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Sulfur, widely present in the soil and atmosphere, is one of the essential elements for
plants. Sulfate is a dominant form of sulfur in soils taken up by plant roots. In addition
to the assimilation into sulfur compounds essential for plant growth and development, it
has been reported recently that sulfate as well as other sulfur containing compounds can
also induce stomatal movement. Here, we first summarized the uptake and transport
of sulfate and atmospheric sulfur, including H2O and SO2, and then, focused on the
effects of inorganic and organic sulfur on stomatal movement. We concluded all the
transporters for different sulfur compounds, and compared the expression level of those
transporters in guard cells and mesophyll cells. The relationship between abscisic acid
and sulfur compounds in regulation of stomatal movement were also discussed.
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INTRODUCTION

Sulfur is an essential macronutrient required for plant growth and development. Sulfur is a
constituent of the amino acids cysteine (Cys) and methionine (Met) which are necessary for
the synthesis of proteins and serve as precursors of important cofactors and sulfur containing
secondary metabolites (Thomas et al., 2000; Mugford et al., 2011). The metabolites of sulfate
assimilation and metabolism have important effects on plant growth, development, environmental
response, resistance to biological and abiotic stress, crop quality and yield (Zhao et al., 1999; Hell
et al., 2010; Gironde et al., 2014). Recent studies have suggested that sulfur containing compounds
may also play a role in regulation of stomatal movement. Stomata are micro pores mainly found on
leaf surface of terrestrial plants, controlled by two guard cells. CO2 and H2O exchanging through
stomatal pores makes stomatal movement a key process for photosynthesis and drought resistance.
In the present review, we focused on the transporters and summarized different sulfur compounds
on regulating stomatal movement in details.

SULFATE UPTAKE IN ROOTS AND LONG-DISTANCE
TRANSPORT

There are two sulfur uptake pathways in plants, including the sulfate uptake in roots and
atmospheric sulfur entry pathway through stomata. Plants take up sulfur from soils by roots
mainly in form of sulfate through sulfate transporters (SULTRs). In plants, genes encoding sulfate
transporters are divided into four distinct subfamilies (SULTR1 to SULTR4) according to the
similarity of the protein sequences (Vatansever et al., 2016). In the genome of Arabidopsis thaliana,
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there are eleven SULTR members and the functions of most
of SULTRs have been comprehensively studied. In Arabidopsis,
AtSULTR1;1 and AtSULTR1;2 are two high-affinity sulfate
transporters responsible for sulfate uptake in roots (Figure 1A).
AtSULTR1;2 is involved in the sulfate uptake in roots under
sulfate sufficient condition, while AtSULTR1;1 is responsible
for the absorption of sulfate under sulfate limitation condition
(Hideki et al., 2000; Naoko et al., 2002; Rouached et al., 2008).
AtSULTR1;2 is expressed in the root epidermal and cortical
plasma membranes, and is co-localized with AtSULTR1;1 (Hideki
et al., 2000; Naoko et al., 2002). Although sulfate deficiency
induced the expressions of both AtSULTR1;1 and AtSULTR1;2,
the induction of AtSULTR1;1 is much stronger than that of
AtSULTR1;2 (Barberon et al., 2008; Rouached et al., 2008).

After entering root cells, sulfate could be transported into the
vacuole for storage or translocated to shoots for assimilation in
plastids. The flux and allocation of sulfate in plants depends on
the demand of plants organs and cells for sulfate, as well as sulfur
status of the whole plant (Rennenberg and Herschbach, 2014;
Spicer, 2014). The root-to-shoot or shoot-to-root long-distance
transport of sulfur in high plants takes place in the vascular
system which consists of xylem and phloem (Rennenberg et al.,
1979). The existence of sulfate in phloem sap and phloem
exudate has long been demonstrated (Toshiyuki et al., 1990).
In rice, sulfate deprivation for 7 days results in a decrease in
sulfate concentration in the phloem sap, which suggests that
sulfate can be transferred between shoots and roots (Kuzuhara
et al., 2000). In Arabidopsis, the loading sulfate into sieve
tube of phloem is mediated by AtSULTR1;3 which is mainly
expressed in the sieve element-companion cell complexes in the
cotyledons and roots (Kuzuhara et al., 2000). In addition to
phloem transport, xylem transport is also an important role of
sulfate translocation (Yoshimoto et al., 2003). AtSULTR3;5 and
AtSULTR2;1 are involved in loading sulfate to xylem parenchyma
cell and facilitate the root-to-shoot translocation (Figure 1A;
Kataoka et al., 2004a).

Remobilization of sulfate from vacuole is critical for
maintenance of sulfur homeostasis in plants, particularly
under sulfate limited condition. In Arabidopsis, it has been
demonstrated that tonoplast-localized AtSULTR4;1 and
AtSULTR4;2 facilitate the sulfate efflux from the vacuoles
(Figure 1A) evidenced by the increase of vacuolar sulfate
concentration in the atsultr4;1 atsultr4;2 double knockout
mutant (Kataoka et al., 2004b). Interestingly, although both
AtSULTR4;1 and AtSULTR4;2 are induced by sulfur deficiency,
they display differential sulfur-dependent expression pattern
in roots. AtSULTR4;2 can increase accumulation in respond
to sulfate limitation while AtSULTR4;1 constitutively expresses
under different sulfate conditions. Expression of AtSULTR4;1
in the sultr4;1 sultr4;2 double knockout mutant can rescue its
phenotype indicating that AtSULTR4;1 plays a primary role in
maintaining intracellular sulfate redistribution and homeostasis
(Kataoka et al., 2004b; Martinoia et al., 2007). However, whether
AtSULTR4;1 and AtSULTR 4;2 participate in the sulfate efflux
from vacuole in guard cells is not clear.

Once translocation from roots to shoots, sulfate is transported
into plastids for assimilation. In Arabidopsis, AtSULTR3 family

proteins are involved in transport of sulfate into chloroplasts
(Figure 1A). Simultaneous knockout of all five members of
AtSULTR3 reduced sulfate accumulation in chloroplasts by more
than 50% compared to the wild type (Chen et al., 2019). In
plastids, sulfate is first converted to adenosine-5′-phosphosulfate
(APS) by ATP sulfurylase (ATPS) (Logan et al., 1996; Thomas
et al., 2000), and further reduced to sulfide in a two-step reduction
reaction catalyzed by APS reductase (APR) and sulfite reductase
(SiR) (Olivier et al., 2007; Khan et al., 2010a). In the last step
of sulfate primary metabolism, cysteine (Cys) is produced by
condensation of sulfide and O-acetylserine (OAS) catalyzed by
OAS (thiol)lyase (OASTL) (Heeg et al., 2008). Cys serves as a
precursor for the biosynthesis of Met, GSH and other sulfur
containing compounds (Ravilious and Jez, 2012). In parallel,
APS also can be phosphorylated to PAPS, which is involved into
sulfation reaction in secondary metabolism as a precursor of
active sulfate (Mugford et al., 2009, 2011).

ATMOSPHERIC SULFUR UPTAKE AND
METABOLISM

In addition to absorb sulfate via roots, plants are also able to
utilize foliary-absorbed sulfur gases as directly sulfur source, such
as hydrogen sulfide (H2S) and sulfur dioxide (SO2) (Figure 1B;
Herschbach et al., 1994; Sue et al., 2002; Aghajanzadeh et al.,
2016). Atmospheric sulfur gases are derived from natural source
and anthropogenic source. H2S and SO2 emitting by volcanic and
geothermic activity are the main natural sulfur source while SO2
is the main anthropogenic sulfur source releasing from industrial
processes and human life (Garrec, 1984; Stern, 2005). The
kinetics of SO2 entry into plant leaves is correlated with stomatal
conductance and SO2 level in the atmosphere (Noland and
Kozlowski, 1979; By et al., 1996). SO2 is soluble in water phase
in mesophyll cells, and reacts with water to release hydrogen ion
(H+) and generate hydrogen sulfite (HSO3

−). HSO3
− can be

directly reduced and assimilated into organic sulfur compounds
in chloroplasts, or further oxidized into sulfate before entering
the sulfur assimilation pathway (Noland and Kozlowski, 1979;
De Bruyn et al., 1995). Different from SO2, the conductivity of
mesophyll cells to H2S is largely determined by its metabolic
rate in plants and the H2S level in atmosphere. Due to the poor
solubility of H2S in water, H2S can be dissociated into H+ and
hydrogen sulfide ion (HS−) in the atmosphere (By et al., 1996;
Stuiver and De Kok, 2001; Lee et al., 2011).

The inorganic SO2 or H2S entry into plant leaves could
be further assimilated into organic sulfur through sulfate
assimilation pathway. Plants exposed to SO2 or H2S gases
significantly increase the thiol content and change thiol
composition in shoots (Aghajanzadeh et al., 2016; Ausma et al.,
2021). In Arabidopsis, a short-term fumigation with 0.25 µl
l−1 H2S strongly increase the concentrations of cysteine and
glutathione by 20 and 4 times, respectively (Riemenschneider
et al., 2005). However, the content and composition of
glucosinolate in Brassica juncea and Brassica rapa were not
affected by SO2 or H2S exposure regardless of sulfur sufficiency
or deprivation (Aghajanzadeh et al., 2015). While SO2 and
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FIGURE 1 | Effects of sulfur on stomatal movement in Arabidopsis thaliana. (A) Sulfate transport and metabolism in Arabidopsis under drought conditions. The
sulfate transport function of ALMT3 marked with an asterisk was found in poplar trees (Malcheska et al., 2017). This figure partially refers to Takahashi et al. (2011)
and Batool et al. (2018). (B) Transport and metabolism of exogenous H2S and SO2 in Arabidopsis. (C) A nutshell of the effect of sulfur on stomatal movement.
Circles on the arrowed lines indicate transporters, and different transporter families are shown in different colors. Enzymes are indicated in red italics. Dashed arrows
indicate disputable or putative pathways. Gray arrows indicate the transportation of the sulfur. Abbreviations not mentioned: ALMT3, putative aluminum-activated
malate transporter 3.

H2S exposure as sulfur compensation, can actually make foliar
absorb more sulfur gas than sulfate-sufficient condition, but
the absorption of sulfur nutrition in shoot does not affect the
accumulation of transcript caused by sulfate limitation in roots,
while their exposure can alleviated the up-regulated of APR,
rather SULTR1;1, SULTR1;2 orOASTL (Stuiver and De Kok, 2001;
Aleksandra et al., 2008; Birke et al., 2015). Although SO2 and
H2S exposure may affect sulfate uptake in roots, the expression
levels of SULTRs are independent on their exposure (Aleksandra
et al., 2008). To be sure, SO2 and H2S is also a well-known toxic
gas that can cause harm to plants at deleterious concentrations
which may vary from plant species and environmental conditions
(Thompson and Kats, 1978; Malhotra and Khan, 1984). It is
controversial for determining what degree of foliar absorption
contributes its toxification or helpfulness on account of variability
of the growing environment and nutrient needs of different plants
(Amaral et al., 2006; Yang et al., 2006; Lisjak et al., 2013).

EFFECTS OF INORGANIC SULFUR ON
STOMATAL MOVEMENT

Sulfate
Sulfate is the main inorganic sulfur form in plants, which has been
found to induce stomatal closure under drought stress (Goodger
et al., 2005; Ernst et al., 2010; Batool et al., 2018). Recent studies

suggested that sulfate itself is not able to induce stomatal closure
as knockout of key enzymes in sulfate assimilation pathway, such
as SiR and Ser acetyltransferase (SERAT), abolishing the sulfate
induced stomatal closure (Batool et al., 2018). Upon drought
stress, plants increase the translocation of sulfate from root to
shoot through xylem (Goodger et al., 2005). The accumulation of
sulfate in shoots induces abscisic acid (ABA) synthesis through
two paralleled pathways in Arabidopsis. In the first pathway,
inorganic sulfate is reduced to organic sulfur compound Cys
through sulfate assimilation pathway (Figure 1A). After that,
using Cys and molybdenum cofactor (MoCo) as substrates,
MoCo-S is synthesized by molybdenum cofactor sulfatase
ABA3, thereby activating ABCISIC ALDEHYDE OXIDASE3
(AAO3) (Xiong et al., 2001; Wollers et al., 2008). Activated
AAO3 could catalyze the final step in ABA biosynthesis
(Seo et al., 2004). In the second parallel pathway, increased
sulfate and synthesized Cys enhance the transcription of 9-cis-
epoxycarotenoid dioxygenase 3 (NCED3), which is a drought-
stress-induced isoform and provides a substrate precursor
for AAO3, thus contributing to ABA biosynthesis (Nambara
and Marion-Poll, 2005; Endo et al., 2008; Malcheska et al.,
2017; Batool et al., 2018). The ABA induced by these two
processes regulates the stomata closure through a series of
signal transduction process (Blatt, 2000; Kim et al., 2010;
Abhilasha and Choudhury, 2021). Moreover, the application
of extracellular sulfate could directly regulate the R-Type
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FIGURE 2 | A diagram of sulfur metabolic pathways. Heat map indicates the expression levels of genes involved in sulfate transport and assimilation in Guard cells
and mesophyll cells. SULTR, sulfate transporter; ATPS, ATP sulfurylase; APR, adenosine-5′-phosphosulfate reductase; APK, adenosine-5′-phosphosulfate (APS)
kinase; SIR, sulfite reductase; OAS-TL, O-acetylserine (thiol) lyase; SERAT, serine acetyltransferase; SHM, serine hydroxymethyltransferase; GSHA,
gamma-glutamylcysteine synthetase; GSHB, glutathione synthetase B; CGS, cystathionine gamma-synthase; CBL, cystathionine beta-lyase; MS, methionine
synthase. GC, guard cells; M, mesophyll cells. Expression value derived from Arabidopsis eFP browser was normalized by log10
(http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi).

anion channel QUICK ANION CHANNEL 1 (QUAC1), which
was also known as aluminum-activated malate transporter 12
(ALMT12). The quac1 mutant fails to close stomata under the
application of sulfate, indicating that QUAC1 is required for
sulfate induced stomatal closure (Meyer et al., 2010; Malcheska
et al., 2017).

The ion transport process after sulfate sensing in plants
has not been studied in detail. Recently, it is speculated that
sulfate may trigger a signal to close stomata in guard cells
and vasculature. In guard cells, the completion of the above-
mentioned processes requires to transport sulfate into plastids.
This is because the reduction of sulfate and the beginning of
ABA biosynthesis both occur in the plastid (Khan et al., 2010b).
Members of the AtSULTR3 subfamily, preferentially expressed
in the chloroplast membrane of leaves, are considered to be
one of the most important sulfate transporters (Cao et al.,
2013; Chen et al., 2019). Remarkably, transcription of four
out of the five AtSULTR3 members (3;1, 3;2, 3;4, and 3;5) is
enriched in guard cells (Bauer et al., 2013). The expression
of AtSULTR 2;1, a AtSULTR3;5-activated sulfate transporter
located on the plasma membrane, was also significantly higher
than that of mesophyll cells (Leonhardt et al., 2004). Taken
together, these results indicate that sulfate could be transported
to guard cells even more efficiently than to mesophyll cells.
The expression level of AtSULTR3;3 in mesophyll cells and
guard cells is not significantly different, which may be due to
the functionally redundant of SULTR3s, resulting in the total
contribution of individual members higher than 100% (Cao et al.,
2013). It does not seem necessary to increase the expression
level of all SULTR3 members in guard cells. The unchanged
expression levels of ATP-binding cassette (ABC) and triose-
P/P-translocator (TPT), which are also plastid-localized backup
sulfate transport systems, may also because the redundancy
of SULTR3s (Hampp and Ziegler, 1977; Chen et al., 2003).
Moreover, Chen et al. (2019) mutated all five members of the

SULTR3 subfamily and found that in the quintuple mutants,
in addition to the significant reduction in chloroplast sulfate
absorption, the downstream Cys and ABA were also significantly
reduced after the application of exogenous sulfate, and stomatal
closure was also abolished. This defect could be compensated by
adding sulfide or Cys to induce the stomatal closure (Cao et al.,
2014). These results indicate that SULTR3s are also an important
part of sulfate-induced stomatal signal transduction. Similarly,
APR2, an enzyme that catalyzes the key step of sulfate reduction
and tightly regulates the sulfate assimilation pathway, is also
enriched in guard cells (Loudet et al., 2007; Bauer et al., 2013).
The apr2 mutant accumulates less ABA than wild-type plants
when external sulfate is applied (Cao et al., 2014), demonstrating
that guard cells may be able to efficiently complete the sulfate
assimilation process and produce ABA. This is supported by
the fact that most of genes involved in sulfate assimilation are
expressed in guard cells (Figure 2). Sulfate can also induce the
transcription of NCED3 in guard cells, thereby accumulating
ABA and promoting stomatal closure (Figure 1C; Malcheska
et al., 2017).

In the vasculature, sulfate or Cys can also induce NCED3
transcription, suggesting that sulfate or Cys may also induce
the synthesis of ABA in the vasculature. Consistent with this,
the NCED3 transcription level and NCED3 protein level also
increased significantly in the vasculature of drought-stressed
plants (Endo et al., 2008). However, the detailed process remains
to be determined.

Hydrogen Sulfide
The effect of H2S on stomatal movement has been well discussed
in a recent review (Liu and Xue, 2021). Despite some controversy,
most studies have shown that exogenous application of H2S
can induce stomatal closure mainly in molecular form (Lisjak
et al., 2010; Jin et al., 2013; Chen et al., 2020). Several
phytohormones and signaling molecules, such as ABA, NO,
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hydrogen peroxide (H2O2), and 8-mercapto-cGMP, are also
involved in H2S-induced stomatal movement (Figure 1C; Jin
et al., 2013; Chen et al., 2020; Zhang et al., 2021). H2S
also acts as a signal, interacts with various phytohormones
(including ABA, ethylene, salicylic acid, and jasmonic acid)
and other signaling molecules, such as NO and ROS, and
regulates stomatal movement in response to biotic and abiotic
stress (Garcia-Mata and Lamattina, 2001, 2010; Hou et al.,
2013; Deng et al., 2020; Zhang et al., 2021). Furthermore,
H2S mediates post-translation modification of protein through
phosphorylation and S-persulfidation to control ABA-dependent
stomatal closure. The persulfidation of DES1, a pivotal enzyme
producing H2S, was induced by ABA accompanied by synthesis
of ROS (Shen et al., 2020; Zhang et al., 2021). Persulfidation-
base modification change the structure of the key kinase protein
SNF1-RELATED PROTEIN KINASE 2.6 (SnKR2.6) in ABA
signaling pathway, resulting in enhanced kinase activity, and
the phosphorylation modification level at key sites of SnKR2.6
protein can positively regulate H2S-mediated sulfhydrylation
modification (Chen et al., 2021).

Notably, H2S, as a highly lipophilic gaseous signaling
molecule, can freely pass through the phospholipid membrane
for signal transmission (Li and Moore, 2008). It is speculated
that some channel proteins may contribute to H2S transport and
increase the efficiency of H2S permeation (Figure 1B). Because
the structure of H2S is as similar as of H2O, there is a hypothesis
that aquaporins can promote the absorption of H2S (Lee et al.,
2005). Aquaporins are membrane channels widely found in
plants, animals, and microbe, which promote the passage of
water and small neutral molecules through cell membranes
(Maurel et al., 1993). By analyzing the crystal structure of the
aquaporin-M (ApqM) in Methanothermobacter marburgensis,
Lee et al. (2005) found that one of its pore geometries could
easily accommodate H2S, therefore speculating that AqpM could
promote the absorption of H2S. However, through the study
of the aquaporin in a sulfide-reducing bacteria Archaeoglobus
fulgidus (AfAQP), an evolutionarily close protein of AqpM,
it was found that AfAQP cannot promote the absorption of
H2S (Mathai et al., 2009). The homologous proteins of AfAQP
also exist in plants (such as Aquaporin TIP 3;2 and NIP1;2
in Arabidopsis), but the H2S transport of these aquaporins has
not been studied.

Sulfur Dioxide
Sulfur dioxide could be absorbed through stomata and dissolved
in the cytoplasm, and is hydrolyzed to sulfurous acid (H2SO3),
bisulfite ion (HSO3

−) and sulfite ion (SO3
2−) according to the

pH value (Figure 1B). However, the effect of SO2 on stomatal
movement in plants is controversial. Different studies reported
that SO2 could decrease (Winner and Mooney, 1980; Olszyk
and Tibbitts, 1981; Rao et al., 1983), no change (Van der Kooij
et al., 1997; Hu et al., 2014), or increase the stomatal aperture
(Mansfield and Majernik, 1970; Black and Black, 1979; Biscoe
et al., 2006). The different results may be due to different sulfur
dioxide concentrations or different plant species. Recently, it was
proposed that SO2 mainly induces stomatal closure in the form
of H2SO3 (Figure 1C). The stomatal movement induced by SO2

is different from that induced by O3 and CO2, and is mainly
caused by non-apoptotic cell death that does not depend on pH
changes (Figure 1C; Ooi et al., 2019). This result is inconsistent
with the previous study that SO2-induced stomatal movement
depends on ABA accumulation (Taylor et al., 1981). Moreover,
low concentration of SO2 could also induce stomatal opening
under light and meanwhile stimulate cell death in guard cells in
Arabidopsis (Ooi et al., 2019).

Sulfite
The sulfite in plants is mainly derived from the reduction
of sulfate, the degradation of Cys and methionine, and the
hydrolysis of atmospheric SO2 in the apoplastic mesophyll (Yi
and Meng, 2003; Hansch and Mendel, 2005). Sulfite could be
further reduced to sulfide by SiR or oxidized to sulfate by
peroxisome-localized sulfite oxidase (SO). Long-term effects of
sulfite on stomatal movement is usually associated with SO2.
Therefore, similar to SO2, the effects of sulfite on stomatal
movement, transpiration, and water loss in sulfite-applied plants
is not conclusive (see SO2 section). Recently, overexpression of
APR2 or knock down of SO by RNAi which both increase sulfite
accumulation could induce stomatal opening and increase water
loss, suggesting sulfite more like promote the stomatal opening
rather closure (Bekturova et al., 2021).

EFFECTS OF ORGANIC SULFUR
COMPOUNDS ON STOMATAL
MOVEMENT

Several organic sulfur compounds could also induce stomatal
closure. Batool et al. (2018) found that the application
of Cys could reduce stomatal aperture in Arabidopsis, and
the sulfate-induced stomatal closure is dependent on the
biosynthesis of Cys. GSH is involved in ABA-induced stomata
closure (Okuma et al., 2011). Decreasing GSH level in guard
cells in the GSH biosynthesis deficient mutant cad2-1 or
inhibition of GSH biosynthesis enhanced ABA-induced stomatal
closure (Figure 1A). Overexpression of gamma-glutamylcysteine
synthetase (γ-ECS), a rate-limiting enzyme in GSH biosynthesis,
significantly reduced the stomatal aperture and density (Lu et al.,
2021). Moreover, exogenous application of L-methionine (L-
Met) has been shown to enhance stomatal closure by activating
Ca2+ channels and generation of reactive oxygen species (ROS)
(Kong et al., 2016).

CONCLUSION AND FUTURE
PERSPECTIVES

Whether from soil or atmosphere, sulfur compounds mainly
cause stomatal closure, like stress signal, in an ABA dependent
or independent pathway. Except for sulfate, the transporters of
H2S and SO2 are still unrevealed. The underlying mechanisms of
the relationship between drought stress and sulfate accumulation
in guard cells need to be investigated in the future.
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