing the training time of the network.

The overall structure of the CASM-AMFMNet is shown in
Figure 4, which is mainly divided into the following three parts:

1. In the first part, we used CoAtNet as the backbone. It
uses convolution for downsampling up to stride = 16 to
perform preliminary extraction of the features of grape leaf
disease and bring about higher accuracy in the network,
better generalization, and larger capacity.

The second part consists of a CASM module and an AMFM.
First, the CASM divides the feature map into G groups (see
the following text for the definition of G). Then, we used
coordinate attention mechanism (CAM) for an average pool
of the horizontal and vertical directions; this process assigns
different weights to channel and spatial features, suppresses
background information that is invalid with respect to the
features of grape leaf disease, captures the accurate location
information on the disease, and enhances the expressiveness of
the network. Next, through three 1∗1 convolutions, a feature
map of the same size and enhanced representation as the input
grape leaf feature image is obtained. Finally, the feature maps
obtained from the first layer are added to the module after
the attention mechanism for the channel shuffle to enhance the
expression of the learned features and use the SELU activation
function to enhance the nonlinear expression capability of the
network. We added the CASM module at the backbone end of
the model to fully consider the global and local texture features
of grape leaf disease. AMFM consists of two 1∗1 convolutions
and n 3∗3 convolutions at different scales, and the feature fusion
of the disease features extracted by backbone can strengthen the
recognition capability of small disease targets. The convolution
adopts ACB convolution, which is done to reduce the amount of
parameter computation and speed up network training.

2. In the third part, the global pooling downsampling layer is
connected to the fully connected layer. Finally, the output is
transformed into a probability distribution using Softmax
to obtain the classification results of grape leaf disease
images.

The following three subsections elaborate on the network.

CoAtNet
ConvNet has good generalization capability and rapid
convergence speed. Nevertheless, its perceptual range is

limited by the size of the convolution kernel, while its large-
scale perceptual ability is conducive to the model to obtain
additional contextual information. A transformer tends to
have a larger model capacity, but its generalization capability
is poor relative to that of ConvNet due to the lack of correct
induction deviation. Therefore, this paper uses CoAtNet (Dai
et al., 2021) as the backbone, which effectively combines
ConvNet with a transformer to achieve a better trade-off
between accuracy and efficiency, and its backbone network
uses residual connections. As a result, the network structure
has sufficient depth to retain additional feature information
and facilitate the fusion of feature information at the front
and back layers of the network. In addition, the network can
mitigate network degradation, including gradient disappearance
and explosion during training, which makes the model
easier to converge and leads to stronger feature extraction
capability. When the data set is large, the network model is
enabled to have stronger learning ability and generalization
ability so that the network model has better performance on
classification tasks.

Coordinate Attention Shuffle Mechanism
Some of the images in the grape leaf data set that we
collected were taken in a complex natural environment. The
images have problems such as grape leaf self-obscuring, grape
fruit, hand obscuring the disease area, leaf curling, and
so forth. In addition, because some of the disease spots
first occur at the edge of the leaf, the traditional method
shows a large degree of uncertainty in terms of acquiring
information about the grape leaf disease area. However, the
gaps between different diseases on grape leaves are usually
in tiny local details. If it is affected by both the background
and the shape of disease spots at the same time, this will
lead to increased recognition. In the current study, we found
that CAM (Hou et al., 2021) can capture cross-channel
information and orientation- and position-aware information,
which can help the model locate and identify potential targets
more precisely. Second, CAM is an attention method with
flexible and lightweight properties that can be easily inserted
into classic modules to enhance features by strengthening
information representation. Finally, as a pre-trained model,
CAM can bring significant gains to downstream tasks based on
lightweight networks.

Therefore, in this paper, we propose the CASM module, which
is based on CAM, and added it to the CASM-AMFMNet so
that the network model can pay closer attention to the grape
disease area, distinguish the background interference from the
disease, and accurately obtain the detailed feature information for
the grape leaf disease area to extract the feature information to
distinguish between diseases and improve recognition capability
of the local detailed features of the disease. The CASM module is
shown in Figure 5.

Because the CASM module is proposed according to the cam
module, referring to the two steps of the cam module, this paper
proposes that group coordinated information on the embedding
module (GCM) and the coordinated attention generation shuffle
module (CSM) are the main structures of the CASM module.
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FIGURE 4 | Coordinated attention shuffle mechanism-asymmetric multi-scale fusion module net (CASM-AMFMNet) structure.

FIGURE 5 | Coordinate attention shuffle mechanism (CASM) module structure.

A. Group coordinate information embedding module (GCM)

This operation of the GCM corresponds to group convolution
and the two parts X Avg Pool and Y Avg Pool in Figure 5
above, which is a global sensory field that encodes precise location
information. The CASM module proposed in this paper has the
following four improvements.

First, we GC the input image feature map of grape leaf disease.
In network training, each sub feature map captures specific
semantic information. After we performed GC, the parameter
quantity became 1/G of the original standard convolution. With
the increase in the number of groups, the parameter quantity and
calculation quantity are significantly reduced. The G obtained by
the experiment is set to 4. In addition, GC cannot easily produce

Frontiers in Plant Science | www.frontiersin.org 9 May 2022 | Volume 13 | Article 846767

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-846767 May 18, 2022 Time: 15:56 # 10

Suo et al. Classification of Grape Leaf Diseases

FIGURE 6 | Asymmetric multi-scale fusion module (AMFM) structure.

overfitting, and it has the effect of regularization (Krizhevsky
et al., 2017). Then, the attention module is induced to capture
the remote dependencies with precise location information, and
then the pooling kernel with dimensions (H, 1) and (1, W) is
used to encode the sub-feature maps for each channel along
the horizontal and vertical coordinates, respectively, so that the
output of the cth channel can be written as the Equation (11).

zc =
1

H ×W

H∑
j=1

W∑
j=1

xc(i, j) (11)

In the Equation (11), zc denotes the output of the cth channel
and xc(i,j) denotes the values of the position characteristic
diagram of height coordinate i and the width coordinate j of the
cth channel. The output of the cth channel with height h can be
expressed as the Equation (12).

Zh
c =

1
W

∑
0≤j≤W

xc(h, j) (12)

In the Equation (12), Zh
c (h) denotes the output with height

of the cth channel as h, and xc
(
h, j
)

is the value of the feature
map with width coordinate j for the cth channel with height h.
The output of the cth channel with width w is as shown in the
Equation (13).

Zw
c (w) =

1
H

∑
0≤j≤H

xc(i, w) (13)

In the Equation (13), Zw
c (w)denotes the output with the height

of the cth channel as w; xc (i, w) is the value of the feature
map with height coordinate i for the cth channel with width
w, and H and W are the height and width of the feature
map, respectively.

The above two transformations aggregate features along
two spatial directions and generate direction correlation
feature graphs. This is very different from the SE block,
which generates a single eigenvector in the channel attention
method. These two transformations also allow the attention
module to capture long-term dependencies along one spatial
direction and preserve precise location information along
the other, which helps the network to locate small spots
more accurately.

B. Coordinate attention generation shuffle module (CSM)

In Step A, the global sensory field can be easily obtained,
and precise positional information encoded. To better integrate
the features of grape leaf diseases so that their features can
be fully utilized to capture positional information and facilitate
more precise localization of ROI regions, we concatenated the
aggregation feature maps generated by Equations (12, 13), and we
used 1∗1 convolution to compress the channel for transformation
to obtain Equation (14).

f = δ
(

F1

([
zh, zw

]))
(14)
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In Equation (14),
[

zh, zw
]

is a stitching operation along

the spatial dimension, δ uses SELU, and f ∈ Rc/r×(H+W) is an
intermediate feature map that encodes the spatial information
in the horizontal and vertical directions. Then, f is decomposed
into two separate tensors f h

∈ Rc/r×(H+W) and f w
∈ Rc/r×(H+W)

along the spatial dimension, and two additional 1∗1 convolution
transforms fh and fw are used to transform Fh and Fw into tensors
with the same number of channels to the input X, respectively, to
obtain Equations (15, 16).

gh
= σ

(
Fh

(
f h
))

(15)

gw
= σ

(
Fw
(
f w)) (16)

In Equations (15, 16), σ is the sigmoid activation function to
reduce the complexity and computational overhead of the model;
an appropriate scaling ratio r is usually used here to reduce the
number of channels of f. Next, the outputs gh and gw are expanded
and used as attention weights to generate new feature maps by
combining all of the sub-feature maps, as shown in Equation (17).

yc
(
i, j
)
= xc

(
i, j
)
× gh

c (i)× gw
c
(
j
)

(17)

Finally, by shuffling the information on the sub-feature map,
we strengthened the information exchange between different
channels and acted on the input to obtain the output X =
[x1, x2, ...xc] with the same size of this attention module as the
input Y ′ = [x1, x2, ...xc] and with enhanced learning features, as
shown in Equation (17).

Y ′ = channel_shuffle(Y) (18)

In GSM, the method used in this paper makes the
following innovations.

1 To adapt to complex and variable backgrounds, we used
switchable normalization (SN) instead of the traditional batch
normalization (BN) layer to make the model more robust to
adapt to various scenarios by dynamically adjusting the weights
through training. SN calculates the BN, LN, and IN, produces
the statistical weighting (weights are calculated by Softmax),

and finally calculates the normalized pixel value
_

h nchw as
Equation (18).

_

h nchw= γ

_

h nchw
∑

kε� ωkµk√∑
kε� ω

′

kσ
2
k + ε

(19)

In Equation (19), we input a four-dimensional feature vector
of a grape leaf image with n, c, h, and w, representing the
number of samples, channels, height, and width, respectively.

hnchw is each pixel on the feature map,
_

h nchw is the pixel
value output after the SN operation onhnchw, γ is the scaling
coefficient; β is the offset coefficient, µis the mean value, σ2is
the variance, and ωk and ω

′

k are the weighting coefficients
for weighting the mean and variance, respectively. The weight
coefficient ωk uses the Softmax function to calculate the

control parameters λk of the three dimensions, as shown in
Equation (20).

ωk =
eλk∑

zε� eλk
(20)

In Equation (20), the initial values of the control parameters
λk for each of the 3 dimensions are 1, which are optimized during
back propagation with

∑
kε� ωk = 1; the value of each weighting

factor ωk is between 0 and 1.
2 We used the SELU activation function instead of the

commonly used ReLU activation function or the Sigmoid
activation function to improve the learning convergence effect of
the model. The SELU activation function is calculated as follows:

SeLU(x) = λselu

{
x x ≥ 0

αselu
(
exp (x)− 1

)
otherwise

(21)

In Equation (21), α and λ are hyperparameters, and it
is proven that the training effect reaches the best atαselu ≈

1.6733, λselu ≈ 1.0507.
3 Adding a channel shuffle at the end of the module can

effectively integrate the feature information on each channel,
strengthen the information exchange between channels, and
better enable the network fit of the extracted image features
with fewer parameters to obtain higher model accuracy,
improve the efficiency of the model operation, and enhance the
classification effects.

Asymmetric Multi-Scale Fusion Module
Compared to the entire image, the diseased area on a grape
leaf image is tiny, so the size of the disease spot used for
the extraction itself is necessarily small. After CoAtNet, the
semantic information of the small targets in the grape leaf
features map almost disappears at this time, which increases
the difficulty of the network to recognize small spots. The
black rot spots and leaf bright spots are small and dense, the
black measles spots are similar to stripes, and the frosty mildew
spots are irregular in shape. To address the problem of small
target recognition in grape leaves, we extracted and fused the
shape and contour features of grape leaf spots at different
scales, effectively improving network accuracy and enhancing
the feature expression capability of the convolution kernel to
achieve accurate recognition of small targets. A single-scale
convolution kernel is not efficient for sensing multi-scale lesion
points. Therefore, this paper proposes AMFM, which uses MSFM
(Wang and Wang, 2020) as the framework for extracting the
features of multi-scale lesions and partially improves it. AMFM
can extract the small lesion features of grape leaves to a greater
extent without increasing the amount of calculation and improve
the robustness of the model to image reversal.

Asymmetric multi-scale fusion module divides the feature
map obtained after 1∗1 convolution into n scales equally.
One of the 3∗3 convolutions is replaced using an asymmetric
convolution block (ACB) (Ding et al., 2019), which can still
extract features correctly for flipped images to improve the
network’s training accuracy and reduce the parameters of the
model training and the required computational effort. On the
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other hand, the use of the SELU activation function instead of
the ReLU activation function can better fit the training, extract
the features of the grape leaf spots, and improve the learning
convergence of the network. The model for AMFM is shown in
Figure 6.

First, the input grape leaf images are convoluted with
3∗3 convolution kernels, 1∗3 convolution kernels, and 3∗1
convolution kernels, which produce three different shapes to
extract different branch features, as shown in Equation (22).
Then, the different branches are fused using convolution’s
additivity to obtain the fused feature output. To make the module
lightweight while maintaining the dimensionality of the fused
output features consistent with that of the input features, the
residual bottleneck structure is utilized. This structure refines
the module input according to the channel and then feeds into
the branches. Finally, the branch input is resized using bilinear
interpolation, and its elements are returned to their original size
using the same method, as shown in Equation (23).

M (x) = x+ U {C [F1 (S (x)) , F2 (S (x)) , ...Fn (S (x))]} (22)

Fn (a) = R−1
n
(
CGNn,i

(
CGNn,i−1

(
...
(
CGNn,i (Rn (a))

))))
(23)

In Equations (22, 23), x is the input grape blade, M(x) is
the output, S() is the extrusion module that makes the input x
thinner, Fn() is the branching operation, C() is the combination
function, and U() is the unsqueezed module that restores the
branching output depth to be the same as x. CGNn,i is the
result of the extrusion module, Rn() is the resize function on
the nth branch, a = S(x) is the normalized nonlinear operation
on the nth branch of the ith ACB group, and Rn

−1 is the resize
function to restore the feature dimensions (height and width).
The computational volume equation after applying the ACB is
as shown in Equation (24).

I ∗ K1 + I ∗ K2 = I ∗ (K1 ⊕ K2) (24)

In Equation (24), I is the input feature map matrix; K1 and
K2 are two convolution kernels; ⊕denotes added corresponding
positions of the convolution kernels. In the feature fusion
process of asymmetric convolution processing, the feature
information is superimposed based on standard 3∗3 convolution
processing with feature information extracted by two dimensions
of asymmetric convolution. Compared to the 3∗3 convolution
with 3∗3 multiplications, the number of asymmetric convolution
operations is 2∗3 multiplications, and the amount of network
operations is reduced by 1/3.

RESULTS AND ANALYSIS

This section verifies the effectiveness of the CASM-AMFMNet
in the identification and classification of grape leaves through
experiments and designs experiments to use the test set
in other models together with the model in this paper to
compare the effectiveness of different models. This section
describes the experimental environment, the experimental
setup, the evaluation metrics, the effectiveness analysis of each

TABLE 2 | Hardware and software environment.

Hardware environment CPU Intel Core i7-6800 K
3.40 GHz 15 MB

RAM 64 GB

Video memory 32 GB

GPU NVIDIA GTX 2080ti

Software environment Operating system Windows 10

CUDA Toolkit V11.1

CUDNN V8.0.4

Python 3.8.8

Torch 1.8.1

Torch vision 0.9.1

Matlab 2020a

TABLE 3 | Parameter setting.

Parameter category Parameter name Parameter setting

AdamW Initial learning rate 0.001

Weight decay 1 × 10−4

Momentum 0.9

Learning rate decay 0.1

Input data parameters Size of input images (224,224)

Minibatch 32

Iteration Epochs 30

Iteration Number 37,950

module of CASM-AMFMNet, the ablation experiments, and the
comparison experiments between different models.

Experimental Environment and Data
Preparation
To verify the performance of the CASM-AMFMNet proposed in
this paper, all experiments were carried out in the same hardware
and software environment, with the specific environmental
parameters shown in Table 2.

Experimental Settings
The self-made data set used in the experiments in this paper
contained five categories of grape leaves: healthy, black rot, black
measles, leaf blight, and downy mildew. The size of the unified
image input is adjusted to 224∗224 to improve the efficiency of the
image processing technology, minimize the calculation cost, and
reduce the time spent with the training model and classification.
After pre-processing, we obtained a total of 15,824 images of
grape leaves. The number of images for the five diseases was
evenly distributed, all in the range of 19–21%. The data sets in
this paper were divided in the following ratio: the training set: the
validation set: the test set = 3:1:1, with 9,480 images of the five
grape leaves in the training set and 3,160 images in the test set.

In the deep learning training, the hyperparameter selection is
difficult and time-consuming because the optimal combination
of hyperparameters depends not only on the model itself but
also on the software and hardware environment. In this paper,
the hyperparameters of the CASM-AMFMNet were determined
through multiple fine adjustments, as shown in Table 3. When
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FIGURE 7 | Comparison experiments of different data enhancement effects.

training with the model, batch training was adopted to randomly
divide the training and validation sets into multiple batches, with
a training batch (Minibatch) of 32 and a round batch (epoch) of
30 and 1,265 iterations per round, for a total of 37,950 iterations.
We verified once every 1,000 iterations; the initial learning rate
was set to 0.001, and the weight decay value was 1× 10−4.

To investigate the effects of different optimizers on model
performance, three commonly used optimizers were selected for
model training, and model accuracy was obtained under different
optimizers. For validation accuracy, the AdamW (Kingma and
Ba, 2014) optimizer value is 1.03 and 1.42% higher than those
for the SGDM and RMSprop optimizers, respectively; for testing
accuracy, the AdamW optimizer value is 1.71% and 2.10%
higher than those for the SGDM and RMSprop optimizers,
respectively. Therefore, the AdamW optimizer with the driving
volume is more suitable for this study model. Under the same
experimental conditions, the accuracy of the models obtained
by the three optimizers differed significantly. Regarding training
duration, the three methods are relatively close to one another,
all occupying around 3 h, although the AdamW optimizer takes
the shortest time.

Training parameters of the model are set as shown in Table 3.

Individual Modules Effectiveness
Analysis
Impact of Data Enhancement on Recognition
Performance
In this section, we used digital image processing to expand the
collected grape leaf image data sets and then trained the original
data set, the flip expanded data set, the contrast expanded data
set, the gray expanded data set, the perspective expanded data
set, and the common expanded data set using the model CASM-
AMFMNet, proposed in this paper. The experimental results for
accuracy and loss are compared to evaluate the impact of data
enhancement on the classification accuracy of grape leaf diseases,
as shown in Figure 7. Compared to the original image data set,
the training accuracy of different expansion methods is improved
by 0.30, 3.17, 2.86, 7.49, and 14.42 percentage points, respectively.
The training accuracy in the case of the flipping expansion is

not different from that in the original data set as the flipping
operation shows little change in image quality due to multi-angle
shooting. However, the training accuracy of other expanded data
sets is significantly higher than that of the original data set. The
reason for this is that the original training sample set is too small,
and the data expansion provides the necessary amount of data
for model training. In particular, the recognition accuracy of the
jointly expanded data set is much better than for that of the
non-expanded data set. The loss function curve shows that the
training loss value of the expanded data set is lower, and the
model converges rapidly; it can well fit the characteristics of grape
leaf disease. Data expansion increases the diversity of data, the
parameters of the classification model are fully trained, and the
network model has better feature extraction ability when trained
on large data sets. More importantly, the enhancement of the data
set can better simulate the real environment of grape leaves and
improve the model robustness.

Effectiveness of Gaussian Filters Sobel Smooth
De-Noising Laplace Operator
To more objectively evaluate the feasibility of the method studied
in this paper, the GSSL algorithm compares the grape leaf images
processed by the GSSL algorithm with five filter enhancement
and comparison algorithms, and the grape leaf image test set
is enhanced for comparison experiments and analysis. The
parameters of the gray level mean, peak signal-to-noise ratio
(PSNR), and entropy of the six algorithms are shown in Table 4.

TABLE 4 | Enhanced image quality parameters.

Method Mean PSNR Entropy

Original image 132.17 27.49 7.55

EGIF (Wu et al., 2021) 135.91 29.63 7.64

WGIF (Mu et al., 2021) 110.23 31.08 7.25

HSFGTF (Joseph et al., 2021) 128.25 28.70 7.00

GFCBH (Pashaei, 2021) 95.16 35.12 6.99

WLS (Singh et al., 2022) 119.32 35.04 7.81

GSSL 148.61 37.87 7.94
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FIGURE 8 | Accuracy curves of the CoAtNet and the coordinated attention shuffle mechanism-asymmetric multi-scale fusion module net (CASM-AMFMNet).

From the data obtained in Table 4, it can be observed
that the grape leaf image derived from this experiment is
significantly improved relative to the original image. The PSNR
of the enhanced image obtained by this method is 8.24, 6.79,
9.17, 2.75, and 2.83 dB higher than those for EGIF, WGIF,
HSFGTF, GFCBH, and WLS, respectively, and 10.38 dB higher
than that of the original image, indicating that the image
enhanced with the algorithm used in this paper has less
distortion and higher quality; the obtained entropy values of
the enhanced image are 0.3 bit, 0.69 bit, 0.94 bit, 0.95 bit,
and 0.13 bit larger than those for other methods and 0.39 bit
larger than that of the original image, resulting in improved
image quality and a greater amount of information. At the
same time, the means of the enhanced image in this paper
are 12.7, 38.38, 20.36, 53.45, and 29.29 higher than those of
other methods and slightly higher than that of the original
image and 16.44 higher than that of the original image, which
makes the enhanced image brighter and more appreciable. The
extraction of image edge details at the same time ensures the
authenticity of the image information, effectively overcomes the
impact of noise in the image, and makes the leaf details clearer,
the image brighter, and the grape leaf spot texture obvious
and readable.

Self-Contrasting Experiments
We carried out self-comparison experiments on the grape leaf
dataset for the underlying network CoAtNet model and our
CASM-AMFMNet network model. First, the training set is used
for training, and then the obtained model is tested against the
test set. By contrast, the network model in this paper shows some
improvement in recognition speed and accuracy compared to the
CoAtNet network model.

It can be seen from Figure 8 that CoAtNet iterations tend
to converge 50 times, and the final training accuracy is 88.56%,
while CASM-AMFMNet iterations tend to converge 30 times,
and the final training accuracy is 96.58%, which is higher
than CoAtNet. Because Sn and GN are added to the CASM-
AMFMNet algorithm, the convergence speed of the model

may accelerate. The accuracy rate for the CoAtNet test set is
88.74%, and it is 95.95% for the CASM-AMFMNet test set.
Because the proposed algorithm incorporates contextual and
location information among the grape leaf disease regions,
the accuracy rate on the test set is 7.21% higher than
that of CoAtNet.

It can be seen from Table 5 that the number of parameters
of our improved CASM-AMFMNet network is much smaller
than the number from before the improvement (−2 M). In
addition, ACB divides the standard convolution into 1∗3 and
3∗1, which further reduces some parameters of the original
convolution layer and greatly improves the overfitting-prone
characteristics of the complex network. When the number of
parameters is reduced, the recognition accuracy is improved
(+10.78%). In terms of program running time, with 32 samples
per training batch, the original model takes 586 s, while the
improved model takes only 270 s (−316 s). The difference in
the total program time is even more obvious, with a 109.61-
min difference in the time spent to train 30 epochs, reflecting
the improved performance of the updated model in terms of
the training cost. Our improved model significantly lowered
the number of parameters. Its effectiveness is reflected not
only in preventing overfitting and thus improving test accuracy
but also in the time cost required for the training, which is
highly practical.

Backbone Comparison Experiment
To determine the choice of the model backbone in this
paper, under the framework of CASM-AMFMNet, models with
backbone from CoAtNet −1 to 7 are experimentally compared.
The experimental results are shown in Table 6.

When the size of the grape leaf image data set is the
same, the width of the network increases with the increase in
the CoAtNet model. The network params and flops between
CoAtNet −1 and 5 are very small, but the recognition accuracy
differs by more than 1 percentage point. From CoAtNet −5,
the recognition accuracy improves slightly. Where the depth of
the network layer is deepened, CoAtNet −6 and CoAtNet−7
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TABLE 5 | Performance comparison of CoAtNet and coordinated attention shuffle
mechanism-asymmetric multi-scale fusion module net (CASM-AMFMNet).

Method CoAtNet CASM-AMFMNet

Accuracy 88.74% 95.95%

mAP 79.49% 90.27%

FPS 44 85

Param 168 M 166 M

FLOPs 189.5 B 187.8 B

MFLOPs 632.79 MB 4.67 MB

Running time per batch 586 s 270 s

Time required per epoch 169.86 min 60.25 min

increase the accuracy of the network model weight file by 0.03
percentage points after 109 M and 0.06 percentage points after
164 M. There is little difference in the recognition accuracy
among CoAtNet −6, CoAtNet −7, and CoAtNet −5. Therefore,
CoAtNet−5 with a moderate size of params and flops and a high
recognition accuracy for the grape leaf image data set is used in
all subsequent experiments.

Effectiveness of Coordinate Attention Shuffle
Mechanism
To verify the effectiveness of the CASM module, we first
experimented with the settings of the grouping parameter G (see
a below), and then verified the effects of the activation function,
shuffling strategy, and the attention mechanism in the CASM
module on the model through three experiments (see b–d below).

(a) Effects of different grouping numbers on the CASM
module. The grouping number G is set to 2, 4, and 8. The analysis
data are grape leaves, and the results of the analysis of different
parameters are shown in Table 7.

As shown in Table 7, the test accuracy of the model is close
to 90% for all three cases, with a different number of groups.
With the increase in the number of groups, the params (−0.22 M,
−0.11 M) and flops (−0.6 B, −0.3 B) of the network model are
significantly reduced. Although the increase in the number of
groupings reduces the computational and parametric quantities
of the model, its intensive operations lower the computing
and storage access efficiency and extend the actual running
time. Therefore, in practical applications, combining the above
reasons and experimental data, we set the number of groups
of CASM to G= 4.

(b) The influence of SN and SELU activation functions on
the model is used in the CASM module. To verify the feasibility
and effectiveness of SN and SELU, this paper validates them in
CoAtNet in terms of training time and training accuracy with
different batching methods and activation functions, and the
results are shown in Table 8.

In Table 8, the SN + SELU combination is shown to be
better than BN/SN + ReLU, BN/SN + Sigmoid, and BN + SELU
in mAP, with increases of +1.36%, +0.76%, +1.91%, + 1.31%,
and +.69%, respectively, and compared to the most common
BN + ReLU combination; its param is also reduced by about
0.78 M, and the training time is reduced by 30 min and

TABLE 6 | Experimental results for different backbone networks.

Models Eval size Params FLOPs Accuracy

CoAtNet-1 2242 55 M 49.8 B 89.56%

CoAtNet-2 2242 75 M 96.7 B 92.45%

CoAtNet-3 2242 96 M 126.1 B 93.98%

CoAtNet-4 2242 121 M 149.8 B 94.77%

CoAtNet-5 2242 166 M 187.8 B 95.95%

CoAtNet-6 2242 275 M 289.8 B 95.98%

CoAtNet-7 2242 330 M 360.9 B 96.01%

TABLE 7 | Comparison result of different groups.

Group
number

Test
accuracy

mAP Testing time Params Flops

G = 2 95.95 90.25% 11.33 166.63 M 189.5 B

G = 4 95.95 90.27% 10.87 166.41 M 188.9 B

G = 8 95.95 90.23% 11.83 166.30 M 188.6 B

20 s, which makes the optimization learning and solving model
convergence easier.

(c) The CASM module introduces the effects of channel
shuffling strategies on the model. The grouping of grape
leaf features generates a large amount of group convolutional
stacking, which leads to feature information loss and the
obstruction of the interactive flow of feature information between
channels, as well as seriously affecting the feature characterization
ability. In this paper, we introduce a channel-mixing strategy
into the proposed module and compare the same module
without adding the mixing operation to verify the impact of
adding channel mixing on grape leaf disease identification. The
model uses CoAtNet as the backbone network for comparative
analysis of channel-mixing additions in the framework of CASM-
AMFMNet.

The experimental results in Table 9 indicate that the
inclusion of the shuffling operation in the model does not
generate additional parameters or computational effort, and
the presence of the shuffle channel was effective in improving
the average identification accuracy of grape leaf diseases. The
use of channel shuffling after all convolutional layers using
grouped convolution improves the accuracy of the model by
0.34 percentage points. Channel shuffling enhances the flow
of feature information between channels, and plays a positive
role in the interaction of feature information obtained from

TABLE 8 | Exploring the combination of normalized processing and
activation functions.

Method mAP Param Training time

BN+ReLU 80.31% 167.33 M 4 h 48 min 29 s

BN+Sigmoid 79.85% 167.95 M 4 h 58 min 57 s

BN+SELU 81.07% 166.53 M 4 h 16 min 42 s

SN+ReLU 80.91% 167.35 M 4 h 50 min 03 s

SN+Sigmoid 80.45% 167.97 M 4 h 59 min 44 s

SN+SELU 81.67% 166.55 M 4 h 18 min 09 s
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TABLE 9 | Effect of shuffle on the model.

CASM-AMFMNet (no Shuffle) CASM-AMFMNet (with Shuffle)

mAP 89.93% 90.27%

FLOPs 189.5 B 189.5 B

param 166 M 166 M

group convolution, which makes the model more efficient in
its use of feature information in different channels that are at
the same spatial location after group convolution, improving the
experimental accuracy.

(d) The CASM module uses the attention module for the
impact on the model. While accomplishing network light
weighting, channel attention is particularly important for
ensuring network accuracy. This set of experiments is conducted
to verify the effect of the CAM and CASM modules on the
model, as well as the effect of different positions and quantities of
CASM on the grape leaf disease data set. Under the same training
environment, the performance of different attention modules of
the CASM module and CAM on the model recognition ability
is shown in Figure 9. The CASM module was added at different
positions of CASM-AMFMNet to study the correlation between
the recognition ability of the model and increasing the number
of CASM attentions. The experimental results are shown in
Table 10.

As can be seen in Figure 9, for the data set in this
paper, comparing the CASM module and CAM, the mAP and
FPS of the CASM module are higher than those of CAM.
Therefore, this paper uses the CASM module to fuse with the
feature extraction network. From Table 10, we can see that the
feature blending effect generated by redundant features has an
impact on extraction accuracy, and the use of the attention
mechanism also generates additional computational overhead,
and the complexity of the network model increases with the
number of CASM modules inserted (+0.6 B). Therefore, after
experimental comparison, adding the CASM module after the
CoAtNet module gives the best experimental results and an
accuracy of 90.27%, which is 0.65 and 0.24% higher than

FIGURE 9 | Effects of different attention modules of coordinate attention
shuffle mechanism (CASM) and CAM on model recognition ability.

TABLE 10 | Experimental results of adding an attention mechanism to different
positions and numbers.

Location Number mAP FLOPs

Add CASM module to CoAtNet ×1 89.62% 189.5 B

×2 89.45% 190.1 B

Add CASM module after CoAtNet ×1 90.27% 189.5 B

×2 90.10% 190.1 B

Add CASM module after AMFM ×1 90.03% 189.5 B

×2 89.86% 190.1 B

the accuracy of the other two models. In this paper, the
CASM attention module is embedded into the feature extraction
network, which has the effect of suppressing invalid leaf and
background features and enhancing effective grape leaf disease
features, as well as improving the performance of correctly
capturing the disease location information of grape leaf feature
extraction network.

Effectiveness of Asymmetric Multi-Scale Fusion
Module
To study the effectiveness of each part of AMFM on the grape leaf
data set, this paper takes CoAtNet as the backbone, and AMFM
is used as a single ablation experiment on the grape leaf data set,
i.e., comparing MSFM, replacing 3∗3 convolution of MSFM with
ACB, replacing RELU of MSFM with SELU, and using AMFM to
perform the experiment, with the experimental results shown in
Table 11.

As seen in the experimental results given in Table 11,
the AMFM proposed in this paper has a significant effect
on the improvement of network identification performance.
After adding AMFM to the CoAtNet network, the mAP is
increased by 3.27%, the params are reduced by 0.79 M, the
FLOPs are reduced by 0.8 B, and the test time is reduced
by 6.28 s relative to adding MSFM, which indicates that the
use of ACB and SELU in the AMFM can significantly reduce
the number of params and the number of operations and
improve the network training efficiency. When the traditional
standard convolution in MSFM is experimentally replaced
with ACB, the accuracy of using ACB is slightly improved
compared to the traditional convolution (+1.34%), the params
decrease by 0.33 M, the FLOPs decrease by 0.7 B, and the
test time decreases by 2.08 s, which indicates that ACB can
improve the performance of the underlying model. When ReLU
is replaced with SELU in MSFM, mAP increases by 0.93%,
params decrease by 0.46 M, FLOPs decrease by 1.1 B, and
test time decreases by 3.33 s, which shows that the activation
function SELU can better improve the convergence speed
and recognition accuracy of the model compared to ReLU.
The experimental results fully demonstrate the effectiveness
of the AMFM proposed in this paper and further enhance
the richness and representation capability of the features
extracted by the model. In addition, adding the module further
improves the results of grape leaf disease recognition in several
comparative experiments.
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FIGURE 10 | Ablation experiments.

Ablation Experiments
To verify the effectiveness of the CASM-AMFMNet, ablation
experiments are conducted on the proposed CASM-AMFMNet
network for the grape leaf image data set. Taking CoAtNet as
the backbone, to which GSSL, CASM, and AMFM are gradually
added, the performance of each module is analyzed by comparing
the differences in detection accuracy and FPS. The overall
ablation experiments are shown in Figure 10.

As can be seen from the ablation experiments, the model
performance of the GSSL algorithm on the basis of the backbone
improves by about 1.89% in mAP and about five in FPS. After
adding only CASM, the map quality increases by about 3.57%
in mAP and about 23 in FPS; adding AMFM alone increases
it by about 3.03% in mAP and about 18 in FPS. To sum up,
the CASM-AMFMNet increases 10.78% in mAP and increases
in recognition speed (+41) compared to CoAtNet. The above
seven sets of experimental results demonstrate the effectiveness
of GSSL, CASM, and AMFM. This illustrates the high accuracy
and speed of the network used in this paper for the identification
of grape leaf diseases.

Comparison of Coordinated Attention
Shuffle Mechanism-Asymmetric
Multi-Scale Fusion Module Net With
Other Classification Models
Overall, 670 black rot, 647 black measles, 604 leaf blight, 564
downy mildew, and 675 healthy grape leaf images were selected
as a fixed test dataset. All images in the dataset were not involved
in the training of the model. Therefore, the generalization ability
of the model was tested based on recognition accuracy, i.e.,
whether the model had the same high recognition accuracy for
grape leaf images not involved in training. The performance of
CASM-AMFMNet was further compared with the other three
networks using the confusion matrix, as shown in Figure 11.
Diagonal cells in the confusion matrix indicate the number of test

samples correctly predicted by the model and non-diagonal cells
the number of samples incorrectly predicted by the model.

Through the confusion matrix, we identified that, among the
670 black rot test samples of our CASM-AMFMNet network, four
were incorrectly identified as healthy grape leaves, 10 as black
measles, and 15 as leaf blight. Among the 604 leaf blight samples,
only four were wrongly identified as healthy leaves and 14 as black
measles. Six of the 564 downy mildew samples were incorrectly
identified as healthy leaves and 13 of the 647 black measles test
samples as healthy leaves. During classification of the four major
diseases and healthy grape leaves, on the one hand, since disease
spots of black rot and leafy blight were too small and limited
in number at the early stage of the onset, similar to the images
of healthy leaves, errors inevitably occurred in the identification
of categories. On the other hand, misidentification phenomena
were commonly encountered. (1) Black rot and leaf blight were
easily misclassified as black measles due to connections in the
later disease stages. Specifically, shape characteristics were similar
to black measles, and color differentiation was not high, leading
to classification errors. (2) Black rot manifested as small brown
spots at the beginning, which could easily be confused with
leaf blight. (3) Black measles presented as long brown spots on
the leaf surface and leaf blight showed similar characteristics
to black measles in terms of spot color, shape, and texture at
the margins of the grape leaf surface. However, downy mildew
differed significantly from the other three diseases in terms

TABLE 11 | A single ablation experiment of asymmetric multi-scale
fusion module (AMFM).

Method mAP Params FLOPs Testing time

CoAtNet with MSFM 82.10% 169.31 M 191.0 B 35.41 s

CoAtNet with MSFM (ACB) 83.44% 168.98 M 190.3 B 33.33 s

CoAtNet with MSFM (SELU) 84.03% 168.85 M 189.9 B 32.08 s

CoAtNet with AMFM 85.37% 168.52 M 189.2 B 29.13 s
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TABLE 12 | Performance evaluation of four types of networks.

Class Evaluation metrics Black rot Black measles Leaf blight Downy mildew Healthy leaves Average value

DICNN Accuracy 97.31% 96.68% 97.63% 97.56% 96.71% 97.18%

Precision 93.28% 94.44% 93.71% 92.73% 93.63% 93.56%

Recall 94.27% 95.32% 96.75% 97.21% 86.22% 93.95%

F1 Score 93.77% 94.88% 95.21% 94.92% 89.77% 93.71%

DMS-R Alexnet (Lv et al., 2020) Accuracy 97.31% 96.68% 97.63% 97.56% 96.71% 97.18%

Precision 93.43% 92.58% 95.53% 90.96% 92.15% 92.93%

Recall 93.85% 91.31% 92.32% 95.18% 92.42% 93.02%

F1 Score 93.64% 91.94% 93.90% 93.02% 92.28% 92.96%

Faster DR-IACNN Accuracy 98.23% 98.20% 98.16% 97.28% 95.41% 97.46%

Precision 93.58% 94.28% 93.05% 93.26% 93.93% 93.62%

Recall 94.71% 96.06% 97.91% 95.46% 85.91% 94.01%

F1 Score 94.14% 95.16% 95.42% 94.35% 89.74% 93.76%

CASM-AMFM Net (ours) Accuracy 98.01% 98.42% 97.91% 98.86% 98.70% 98.38%

Precision 94.63% 95.98% 95.53% 97.87% 96.00% 96.00%

Recall 95.92% 96.28% 93.67% 95.83% 97.89% 95.92%

F1 Score 95.27% 96.13% 94.59% 96.94% 95.96% 95.78%

TABLE 13 | Comparison of the main performance of different methods.

Method A PA RA F1A mAP Training time

DCNN (Ma et al., 2021) 83.87% 84.73% 81.29% 82.97% 80.77% 4 h 04 min 12 s

MediNET (Bhuiyan et al., 2021) 76.99% 76.83% 77.29% 77.06% 78.39% 5 h 58 min 27 s

YoloV4 (Richey and Shirvaikar, 2021) 63.42% 59.21% 68.35% 63.45% 71.29% 3 h 6 min 45 s

VirLeafNet (Joshi et al., 2021) 85.12% 84.54% 77.87% 81.06% 81.73% 4 h 28 min 03 s

BGCNN (Hridoy and Rakshit, 2022) 91.59% 91.20% 91.00% 91.10% 84.44% 3 h 32 min 57 s

DCGAN (Zhao et al., 2021) 83.79% 82.31% 83.54% 82.92% 85.89% 4 h 38 min 27 s

OPNN (Akanksha et al., 2021) 82.38% 81.16% 83.28% 82.21% 81.23% 3 h 50 min 3 s

DICNN 93.58% 93.56% 93.95% 93.71% 84.81% 3 h 30 min 51 s

DMS-R Alexnet 92.94% 92.93% 93.02% 92.96% 85.84% 4 h 26 min 9 s

Faster DR-IACNN 93.64% 93.62% 94.01% 93.76% 87.48% 3 h 48 min 13 s

CASM-AMFM Net(ours) 95.95% 96.00% 95.92% 95.78% 90.27% 3 h 13 min 27 s

of both color and shape characteristics, resulting in a higher
recognition rate. Among the five categories of grape leaves, 3,032
were correctly identified and classified with our network model,
2,959 with Faster DR-IACNN, 2,937 with DMS-R Alexnet, and
2,957 with DICNN. Based on the comparison data, we conclude
that our newly developed network model has the highest feature
recognition and classification efficiency.

Accuracy, precision, recall, and F1 scores of the four network
models for four grape leaf diseases and healthy grape leaves were
calculated using the confusion matrix as the model performance
evaluation index (Table 12).

As shown in Table 12, the average accuracy of the model
was 98.38%, which was 0.92, 1.2, and 1.2% higher than that of
Faster DR-IACNN, DMS-R Alexnet, and DICNN, respectively.
The average precision rate of 96.00% was 2.38, 3.07, and 2.44%
higher relative to the above three models, respectively. Average
recall value was 95.92%, which was 1.91, 2.9, and 1.97% higher,
and the average F1 score of 95.78% was 2.05, 2.82, and 2.07%
higher compared to the other three models, respectively. In
summary, our model shows good recognition accuracy for
grape leaf diseases.

To further validate the effectiveness of our model, the methods
used by other researchers to resolve the image recognition
problem of plant leaf datasets were introduced for comparison.
Overall, 10 deep network models were selected, and experimental
results are shown in Table 13.

As evident from Table 13, YoloV4 and MediNET had
relatively low recognition accuracy of <80% for grape leaf disease
images. The two networks are less focused on the context and
location information between disease regions in the recognition
process, and, therefore, recognition effects are poor. Accuracy
levels of DCNN, VirLeafNet, DCGAN, and OPNN in the test set
were estimated as 83.87, 85.12, 83.79, and 82.38%, respectively,
which have a deeper network structure and can extract deep-
seated grape leaf disease features but still do not consider the
contextual and location information among disease regions. The
algorithm proposed in this study incorporating contextual and
location information among disease regions achieved 95.95%
accuracy on the test set, which is higher than all the other
network models examined (BGCNN, DICNN, DMS-R Alexnet,
Faster DR-IACNN), with >90% accuracy (+4.36, +2.37, +3.01,
+2.31%, respectively). CASM-AMFMNet also achieved more
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FIGURE 11 | A confusion matrix for the identification of grape leaf diseases.

accurate localization compared to the training time required for
CASM-AMFMNet and other deep models. The training time
required for CASM-AMFMNet for grape leaf images was 3 h
13 min 27 s, which was significantly lower than the time taken
by other models. Our findings clearly demonstrate enhanced
recognition performance and robustness of CASM-AMFMNet
developed in this study in terms of training time, recognition
accuracy, precision, recall, and F1 score.

DISCUSSION

Here, we constructed a CASM-AMFMNet model capable of
effectively extracting shape, color, and texture features of
grape leaf images to automatically improve identification and
classification of healthy and diseased leaves. Application of the
model to grape leaf images from the public PlantVillage Dataset
(Kaggle, 2019) led to the recognition of four types of grape leaf
diseases and healthy grape leaves with an accuracy of 97.21%.
We further applied this novel model to the self-made banana leaf

image dataset collected from Guangdong Province along with leaf
images of apple, corn, and cherry from the PlantVillage dataset.
The average classification accuracy of different diseases of the
leaves from various plant species reached 94.41, 96.09, 94.77,
and 95.92% for banana, apple, corn, and cherry, respectively.
Comparative analysis suggested that the actual effect of these
kinds of blades using our model is inferior to that of other
methods for the above blades, and accuracy is additionally
lower. Overall, the accuracy of our CASM-AMFMNet model in
identifying grape leaf diseases was greatly enhanced compared
with the other leaf types, and its classification effect was
superior. As the shape of grape leaf edges is not a regular
oval, the majority of disease spots are water stains and the
edge contours are obvious. The color of disease spots is clearly
distinct from that of the leaf surface, which is not observed for
other leaf types.

The accuracy of grape leaf disease identification with
the CASM-AMFMNet network was significantly higher than
that with existing methods and solved the problem of low
accuracy of multi-classification grape leaf disease identification
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to a certain extent, but further studies are necessary to resolve a
number of issues. (1) The model training speed could potentially
be reduced through more advanced parallel processing. (2)
At present, we are limited to extraction and identification of
the characteristics of only single grape leaf diseases using this
method. Features that could enhance identification of two or
more similar mixed diseases (Barbedo, 2016) or other diseases of
grape leaves require further investigation. (3) Grape leaf contours
are valuable for studying disease types, and methods to segment
out the disease spots and leaf contours will be a focus of future
research. The algorithm proposed in this study still needs further
fine-tuning to improve the recognition rate of diseases from
images with inconspicuous features. In particular, leaf features
at the early onset of the grape disease onset are inconspicuous,
and some disease characteristics are more similar, resulting in low
recognition rates at the early stages of infection.

CONCLUSION

To address the challenges of identification of grape leaf
diseases, which are easily confused with the background,
and difficulty of detection of small spots under complex
backgrounds, we first constructed a dataset for grape leaf
disease target recognition and classification, comprising a total
of 15,824 images. Next, the GSSL algorithm was used to
enhance the texture of grape leaves on the original image.
After processing, this technique increased the map of the
network by 1.89% and FPS by five. We further applied
the CASM-AMFMNet model, which reduced the background
interference in feature extraction without segmenting the
background of grape leaves. The CASM-AMFMNet model was
improved based on CoAtNet. The CASM module captured and
pinpointed leaf diseases and effectively prevented confusion
with the background, following which AMFM facilitated the
identification of smaller target spots, which improved model
recognition performance to a greater extent. Addition of CASM
to CoAtNet increased mAP by 3.57% and FPS by 23, and
adding AMFM to CoAtNet increased mAP by 3.03% and FPS
by 18. Overall, CASM-AMFMNet was effective in identifying
four grape diseases, specifically black rot, black measles, leaf
blight, and downy mildew, with 98.01, 98.42, 97.91, and
98.86% accuracy, respectively, and healthy grape leaves with
98.7% accuracy. The average recognition accuracy of the five
categories of grape leaves was >98%. Our collective results
demonstrate enhanced performance of CASM-AMFMNet in
identifying grape leaf spots and diseases with good accuracy
and speed.

The CASM-AMFMNet model can be successfully applied for
real-time disease identification from images of grape crop leaves
under complex backgrounds, which is crucial for timely diagnosis
and control of foliar pests and diseases that affect cultivated grape
vines. In future studies, we plan to focus on application of the
model to identify more leaf disease types and further improve
the network by enhancing the feature extraction ability, reducing
the recognition time and increasing accuracy. In addition, we will
consider the transplantation of this model to cell phone platforms
to enable more effective immediate identification of grape leaf
diseases for raising agricultural productivity.
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