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Most plants in nature establish symbiotic associations with endophytic fungi in soil.
Beneficial endophytic fungi induce a systemic response in the aboveground parts of
the host plant, thus promoting the growth and fitness of host plants. Meanwhile,
temperature elevation from climate change widely affects global plant biodiversity as
well as crop quality and yield. Over the past decades, great progresses have been
made in the response of plants to high ambient temperature and to symbiosis with
endophytic fungi. However, little is known about their synergistic effect on host plants.
The endophytic fungus Serendipita indica colonizes the roots of a wide range of plants,
including Arabidopsis. Based on the Arabidopsis-S. indica symbiosis experimental
system, we analyzed the synergistic effect of high ambient temperature and endophytic
fungal symbiosis on host plants. By transcriptome analysis, we found that DNA
replication-related genes were significantly upregulated during the systemic response
of Arabidopsis aboveground parts to S. indica colonization. Plant hormones, such as
jasmonic acid (JA) and ethylene (ET), play important roles in plant growth and systemic
responses. We found that high ambient temperature repressed the JA and ET signaling
pathways of Arabidopsis aboveground parts during the systemic response to S. indica
colonization in roots. Meanwhile, PIF4 is the central hub transcription factor controlling
plant thermosensory growth under high ambient temperature in Arabidopsis. PIF4 is also
involving JA and/or ET signaling pathway. We found that PIF4 target genes overlapped
with many differentially expressed genes (DEGs) during the systemic response, and
further showed that the growth promotion efficiency of S. indica on the pif4 mutant
was higher than that on the wild-type plants. In short, our data showed that high
ambient temperature strengthened the growth promotion effect of S. indica fungi on
the aboveground parts of the host plant Arabidopsis, and the growth promotion effect
of the systemic response under high ambient temperature was regulated by PIF4.
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INTRODUCTION

Beneficial endophytic fungi in soil establish symbiotic
interactions with most plants in natural ecosystems and
induced a systemic response in the aboveground parts (stems,
leaves, etc.) of host plants (Pieterse et al., 2014; Weiss et al.,
2016). Beneficial endophytic fungi can improve host plants’
resistance to biotic and abiotic stresses, and promote the growth
and fitness of host plants (Cameron et al., 2013; Pieterse et al.,
2014; van der Heijden et al., 2015). Serendipita indica (syn.
Piriformospora indica) is a Sebacinales fungus first isolated from
the rhizosphere in deserts and symbiotically colonizes the roots
of many plants, including Brassicaceae plants (such as the model
plant Arabidopsis thaliana), which are known as non-host plants
for ectomycorrhizae and arbuscular mycorrhizae (Verma et al.,
1998; Peskan-Berghofer et al., 2004; Zuccaro et al., 2011; Qiang
et al., 2012; Weiss et al., 2016). S. indica colonization in roots
has a significant growth promotion effect on the biomass of
the aboveground parts of host plants, including Arabidopsis
(Peskan-Berghofer et al., 2004; Waller et al., 2005; Shahollari
et al., 2007; Abdelaziz et al., 2019; Li et al., 2021). Previous studies
in root endophytism and/or mycorrhizal association have mainly
focused on the symbiosis signaling pathways that are necessary
for the establishment of successful symbiotic relationships in
plant roots (Lahrmann et al., 2015; Zipfel and Oldroyd, 2017;
Rey and Jacquet, 2018), while the systemic responses of the
aboveground parts of host plants are largely unknown.

For symbiotic interactions with Arabidopsis, S. indica
endophytically colonizes root epidermal and cortex cells mainly
in the meristematic zone and does not penetrate the central
cylinder (Jacobs et al., 2011). The growth promotion effect of
S. indica is due to the regulation of nutrients (phosphate, nitrate,
etc.) uptake (Sherameti et al., 2005; Yadav et al., 2010; Bakshi et al.,
2017; Prasad et al., 2019) and hormone [auxin, jasmonic acid
(JA), salicylic acid (SA), etc.] homeostasis or signal transduction
in host plants (Vadassery et al., 2008; Camehl et al., 2010; Jacobs
et al., 2011; Hilbert et al., 2012; Lahrmann et al., 2015; Peskan-
Berghofer et al., 2015). S. indica also enhances the resistance of
host plants to biotic stress (Waller et al., 2005; Sun et al., 2014:
Ye et al., 2019; Li et al., 2021) and abiotic stress conditions,
such as drought (Sherameti et al., 2008), salt stress (Jogawat
et al., 2013, 2016; Abdelaziz et al., 2017, 2019; Lanza et al.,
2019; Luo et al., 2021) and cold stress (Jiang et al., 2020, 2021).
Thus, Arabidopsis-S. indica symbiosis represents a model system
in studying host plant–beneficial microbe interactions at the
molecular level (Peskan-Berghofer et al., 2004). In the context
of global warming, temperature elevation has become a major
environmental factor affecting plant growth and development.
However, it is unclear how high ambient temperature affects plant
growth and development in the context of fungal symbiosis.

Exposure to high ambient temperature results in plant
development changes termed thermomorphogenesis, which is
characterized by hypocotyl elongation and petiole elongation in
Arabidopsis (Koini et al., 2009; Quint et al., 2016). In Arabidopsis,
high ambient temperature (greater than 22◦C, approximately
28◦C) is perceived by several thermosensors (Chen et al., 2021;
Zhang et al., 2021). In response to high ambient temperature,

phytochrome B (phyB) and/or EARLY FLOWERING3 (ELF3),
which are major thermosensors in Arabidopsis, relieved their
inhibitory effects on the temperature signal transduction
component PHYTOCHROME INTERCTING FACTOR 4 (PIF4)
(Jung et al., 2016, 2020; Legris et al., 2016; Zhang et al.,
2021). PIF4 is the central hub transcription factor controlling
thermosensory growth and development in Arabidopsis (Zhang
et al., 2021). When Arabidopsis plants shift to high ambient
temperature, PIF4 binds to the promoter regions of downstream
thermoresponsive target genes and upregulates their expression.
These genes are mainly involved in cell elongation, as well
as plant hormone biosynthesis and response (Sun et al., 2012;
Nieto et al., 2015; Gangappa and Kumar, 2017; Zhang et al.,
2021). Meanwhile, PIF4 negatively regulates plant immunity and
coordinates thermosensory growth and immunity (Gangappa
et al., 2017). PIF4 also regulates JA and ethylene (ET) signaling
pathways (Yamashino et al., 2013; Zhang et al., 2018; Xiang et al.,
2020). Plant hormones (JA, ET, etc.) play an important role in
plant systemic responses (Pieterse et al., 2014), but it is unclear
whether PIF4 is involved.

In this study, we performed the cocultivation of S. indica
with Arabidopsis under different temperatures (22, 25, and
28◦C) and found that high ambient temperature enhanced
the growth promotion effect of S. indica on Arabidopsis
aboveground parts. By transcriptome analysis of the systemic
response of the host plant Arabidopsis, we comprehensively
analyzed the differentially expressed genes (DEGs) between
fungal symbiotic and non-symbiotic plants at normal (22◦C)
and high ambient temperatures (25 and 28◦C). We found that
DNA replication-related genes were significantly upregulated
during the systemic response of Arabidopsis aboveground parts
to S. indica colonization. High ambient temperatures decreased
the number of upregulated DEGs involving the JA and/or ET
pathways, which implied repression of the JA and/or ET signaling
pathways during the systemic response. Meanwhile, we also
found that many DEGs overlapped with PIF4 target genes,
and the growth promotion efficiency of S. indica on the pif4
mutant was higher than that on wild-type (WT) plants at warm
temperatures (28◦C).

MATERIALS AND METHODS

Co-cultivation of Arabidopsis Plant and
Serendipita indica Fungus
Wild-type plant is A. thaliana Col-0 ecotype, and Arabidopsis
pif4 loss-of-function mutant is pif4-101 (Wang et al., 2018).
Arabidopsis was grown on half-strength MS medium with 1.2%
sucrose (1/2 MS). The seeds were stratified at 4◦C for 3 days
and then first grown at 22◦C under short-day growth condition
(12:12 h, day:night photoperiod, 7000 LX light) in growth
chambers. Serendipita indica (syn. P. indica, DSM11827) fungus
were grown and conserved in PDA medium (200 g L−1 potato,
20 g L−1 dextrose, and 20 g L−1 agar). For cocultivation with
S. indica, 9-day-old Arabidopsis seedlings were inoculated with
S. indica in PNM medium plates (Johnson et al., 2011). S. indica-
incubated (Si) and control (CK) samples were grown at 22, 25,
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or 28◦C under short-day growth condition. The statistics of fresh
weight were performed on 7 and 14 days post inoculation (dpi).
Fresh weights of each seedling were the average weight of at
least ten seedlings, which grew in the same plate. The mean
and standard error statistics of fresh weights included at least
three biological replicates for each sample. Significance analysis
of differences were performed by t-test.

Transcriptome and Reverse
Transcription-Quantitative PCR Analysis
The aboveground parts of S. indica-inoculated Arabidopsis at
7 dpi were harvested for transcriptome and reverse transcription-
quantitative PCR (RT-qPCR) analysis. Total RNA extracted
from Si and CK samples grown at 22, 25, or 28◦C was
used for sequencing with the NovaSeq 6000 sequencer by
Majorbio (Shanghai, China). The clean reads were mapped to
the A. thaliana TAIR10 database. Bioinformatics analyses of
the transcriptome were performed using the online platform
of Majorbio Cloud Platform1 and jvenn Venn diagram viewer
(Bardou et al., 2014). Briefly, to identify DEGs between different
samples, the expression level of each transcript was calculated
according to the transcripts per million reads (TPM) method.
RSEM was used to quantify gene abundances. Differential
expression analysis was performed using the DESeq2 with
Q-value ≤ 0.05, DEGs with | log2FC| > 1 and Q-value ≤ 0.05
were considered to be significantly differential expression genes
(DEGs). Clusters of orthologous groups (COG) functional
annotation of DEGs was obtained from eggNOG database. Gene
Ontology (GO) functional enrichment analysis of DEGs were
carried out by Goatools. For RT-qPCR, the total RNA of Si
or CK samples were extracted with TRNzol Universal Reagent
(DP424, TIANGEN, China). First-stand cDNA synthesis and
qPCR were performed by using One-Step gDNA Removal and
cDNA Synthesis SuperMix kit (AT311, TransGen, China) and
SuperReal PreMix Plus (SYBR Green) kit (FP205, TIANGEN,
China), respectively. The expression of AtUBQ5 was used as an
internal control (Nizam et al., 2019). All the primers are listed in
Supplementary Table 4.

RESULTS

The Growth Promotion Effect of
Serendipita indica on Arabidopsis Are
Enhanced by High Ambient Temperature
Serendipita indica colonization in roots has a significant growth
promotion effect on Arabidopsis aboveground parts, but it is
not known whether it is affected by high ambient temperature.
We analyzed the growth promotion effect of S. indica on
Arabidopsis plants at normal temperature (22◦C) and high
ambient temperatures (25 and 28◦C). The fresh weights of
aboveground parts of Arabidopsis inoculated with S. indica (Si)
were significantly higher than that of control (CK) at different
temperatures (Figure 1). Meanwhile, the fresh weight of the

1www.majorbio.com

symbiotic plants grown under high ambient temperatures (25
and 28◦C) were significantly higher than that under normal
growth temperature (22◦C) at 7 or 14 dpi (Figure 1). High
ambient temperatures have significantly increased the fresh
weight of the aboveground parts of Arabidopsis at 7 dpi
(Figure 1A). Meanwhile, the fungal colonization rates at 7 dpi
have no remarkable differences under different temperatures
(Supplementary Figure 1A). In short, these results indicated
that high ambient temperature enhanced the growth promotion
effect of S. indica fungi on the aboveground parts of the host
plant Arabidopsis.

Systemic Response of Arabidopsis to
Serendipita indica Colonization Under
High Ambient Temperature
Serendipita indica colonization in Arabidopsis roots has several
typical phases: the early biotrophic phase at about 3 dpi, the
late biotrophic phase at about 7 dpi and the late saprotrophic
phase at about 14 dpi (Zuccaro et al., 2011; Lahrmann et al.,
2013, 2015). The intracellular colonization of S. indica were well
established at 7 dpi (Lahrmann et al., 2015). To understand
the mechanism underlying the S. indica-induced plant growth-
promoting effect, we attempt to compare transcriptional changes
in the aboveground parts of the host plant Arabidopsis. In our
experimental system, S. indica also well colonized Arabidopsis
roots and had significant growth promoting effects at 7 dpi
(Figure 1A and Supplementary Figure 1A). Thus, we harvested
the aboveground parts of Arabidopsis seedlings at 7 dpi under
different temperatures for subsequent transcriptome analysis
(Figure 2A). We compared the DEGs between S. indica
incubated- and sterile cultured-samples at 22, 25, and 28◦C
separately, and found that a large part of the DEGs (that
is, 981) were commonly regulated at different temperatures
(Figures 2A,B). Under each temperature condition, the number
of upregulated DEGs (1,601 approximately 72% at 22◦C, 1,997
approximately 65.8% at 25◦C, and 1,774 approximately 71%
at 28◦C) was greater than that of downregulated DEGs (624
approximately 28% at 22◦C, 1,038 approximately 34.2% at
25◦C, and 723 approximately 29% at 28◦C) (Figure 2C and
Supplementary Table 1). Then, we analyzed the upregulated
and downregulated DEGs. GO analysis of upregulated DEGs
showed that GO terms of “DNA replication origin binding,”
“pre-replicative complex assembly involved in cell cycle DNA
replication,” and “DNA replication initiation” were enriched
(Figure 2D and Supplementary Figure 2), and upregulated
DEGs in these DNA replication-related GO terms were
closely related to promoting the cell cycle and growth. For
the downregulated DEGs, photosynthesis-related GO terms,
such as “photosynthesis, light harvesting in photosystem I,”
etc. (Supplementary Figure 2), were enriched. Meanwhile,
COG analysis also showed that there were many more
upregulated DEGs than downregulated DEGs in the COG
classifications of “Cell cycle control, cell division, chromosome
partitioning” and “Replication, recombination and repair”
(Figure 3 and Supplementary Table 2). In the COG classification
of “Replication, recombination and repair,” the number of
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FIGURE 1 | High ambient temperature strengthened the growth promotion effect of S. indica on Arabidopsis. Arabidopsis thaliana col-0 WT plants were cocultured
with the endophytic fungus S. indica at different temperatures. S. indica significantly promoted the growth of Arabidopsis seedlings at 22, 25, and 28◦C. The photos
showed the control (CK) and S. indica cocultivated (Si) seedlings at the 7 days post inoculation (dpi) (A) and 14 dpi (B). Fresh weights of seedling aboveground parts
at 25 and 28◦C were heavier than that at 22◦C, which suggested that the growth promotion effect of S. indica was enhanced by elevated ambient temperature.
Error bars indicate SE (n ≥ 3). Significance analysis of differences between CK and Si samples were performed by t-test (**P < 0.01; *P < 0.05; #P < 0.1).

upregulated DEGs at high ambient temperature (44 at 25◦C
and 36 at 28◦C) was greater than that at normal temperature
(27 at 22◦C) (Supplementary Table 2). Meanwhile, RT-qPCR
analysis further confirmed that, compared with S. indica
colonized seedlings grown under normal temperature (22◦C),
the gene expression of key DNA replication proteins, including
MCM2, MCM4, and ORC2 (Collinge et al., 2004; Diaz-Trivino
et al., 2005; Shultz et al., 2009), was more increased at high
ambient temperature (28◦C) (Figure 2E). Collectively, these
data suggested that DNA replication-related pathways in the
aboveground parts of host plants are activated by S. indica
colonization, especially under high ambient temperature. These
data supported the results in Figure 1 that high ambient
temperature enhanced the growth-promoting effect of S. indica
on the aboveground parts of Arabidopsis.

High Ambient Temperatures Repressed
the Jasmonic Acid and Ethylene
Signaling Pathways During the Plant
Systemic Response
In addition to regulating plant growth, high ambient temperature
also strongly suppresses defense responses (Alcazar and Parker,
2011). Plant hormones, such as SA, JA, and ET, play important
roles in the induced systemic defense responses of plants

(Pieterse et al., 2014). JA and ET also involved in the Arabidopsis-
S. indica interaction (Stein et al., 2008; Camehl et al., 2010;
Lahrmann et al., 2015). Here, our transcriptome analysis
showed that DEGs involved in the JA and ET pathways
were all upregulated DEGs. High ambient temperatures greatly
decreased the number of upregulated DEGs in the JA and/or
ET signaling pathways but not in SA-related GO terms
(Figure 4). These results suggested that the Arabidopsis JA
and/or ET signaling pathways were activated and involved in the
S. indica-induced systemic response, and were repressed by high
ambient temperature.

pif4 Mutant Enhanced the Growth
Promotion Efficiency of Serendipita
indica on Arabidopsis at High Ambient
Temperatures
Arabidopsis JA and/or ET signaling pathways are also regulated
by PIF4 (Yamashino et al., 2013; Zhang et al., 2018; Xiang et al.,
2020). More importantly, PIF4 is the central hub transcription
factor that regulates the aboveground tissue response to high
ambient temperature in Arabidopsis (Lee et al., 2021; Zhang
et al., 2021). Therefore, we wondered whether PIF4 is involved
in the systemic response of Arabidopsis aboveground tissue
to S. indica colonization under high ambient temperatures.
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FIGURE 2 | Transcriptome analysis of the symbiotic response of Arabidopsis at different temperatures. Arabidopsis seedlings incubated with S. indica were grown
for 7 days at 22, 25, and 28◦C, and the seedling aerial parts were harvested for subsequent RNA-seq and RT-qPCR analysis. (A) Principle component analysis
(PCA) of Arabidopsis transcriptome samples. (B) Venn diagrams showing the number of common and specific differentially expressed genes (DEGs) between
S. indica-incubated (Si) and control (CK) samples at 22, 25, and 28◦C. (C) The number of DEGs upregulated or downregulated during S. indica colonization at
different temperatures. (D) Gene Ontology (GO) enrichment analysis of the upregulated DEGs at 28◦C, which showed that DNA replication-related genes were highly
enriched. GO enrichment analysis of other DEGs is shown in Supplementary Figure 2. (E) The expression of the DNA replication-related genes MCM2, MCM4,
and ORC2 was detected by RT-qPCR. Error bars indicate SE (n = 4). Significance analysis of differences were performed by t-test (**P < 0.01).

Previous studies have reported 4,362 PIF4-binding target genes
(Oh et al., 2012), so we first compared PIF4 targets with
those DEGs during S. indica colonization. The Venn diagram
shows significant overlap between PIF4-binding target genes
and DEGs at high ambient temperature (28◦C) (Figure 5A and

Supplementary Table 3). Then, we incubated S. indica with a
loss-of-function pif4 mutant (pif4-101) at 28◦C and analyzed
the fresh weight of their aboveground tissues. Interestingly,
the growth promotion effect of S. indica on the pif4 mutant
was significantly stronger than that on WT plants at 14 dpi
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FIGURE 3 | Clusters of orthologous groups (COG) analysis of DEGs during S. indica colonization at different temperatures. COG of proteins analysis showed that
there were more upregulated DEGs than downregulated DEGs in nearly each COG classification. The ratio of upregulated DEGs to downregulated DEGs was
highest in the D, L, and V types, which were related to the cell cycle and division, DNA replication and defense response. The number of DEGs in the COG
classification at each temperature is shown in Supplementary Table 2.

under 28◦C (Figures 5B–D). Meanwhile, the fungal colonization
rate between pif4 mutant and WT plants have no significant
difference at 14 dpi under 28◦C (Supplementary Figure 1B).
These data suggest that PIF4 was involved in the response of
Arabidopsis aboveground tissues to high ambient temperature
during beneficial endophytic fungal colonization.

DISCUSSION

Soil fungi in nature establish beneficial symbiotic relationships
with most vascular plants (Brundrett and Tedersoo, 2018; Genre
et al., 2020). Beneficial endophytic fungi in roots promote
the induced systemic resistance of plant aboveground parts
to pathogenic microorganisms, herbivorous insects and abiotic

stresses and promote the growth of plant aboveground parts
(Franken, 2012; Cameron et al., 2013; Pieterse et al., 2014).
Over the past decades, significant progress has been achieved
in understanding the molecular mechanism of induced systemic
resistance in plants, especially the systemic response induced by
pathogenic microorganisms (Jung et al., 2012; Walters et al., 2013;
Pieterse et al., 2014; Hilleary and Gilroy, 2018). However, the
mechanisms by which it promotes plant growth are not well
studied. S. indica colonization in roots has a significant growth
promotion effect on many host plants (Qiang et al., 2012). Here,
we examine the transcriptome response of aboveground parts
of Arabidopsis plants to S. indica colonization under normal
or high ambient temperatures. Compared with sterile seedlings,
DEGs related to DNA replication were significantly enriched and
upregulated in plants cocultured with S. indica (Figures 2, 3).
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FIGURE 4 | High ambient temperature repressed plant JA and ET pathways during the systemic response. High temperature affected the number of DEGs between
S. indica-incubated (Si) and control (CK) samples. (A) The number of DEGs of the salicylic acid (SA) pathway in Arabidopsis aboveground parts. (B,C) High ambient
temperatures decreased the number of DEGs in the jasmonic acid (JA) and ethylene (ET) pathways. These DEGs were all upregulated DEGs. These results
suggested that Arabidopsis JA and ET pathways induced by S. indica colonization are downregulated by elevated temperature. (D,E) GO analysis to the DEGs of JA
and ET pathways.
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FIGURE 5 | PIF4 regulated the growth promotion efficiency of S. indica in Arabidopsis under high ambient temperature. (A) Venn diagram showing that PIF4 target
genes overlapped with many upregulated or downregulated DEGs during the systemic response of Arabidopsis aboveground parts to S. indica at high ambient
temperature (28◦C). (B) S. indica-incubated seedlings (Si) at 7 or 14 dpi and their control (CK) seedlings. (C) The fresh weight of wild-type (WT) and pif4 plants at 7
and 14 dpi when cocultured with S. indica at 28◦C. (D) The growth promotion efficiency of S. indica on pif4 (pif4-101, a pif4 loss-of-function mutant) plants was
higher than that on WT plants at 28◦C. Growth promoting efficiency was obtained by dividing the fresh weight of Si samples by that of CK samples. Error bars
indicate SE (n ≥ 3). Significance analysis of differences were performed by t-test (**P < 0.01; *P < 0.05).

These data are consistent with the result that higher ambient
temperatures can enhance the growth-promoting effect of
S. indica on the aboveground parts of Arabidopsis (Figure 1). By
the way, photosynthesis-related GO terms were enriched in the
downregulated DEGs (Supplementary Figure 2). Photosynthetic
efficiency is vital for promoting plant biomass, and S. indica
symbiosis promotes the photosynthesis of host plants (Li et al.,
2021). Thus, the downregulation of photosynthesis-related genes
may be feedback regulation from the increased photosynthesis
efficiency of host plants.

Plant hormones (SA, JA, ET, etc.) play major roles in plant
systemic responses, including defense and growth-promoting
effects (Pieterse et al., 2014; Xu et al., 2018; Dai et al.,
2019). S. indica colonization increased JA accumulation and
decreased SA levels in Arabidopsis roots (Lahrmann et al.,
2015). The systemic resistance response induced by S. indica
colonization was independent of SA signaling but required an
operative JA defense pathway (Stein et al., 2008). Overexpression
of ETHYLENE RESPONSE FACTOR1 (ERF1), which directly
activates many ET-inducible defense genes, strongly reduces
S. indica colonization in roots and abolishes growth promotion
in the aboveground part of Arabidopsis (Camehl et al.,
2010). Here, we found that the number of DEGs related to

the JA and ET pathways under high ambient temperatures
was significantly decreased compared to that under normal
temperature (Figure 4), suggesting that JA and/or ET signaling
pathways were repressed under high ambient temperature.
Activation of JA and ET signals in leaves inhibited plant growth
by inhibiting cell division (Huang et al., 2017; Dubois et al.,
2018). Thus, the repression of JA and/or ET signaling pathways
(Figure 4) and the upregulation of DNA replication related
genes (Figure 2) should all contribute to the higher growth
promotion effects under high ambient temperature. Furtherly,
the growth promotion and defense inhibition are antagonistically
linked in plants (Huot et al., 2014; Guo et al., 2018). High
ambient temperature promotes growth, whereas it suppresses
defense responses in plants (Alcazar and Parker, 2011). Thus,
the increased growth promotion efficiency under high ambient
temperatures (Figures 1, 4) may be associated with inhibition of
JA and/or ET-related defense responses. The role of JA and ET
pathways in plant growth-defense trade-offs deserves attention
in the future study of plant systemic responses under high
ambient temperatures. Meanwhile, carbon availability has been
suggested to modulate the plant growth-defense trade-offs, in
which the activation of JA signaling pathway depletes sucrose
and starch content (Smith and Stitt, 2007; Machado et al., 2017;

Frontiers in Plant Science | www.frontiersin.org 8 March 2022 | Volume 13 | Article 844572

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-844572 March 10, 2022 Time: 15:18 # 9

Chen et al. Systemic Response to Endophytic Fungus

Guo et al., 2018). The inhibition of JA signaling pathway by
high ambient temperature may inhibit carbon consumption for
defense response, thus allow more carbon metabolites to be used
for plant growth.

The Arabidopsis PIF4 transcription factor plays a central role
in the response to high ambient temperature (Koini et al., 2009;
Zhang et al., 2021). PIF4 is also involved in the regulation of the
JA and/or ET signaling pathways (Yamashino et al., 2013; Zhang
et al., 2018; Xiang et al., 2020). Loss-of-function mutations of
pif4 inhibit Arabidopsis petiole elongation and other phenotypes
during thermosensory growth (Koini et al., 2009; Zhang et al.,
2021). However, it should be noted that seedlings overexpressing
PIF4 grew very thin and had significantly lower biomass than
WT plants, especially at high ambient temperature (Kumar et al.,
2012). Here, we found that the pif4 mutant promoted the increase
in aboveground biomass induced by S. indica colonization under
high ambient temperature (Figure 5). DEGs that regulate the
systemic response to S. indica colonization and the target gene
of PIF4 exhibited considerable overlap (Figure 5). In short, PIF4
is involved in the Arabidopsis systemic response and regulates
the growth promotion effect of S. indica on aboveground parts of
plants under high ambient temperature. The detailed mechanism
of PIF4 regulating the growth promotion effect of S. indica on
plants needs to be further studied, which may be through JA
and/or ET signaling pathway.

A recent transcriptome study showed that only a small portion
of systemic response DEGs overlapped with local response
DEGs during abiotic stress in plants (Zandalinas et al., 2020).
COG analysis to transcriptome data showed that most DEGs
(2,978 upregulated DEGs and 1,305 downregulated DEGs)
under different temperatures belonged to Function unknown
(S) classification (Figure 3). Future studies on these DEGs
with unknown functions will reveal the detailed molecular

mechanisms by which beneficial endophytic symbiosis regulates
the systemic response of aboveground tissues under high and/or
normal ambient temperature conditions.
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