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Tubby-like proteins (TLPs) are transcription factors that are widely present in eukaryotes
and generally participate in growth and developmental processes. Using genome
databases, a total of 22 putative TLP genes were identified in the soybean genome, and
unevenly distributed across 13 chromosomes. Phylogenetic analysis demonstrated that
the predicted GmTLP proteins were divided into five groups (I-V). Gene structure, protein
motifs, and conserved domains were analyzed to identify differences and common
features among the GmTLPs. A three-dimensional protein model was built to show the
typical structure of TLPs. Analysis of publicly available gene expression data showed
that GmTLP genes were differentially expressed in response to abiotic stresses. Based
on those data, GmTLP8 was selected to further explore the role of TLPs in soybean
drought and salt stress responses. GmTLP8 overexpressors had improved tolerance
to drought and salt stresses, whereas the opposite was true of GmTLP8-RNAi lines.
3,3-diaminobenzidine and nitro blue tetrazolium staining and physiological indexes also
showed that overexpression of GmTLP8 enhanced the tolerance of soybean to drought
and salt stresses; in addition, downstream stress-responsive genes were upregulated in
response to drought and salt stresses. This study provides new insights into the function
of GmTLPs in response to abiotic stresses.

Keywords: tubby-like protein, genome-wide analysis, abiotic stress, responsive mechanism, soybean

Abbreviations: TLP, tubby-like protein; ABA, abscisic acid; GFP, green fluorescent protein; MDA, malondialdehyde; PRO,
proline; PEG, polyethylene glycol; DAB, 3, 3-diaminobenzidine; NBT, nitro blue tetrazolium; qRT-PCR, quantitative real-
time PCR; ABRE, ABA-responsive element; MYC, drought and salt-responsive element; NCED, 9-cis-epoxycarotenoid
dioxygenase; SCF-complex, Skp1-Cullin1-F-box complex; SKP1-like proteins, S-phase kinase-associated protein 1 like
proteins; NHL, NDR1/HIN1-like gene.
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INTRODUCTION

The Tubby-like proteins (TLPs) are a class of eukaryotic
transcription factors that were originally identified in obese
mice (Kleyn et al., 1996; Liu, 2008). A typical TLP has a
highly conserved tubular domain composed of 270 amino
acids at the C-terminal, forming a β-barrel with a central
hydrophobic α-helix and 12 antiparallel strands. It binds specific
phosphatidylinositol 4,5-diphosphates to properly connect to
the plasma membrane (Santagata et al., 2001; Mukhopadhyay
and Jackson, 2011). TLPs have been widely studied in animals.
For example, TULP3 is defined as a universal adapter for the
transport of integral membrane proteins in the ciliary membrane
to the cilia (Badgandi et al., 2017). Mutations of TLPs in humans
lead to delayed obesity (Coleman and Eicher, 1990; Kleyn et al.,
1996; Noben-Trauth et al., 1996; Kapeller et al., 1999; Borman
et al., 2014), and mice with TLP mutations develop retinal
degeneration, neurosensory hearing loss, and insulin resistance
(Stretton et al., 2009).

In addition to the typical C-terminal tubular domain, plant
TLPs have a conserved N-terminal F-box domain, which is not
present in mammalian TLPs (Gagne et al., 2002; Lai et al., 2004).
Previous studies have shown that TLPs have a variety of functions
in plants, including growth, development, and disease resistance.
TLPs may function in pollen grains, consistent with the fact that
AtTLP6, AtTLP7, and AtTLP2 are mainly expressed in pollen
grains of Arabidopsis (Bao et al., 2014). AtTLP2 is involved in
the biosynthesis of homogalacturonic acid in Arabidopsis seed
coat mucilage (Wang et al., 2019). Fourteen TLP genes have
been identified in rice (OsTLPs), and differential expression
analysis confirmed that the members of this group play important
roles in processes related to physiological development (Liu,
2008). Expression of each OsTLP was induced by infection with
Xanthomonas oryzae pv. oryzae, indicating that the OsTLP family
is involved in host–pathogen interaction (Kou et al., 2009).
OsTLP2 can bind to the OsWRKY13 promoter to regulate rice
resistance to fungal plague and bacteria (Cai et al., 2008). Tomato
SlTLP1 and SlTLP2 may have important roles in ethylene-
dependent fruit ripening (Zhang et al., 2020); SlTLFP8 regulates
cell size and stomatal density through endoreduplication, reduces
water loss, and enhances water use efficiency (Li et al., 2020).

Previous reports have demonstrated the responses of TLPs to
various abiotic stresses. During seed germination and seedling
growth, AtTLP3 responds to abiotic stresses such as abscisic acid
(ABA), NaCl, and mannitol (North et al., 1997; Bao et al., 2014).
AtTLP9 regulates ABA sensitivity during seed germination and
early seedling development (Lai et al., 2004; Chen et al., 2020).
Overexpression of CaTLP1 in chickpeas can enhance tolerance to
drought, salt stresses, and ABA (Bhushan et al., 2007). In apples,
polyethylene glycol (PEG) treatment up-regulates expression of
MdTLP1-MdTLP5 and MdTLP9 (Xu et al., 2016). Overexpression
of apple MdTLP7 enhances the tolerance of Arabidopsis to
osmotic, salt, and temperature stresses (Xu et al., 2019). ZmTLP2
and ZmTLP11 are significantly up-regulated in maize under
drought stress (Chen et al., 2016). CsTLP8 plays a negative
regulatory role in osmotic stress in cucumber, and its effects may
be related to ABA (Li S. et al., 2021). Transcriptome analysis has

shown that cotton GhTULPs are involved in abiotic stresses and
tissue development. Overexpression of GhTULP34 was shown
to decrease the germination rate of Arabidopsis seeds under salt
stress, inhibit root development under osmotic stress, and lead to
the closure of plant stomata (Li Z. et al., 2021). In summary, TLPs
play key roles in plant growth and development and in responses
to biotic and abiotic stresses.

Soybean (Glycine max) is one of the most economically
important crops in the world, often used as a source of food
for humans and livestock because of its rich oil and protein
(Papiernik et al., 2005). As global climate change occurs, the
adaptability of soybean to its living environment is gradually
reduced, causing a demand for stress-tolerant soybean varieties.
Further studies are needed to improve soybean tolerance to
extreme environments, including various abiotic stresses such
as drought and salt (Le et al., 2012). There is little published
information about TLPs and their relationship with abiotic stress
mechanisms in soybean. In this study, 22 TLP genes were
identified in the soybean genome, and bioinformatic analyses
were conducted to determine their chromosomal locations,
gene structures, protein domains, conserved motifs, three-
dimensional structures, and cis-acting elements. Based on RNA-
Seq and quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR), we further investigated the role of GmTLP8 in
drought and salt stress responses in soybean, and found that
overexpression of GmTLP8 enhanced tolerance to drought and
salt stresses in soybean. These findings provide insights into the
function of GmTLP8, specifically in abiotic stress responses, and
into the importance of GmTLPs more broadly in plant abiotic
stress responses.

MATERIALS AND METHODS

Identification of Tubby-Like Proteins in
Soybean
Soybean genome, protein, complementary DNA (cDNA)
sequences, and gene annotation files were obtained from NCBI1

and the Phytozome database2 (Finn et al., 2011; Fernandez-
Pozo et al., 2015). The Hidden Markov Model (HMM) profile
corresponding to the TLP Tub domain (PF01167) from the Pfam
protein family database3 was used to identify potential TLPs
in the soybean genome (G. max Wm82. a2.v1) using HMMER
v3 (Eddy, 1998; Mistry et al., 2021). Finally, the presence of
the Tub domain in each TLP protein sequence was confirmed
with the SMART tool4 (Letunic et al., 2012) and Pfam database.
The molecular weight and isoelectric point data for GmTLPs
were calculated by ExPASY5 (Artimo et al., 2012). Subcellular
localization was predicted with WoLF PSORT6.

1http://www.ncbi.nlm.nih.gov/
2https://phytozome.jgi.doe.gov/pz/portal.html
3http://pfam.xfam.org/
4http://smart.embl-heidelberg.de/
5http://web.expasy.org/
6https://wolfpsort.hgc.jp/
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Phylogenetic Tree Construction and
Multiple Sequence Alignment
The full-length amino acid sequences of TLP members in
rice (OsTLPs), Arabidopsis (AtTLPs), cotton (GhTLPs), maize
(ZmTLPs), apple (MdTLPs), poplar (PtTLPs), wheat (TaTLPs),
tomato (SlTLPs), and the newly identified GmTLPs were obtained
from NCBI and Phytozome, respectively, and aligned with default
parameters using ClustalW (Chenna et al., 2003). An unrooted
phylogenetic tree was constructed using the neighbor-joining
(NJ) method in MEGAX (version 10.1.8) (Tang et al., 2021) with
the following parameters: pairwise deletion; Poisson model; 1000
bootstrap replications.

The amino acid sequence of 22 TLP proteins of soybean
aligned using DNAMAN (version 6.0.3).

Chromosomal Localization, Structural
Characterization, and Conserved Motif
Analysis
Chromosomal location data for GmTLPs were obtained from
the Phytozome database. Intron insertion sites were identified
by comparing the coding sequence of each TLP gene with the
corresponding full-length sequence using the Gene Structure
Display Server (GSDS) 2.07 (Hu et al., 2015). The conserved
domain of the identified soybean GmTLP protein sequences were
determined using MEME8 with the maximum number of motifs
set to 10 (Bailey et al., 2009).

Protein Domain Analysis and Homology
Modeling
Protein sequences of the 22 GmTLPs were submitted to the
SMART website9 to obtain data related to conserved protein
domains, and GSDS 2.0 was used for visual analysis. Three-
dimensional models of the Tub domain were built with SWISS-
MODEL10 (Dong et al., 2019). Tub domain models were obtained
for 20 GmTLPs with the protein sequence identity set to ≥30%.

Expression Patterns of TLPs in Soybean
Soybean gene expression files were downloaded from the Soybase
website11 to analyze the expression patterns of 22 GmTLPs
members in different tissues at different developmental stages
under normal conditions, including young-leaf, flower, pod, pod
shell, seed, root, and nodule. In the database file provided by
Soybase website, only 18 members’ tissue differential expression
information were found for further analysis. Transcriptome data
for GmTLPs members under various abiotic stresses from our
previous studies (Wang et al., 2020). 22 GmTLPs members were
used for searching in transcriptome data, and their expression
levels under normal condition, ABA treatment, drought and salt
stresses were analyzed. Finally, the relevant information of 21
members was obtained. TBtools (version 1.075) (Chen et al.,

7http://gsds.cbi.pku.edu.cn
8https://meme-suite.org/meme/
9http://smart.embl-heidelberg.de/smart/batch.pl
10https://swissmodel.expasy.org
11http://www.SoyBase.org

2020) was used for visualization and cluster analysis of GmTLP
expression patterns.

Analysis of Cis-Acting Elements in
GmTLP Gene Promoters
GmTLP sequences obtained from the Phytozome database were
extracted in batches with TBtools, and the 2000 bp upstream
promoter sequences of the 22 GmTLP genes were obtained and
submitted to the online program PlantCARE12 to identify cis-
acting elements. GSDS 2.0 was used for data visualization.

Plant Materials and Growth Conditions
The soybean variety Zhonghuang39 was used for analysis of
GmTLP gene expression in this study. Soybeans were grown in
1: 1 vermiculite: humus in a greenhouse with a 16/8 h light/dark
cycle, day/night temperatures of 28/20◦C, and a relative humidity
of 70%. At 14 days, the seedlings at the four-leaf stage were
stressed with drought or salt. Referring to previous research
methods (Wang et al., 2021), soybean seedlings were removed
from soil. For drought stress, the seedlings were placed on filter
paper; for salt stress, the seedlings were immersed in 200 mM
NaCl solution. The sampling time of drought or salt stress was
0, 0.5, 1, 2, 4, 8, 12, and 24 h. There were three biological
replicates per treatment. After treatment, the leaves were frozen
in liquid nitrogen and stored at –80◦C before further analysis (Xu
et al., 2008). These samples were used for qRT-PCR analysis of
subsequent GmTLPs members.

RNA Extraction and Quantitative
Real-Time Polymerase Chain Reaction
Total RNA was extracted from soybean leaves using a plant
RNA extraction kit following the manufacturer’s instructions
(TIANGEN, Beijing, China). cDNA was synthesized using the
PrimeScriptTM RT Reagent Kit (TaKaRa, Shiga, Japan) following
the manufacturer’s protocol. Primers (Supplementary Table 2)
were designed using Primer Premier 5.0. The soybean Actin
gene (U60506) was used as the internal control for quantitative
real-time PCR (qRT-PCR). There were three technical replicates
for each sample. Differential expression was determined from
the relative gene expression data using the 2−1 1 CT method
(Le et al., 2011).

Subcellular Localization of GmTLP8
We constructed an expression vector labeled with green
fluorescent protein (hGFP) for subcellular localization analysis.
The full-length cDNA sequence of GmTLP8 was fused to the
N-terminal hGFP protein driven by the CaMV35S promoter
(Xu et al., 2007). The 35S:GFP vector was used as a control.
A PEG4000-mediated method was used to transform the
GmTLP8-GFP recombinant plasmid into Arabidopsis protoplasts
(He et al., 2016). After incubation for 18–20 h in the dark at 22◦C,
the nucleus of GmTLP8-GFP protoplasts were specifically stained
with 4’, 6-diamidino-2-phenylindole (DAPI). The fluorescence
signal was observed using a confocal laser scanning microscope

12http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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(Zeiss LSM 700, Oberkochen, Germany). There were three
technical replicates for each group.

Agrobacterium rhizogenes-Mediated
Transformation of Soybean Hairy Roots
The transformation was conducted to produce soybean hairy
roots that were characterized by overexpression of GmTLP8
(GmTLP8-OE), RNA interference of GmTLP8 (GmTLP8-RNAi),
or with the empty pCAMBIA3301 vector (EV-Control) (Chen
et al., 2021). The CDS of GmTLP8 was amplified without stop
codon using gene-specific primer pairs, under the control of the
CaMV35S promoter, GmTLP8 cDNA was ligated into the plant
transformation vector pCAMBIA3301 to generate GmTLP8-
overexpressing (GmTLP8-OE) vector. In order to construct the
RNAi vector, a 564 bp fragment including the first intron
sequence and its reverse complement was synthesized (Biomed,
Beijing, China) and inserted into pCAMBIA3301 to generate the
pCAMBIA3301-GmTLP8-RNAi (GmTLP8-RNAi) vector. The
recombinant construct and the empty pCAMBIA3301 (EV-
Control) vector were transferred into A. rhizogenes strain
K599, as previously described, then injected into soybean
(G. max cv. Zhonghuang39) hypocotyl for A. rhizogenes-
mediated transformation of soybean hairy roots (Wang et al.,
2009; Du et al., 2018).

The injected plants were placed in a high-humidity
greenhouse until hairy roots were generated at the infected
site and had grown to ∼5 cm in length. After cutting off the
original tap root 0.5 cm below the infected site, the seedlings were
transplanted into fertilized soil and cultivated in a greenhouse
at 25◦C with a 16/8 h light/dark photoperiod for 7 days (Yu
et al., 2021). The qRT-PCR analysis of GmTLP8 expression in
GmTLP8-OE, EV-control and GmTLP8-RNAi transgenic hairy
root plants before processing (Supplementary Figure 2G). Each
of the hairy root-related experiments was replicated at least
three times independently. The primers of GmTLP8-3301-F and
GmTLP8-3301-R were listed in Supplementary Table 2.

Drought and Salt Stress Assays of
Soybean Hairy Root Composite Plants
Transgenic hairy root composite soybean plants were used in
drought and salt stress assays after 7 days of normal growth. For
drought treatment, soybean plants were grown for 7 days without
watering; for NaCl treatment, soybean plants were treated with
150 mM NaCl for 3 days. Drought and salt treatment experiments
were conducted a minimum of three times. Both the treated and
untreated soybean hairy roots were washed with water prior to
RNA isolation and physiological/biochemical experiments.

Measurements of Physiological Indexes
Several physiological parameters were measured in transgenic
GmTLP8-OE, EV-Control, and GmTLP8-RNAi lines after
the drought and NaCl treatments, namely levels of proline
(Pro), malondialdehyde (MDA), hydrogen peroxide (H2O2),
superoxide anion (O2

−), and chlorophyll. Measurements were
taken in soybean leaves using appropriate assay kits (Cominbio,

Suzhou, China) following the manufacturer’s instructions. All
measurements were performed in three biological replicates.

Leaf Staining With 3,3-Diaminobenzidine
and Nitro Blue Tetrazolium
Leaves from the three transgenic lines were stained with 3,3-
diaminobenzidine and nitro blue tetrazolium after drought or salt
stress treatment. The leaves were immersed in DAB solution or
NBT staining solution (Solarbio, Beijing, China) for 18 or 14 h,
respectively. Samples were then destained in a boiling solution
of 3: 1 anhydrous ethanol: glycerol until the leaves were white
(Du et al., 2018). Images were taken using a Canon 50D camera
(Canon, Tokyo, Japan). There were three biological replicates for
each plant line–treatment group combination.

RESULTS

Identification of Tubby-Like Proteins in
Soybean Genome
Twenty-two GmTLP family members were identified in this
study. The SMART and Pfam databases were used to confirm the
presence of the conserved Tub domain in all of the putative TLP
proteins. Twenty-two GmTLP genes were unevenly distributed
across 13 chromosomes of soybean. According to their positions
on chromosomes, we named them GmTLP1 to GmTLP22.
The details of TLPs in soybean, such as the coding sequence
(CDS) length, amino acid length (aa), molecular weight (MW),
isoelectric point (pI), and subcellular location are shown in
Table 1.

Among the 22 GmTLPs, the protein length ranged from
183 (GmTLP5) to 454 amino acids (GmTLP21). The minimum
protein MW was 20.8 kDa (GmTLP5), and the maximum was
50.6 kDa (GmTLP21). The pI ranged from 7.54 in GmTLP10
to 9.65 in GmTLP8. Twelve of the proteins were predicted
to be located in the nucleus, five in the cytosol, four in the
mitochondria, and two in the chloroplast (Table 1), withGmTLP1
predicted to be located in either the nucleus or cytosol.

Chromosome Distribution, Phylogenetic
Analysis, and Multiple Sequence
Alignment
A physical location map of the GmTLPs was drawn using
physical location data from the soybean genome. The 22 GmTLP
genes were distributed across 13 chromosomes, which were
chromosome 1, 2, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 20,
respectively. There were three genes on chromosomes 2 and 13,
two genes on chromosomes 7, 12, 15, 16, and 17, and only one
gene each on chromosomes 1, 8, 10, 11, 14, and 20 (Figure 1).

To reveal the phylogenetic relationships between TLPs in
different plant species, an unrooted phylogenetic tree was
constructed by comparing the amino acid sequences for all of the
known TLP members in several species, totaling 132 proteins.
There were 11 from Arabidopsis (Lai et al., 2004), 15 from
maize (Chen et al., 2016), 14 from rice (Liu, 2008), four from
wheat (Hong et al., 2015), 11 from tomato (Zhang et al., 2020),
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TABLE 1 | Basic information of TLPs in soybean.

Name Gene ID CDS(bp) Chr Protein(aa) MW(Da) pI Subcellular localization

GmTLP1 Glyma.01G173700 1249 1 415 46341.13 9.37 Nucl/cyto

GmTLP2 Glyma.02G055300 1246 2 414 46043.62 9.18 Chlo

GmTLP3 Glyma.02G081800 1276 2 424 47548.48 9.46 Nucl

GmTLP4 Glyma.02G152700 1204 2 400 44763.46 9.47 Nucl

GmTLP5 Glyma.07G147700 553 7 183 20813.28 9.43 Cyto

GmTLP6 Glyma.07G251800 1081 7 359 40220.18 9.06 Cyto

GmTLP7 Glyma.08G183100 1285 8 427 48059.27 9.48 Nucl

GmTLP8 Glyma.10G224900 1294 10 430 48068.12 9.65 Nucl

GmTLP9 Glyma.11G069400 1246 11 414 46094.90 9.36 Cyto

GmTLP10 Glyma.12G115200 889 12 295 33619.95 7.54 Cyto

GmTLP11 Glyma.12G230000 1138 12 378 41678.40 9.37 Mito

GmTLP12 Glyma.13G214900 1171 13 389 43646.37 9.44 Mito

GmTLP13 Glyma.13G269600 1147 13 381 41987.79 9.32 Mito

GmTLP14 Glyma.13G371500 1072 13 356 40004.66 9.63 Nucl

GmTLP15 Glyma.14G073500 1273 14 423 47357.84 9.29 Nucl

GmTLP16 Glyma.15G049500 1285 15 427 47952.01 9.41 Nucl

GmTLP17 Glyma.15G098200 1159 15 385 43331.98 9.30 Nucl

GmTLP18 Glyma.16G138100 1246 16 414 46248.94 9.01 Chlo

GmTLP19 Glyma.16G167200 1276 16 424 47621.54 9.46 Nucl

GmTLP20 Glyma.17G022700 1108 17 392 44015.49 9.07 Nucl

GmTLP21 Glyma.17G251500 1366 17 454 50583.48 9.41 Mito

GmTLP22 Glyma.20G166900 1294 20 430 48203.31 9.61 Nucl

FIGURE 1 | Chromosomal distribution of the 22 putative TLP genes identified in soybean. The scale bar at left indicates the size of the chromosomes.

nine from apple (Xu et al., 2016), 11 from poplar (Yang et al.,
2008), and 35 from cotton (Li Z. et al., 2021) in addition to the
22 putative TLPs identified in soybean. Phylogenetic tree was
divided into five groups based on protein homology, and there

were one, two, five, six, and eight GmTLP members in groups I,
II, III, IV, and V, respectively (Figure 2).

The results of multiple sequence alignment showed that the
positions of F-box domain and Tub domain in GmTLP protein
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FIGURE 2 | Phylogenetic analysis of TLP proteins. The full-length amino acid sequences of TLP proteins from Arabidopsis (AtTLPs), rice (OsTLPs), maize (ZmTLPs),
tomato (SlTLPs), apple (MdTLPs), cotton (GhTLPs), poplar (PtTLPs), wheat (TaTLPs), and soybean (GmTLPs) were aligned using ClustalW. The phylogenetic tree
was constructed using the NJ (Neighbor-joining) method with 1000 bootstrap replicates. Distinct subfamilies are marked with different colors.

sequence were located in the front and rear segments of the
sequence (Figure 3).

Gene Structure and Motifs in GmTLPs
We analyzed the gene structure of the 22 GmTLPs using GSDS
2.0 online to determine the intron and exon distribution of
each (Figure 4A). A total of 15 genes contained three introns
and four exons each, and the other seven genes contained four
introns and five exons.

A total of 10 conserved motifs (E ≤ 0.01) were analyzed
using the MEME website to explore conservation and diversity

of soybean TLPs. Among the 22 GmTLP family members, 19
contained all 10 motifs, with GmTLP4 containing two copies
of motif 3 and GmTLP20 containing two copies of motif 5.
GmTLP5, GmTLP10, and GmTLP14 contained six, five, and
two motifs, respectively (Figure 4C). Consensus sequences for
putative motifs are shown in Supplementary Figure 1.

Conserved Domain Analysis and
Three-Dimensional Modeling
From the Pfam database, we found that two conserved domains
in GmTLPs were Tub (PF01167) and F-box (PF00646). We
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FIGURE 3 | Multiple sequence alignment of GmTLP proteins from soybean using DNAMAN. Black, pink and light blue shading, respectively, represent amino acids
with 100, ≥75, and 50% similarity of amino acids. The locations of the F-box domain and tubby domain are indicated with double and single solid lines above the
sequences, respectively. The alignment is generated by the ClustalW program.

then analyzed the conserved protein domains using both the
SMART website (Figure 4D) and homology modeling in SWISS-
MODEL (Figure 5).

The results of conserved domain analysis showed that 20 of the
GmTLPs contained one F-box domain in the N-terminal region

and one Tub domain in the C-terminal region. GmTLP4 had
a Tub domain in the C-terminal region but no F-box domain
in the N-terminal region, and GmTLP20 contained one F-box
domain in the N-terminal region and two Tub domains in the
C-terminal region. The analysis also revealed one ANK domain
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FIGURE 4 | Gene structures, cis-acting elements, motifs and conserved domains analysis of GmTLPs. (A) Phylogenetic relationships (left) and gene structures (right)
of GmTLPs. The phylogenetic tree was constructed using MEGAX; the different classes of TLP proteins make up separate clades. The schematic diagram shows
gene structure. Introns and exons are indicated by black lines and yellow boxes, respectively. The lengths of introns and exons in each gene are displayed
proportionally. (B) Predicted cis-acting elements in the GmTLP promoters. Distinct color blocks indicate different cis-elements, including ABRE, ARE, LTR, TC-rich,
MBS, MRE, G-box, TCA-element, TGACG-motif, W-box, circadian, MSA-like, O2

−-site, TATC-box, AuxRR-core, CAT-box, and MYC. The upstream distance from
the translation start site can be estimated using the scale at the bottom. (C) Phylogenetic relationships (left) and putative motifs (right) of GmTLPs. Conserved motifs
were identified using the MEME website and TBtools software. Ten putative motifs are indicated by colored boxes. (D) Conserved domain analyses of GmTLPs. The
length of each protein can be estimated using the scale at the bottom.

in the C-terminal region of GmTLP10, the function of which was
not clear (Figure 4D).

The homology modeling was a useful tool for the prediction of
protein structure, and protein structural information was often
more valuable than sequence data alone in determining protein
function. We generated three-dimensional (3D) models of the
Tub domains for 20 of the GmTLPs. These models showed that
the Tub domain of each GmTLP was closed by a β-barrel with 12
anti-parallel strands and a central hydrophobic α-helix, which is
a typical structure for a Tub domain (Figure 5).

Promoter Regions of GmTLPs Contain
Various Stress Response Elements
Cis-acting regulatory elements play an important role in
modulating gene expression. To understand transcriptional
regulation of GmTLPs, we identified cis-acting elements within
the promoter region of each GmTLP gene, defined as the
2000 bp region upstream of the start codon (Figure 4B and
Supplementary Table 1). Results showed that most cis-acting
elements in GmTLP promoters were involved in hormone or
stress responses.

The main hormone-related cis-acting elements identified were
ABA response element (ABRE), TATC-box (gibberellin), AuxRR

core (auxin), TCA element (salicylic acid), and the TGACG motif
(methyl jasmonate). Among the GmTLP promoters, 14 genes
contained ABRE, four contained a TATC-box, six contained the
AuxRR core, 11 contained a TCA element, and 12 contained a
TGACG motif. This indicated that the GmTLPs may be involved
in hormone-related responses.

The abiotic stress cis-acting elements identified were as
follows: anaerobic inducing element (ARE), low temperature
response element (LTR), a MYB binding site involved in drought
induction (MBS), a drought and salt response element (MYC),
and a defense and stress response element (TC-rich element).
MYC, which was previously reported to be involved in drought
and salt stress-induced responses, was revealed to be distributed
in all of the GmTLP promoter sequences. In addition, 20 GmTLP
promoters contained ARE, seven contained LTR, seven contained
MBS, and six contained TC-rich elements. The presence of
these cis-acting elements related to abiotic stresses indicated that
GmTLPs are abiotic stress-responsive.

Among the 22 GmTLPs, 14 contained ABREs, indicating
that these genes can be regulated by ABA. Drought and
salt response element MYCs were present in all 22 GmTLP
promoter sequences, strongly suggesting that GmTLP members
are involved in the responses to those stressors (Zuo et al., 2020).
In total, cis-acting element analysis indicated that most members
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FIGURE 5 | Homology modeling of the 3D structure of GmTLP Tub domains. The α-helices are shown in red, and β-barrels are shown in different colors surround
the α-helices. GmTLP, soybean tubby-like protein.

of the GmTLP family may be regulated by ABA in response to
drought and salt stresses.

Tissue-Specific Expression Patterns of
TLPs in Soybean
To understand expression patterns of TLPs during the growth
and development of soybean and throughout different plant
tissues, publicly available transcriptome sequencing data from
the SoyBase database were analyzed. For 18 GmTLP members,
we analyzed gene expression levels in different plant tissues
including young-leaf, flower, pod, pod shell, seed, root, and
nodule. The results showed that GmTLP7 was extremely high
expressed in all seven tissues. GmTLP6, 10, 22, 11, and 21
were expressed at extremely low levels or not expressed in
seven tissues. GmTLP2, 4, 9, 12, and 14 were expressed in
some tissues, but not in others. GmTLP13, 17, 3, 5, 20, 15,
and 16 were expressed in all seven tissues, with extremely high
expression in some tissues and extremely low expression in
others. Phylogenetic analysis divided the 18 GmTLP members
into different groups, and members within each group shared
similarities at the expression level in all seven tissues (Figure 6).
The results showed a great deal of spatiotemporal difference in
GmTLP expression levels.

Expression Pattern Analysis of GmTLPs
Under Abiotic Stresses
We used a previously published transcriptome sequencing
database to quantify the expression of GmTLPs under normal
condition, ABA treatment, drought and salt stresses (Wang et al.,
2020), and screened 21 GmTLP members (Figure 7). The results
showed that GmTLP21 was up-regulated and GmTLP14 was
down-regulated under ABA treatment. Under drought stress, six
genes were up-regulated, and GmTLP3, 8, 11, 13, 19, and 22,
four genes were down-regulated, and GmTLP14, 15, 18, and 20,
respectively; Under salt stress, GmTLP8 was up-regulated and
GmTLP14 was down-regulated. The P-value of data in abiotic
stress expression profiles is shown in Supplementary Table 3.

Responses of GmTLP8 to Various
Treatments
According to the expression profiles of GmTLPs under different
abiotic stresses, five genes (GmTLP8, 11, 13, 19, and 22)
up-regulated expression under drought stress and one gene
(GmTLP8) under salt stress were selected for qRT-PCR analysis
to further verify their relative expression levels under drought
and NaCl treatments. The selected genes were GmTLP8, 11, 13,
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FIGURE 6 | Expression profiles of GmTLPs from six soybean tissues. Gene expression was analyzed in soybean young-leaf, flower, pod, pod shell, seed, root, and
nodule. The abundance of each transcript (in log10-based FPKM) is represented by the color bar. Red indicates higher and blue indicates lower expression levels.

FIGURE 7 | Expression profiles of GmTLPs under normal condition (Normal),
ABA treatment (ABA), drought (Drought) and salt (NaCl) stresses. The
expression abundance of each transcript (in log10-based FPKM) is
represented by the color. Red indicates higher and blue indicates lower
expression levels.

19, and 22. Under drought treatment (Figure 8A), GmTLP8
expression peaked at 8 h (with an 8.5-fold increase compared to
0 h), GmTLP11 at 24 h (3.7-fold), GmTLP13 at 1 h (3.7-fold),

GmTLP19 at 24 h (4.9-fold), and GmTLP22 at 8 h (4.8-fold).
Under salt treatment (Figure 8B), GmTLP8 expression peaked
at 8 h (7.3-fold), GmTLP11 at 2 h (4.5-fold), GmTLP13 at 24 h
(1.8-fold),GmTLP19 at 12 h (4.4-fold), andGmTLP22 at 12 h (4.5-
fold). These results showed that GmTLP8 was the most highly
expressed in response to drought and salt treatments, and it was
therefore selected for further study.

Subcellular Localization
To determine the subcellular localization of GmTLP8, the open
reading frame (ORF) sequence (excluding the termination codon
of GmTLP8) was fused with the N-terminal of the humanized
green fluorescent protein (hGFP) reporter and co-transformed
into Arabidopsis protoplasts. A 35S:hGFP as the control, the
fluorescence signal in the cells was detected by confocal laser
scanning microscopy. The fluorescence of GmTLP8 was detected
in the nucleus and cytoplasm, while the fluorescence of the
control 35S:hGFP was observed in the whole cell. DAPI
staining also showed the localization of GmTLP8 in the nucleus
(Figure 9). It suggests that GmTLP8 act as a transcription factor
in the nucleus (Li S. et al., 2021).

GmTLP8 Improved Drought and Salt
Tolerance in Soybean Transformants
The stress-tolerant effect of GmTLP8 in soybean was explored
using transgenic soybean hairy root composite plants. The hairy
roots ofGmTLP8-OE, EV-Control andGmTLP8-RNAi transgenic
lines were used to analyze the relative expression level of
GmTLP8. qRT-PCR analysis showed that the expression level
of GmTLP8-OE transgenic hairy roots was significantly higher
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FIGURE 8 | Expression patterns of GmTLPs under drought and salt treatments. GmTLP gene expression was measured in response to drought (A) and NaCl (B)
treatments using qRT-PCR. The x-axes show the duration of treatment and y-axes depict relative expression level. The data are shown as mean ± standard
deviation (SD) of three technical and three biological replicates.

FIGURE 9 | Subcellular localization of GmTLP8-hGFP fusion protein.
35S:GFP was used as the control. Scale bar = 5 µm.

than that in EV-Control, and the expression level of GmTLP8-
RNAi transgenic hairy roots was lower than that in EV-Control
(Supplementary Figure 2G). Under normal growth conditions,
no significant differences were observed between GmTLP8-
OE, the EV-Control, and GmTLP8-RNAi lines (Figure 10A).
However, after exposure to drought (Figure 10B) and salt
(Figure 10C) treatments, there were significant phenotypic
differences between GmTLP8-OE, EV-Control, and GmTLP8-
RNAi plants. Compared with EV-Control, GmTLP8-RNAi
plants showed more severe leaf dehydration and wilting stress
phenotype, whereas GmTLP8-OE showed fewer rolled leaves and
a delayed leaf wilting phenotype. The survival rates of GmTLP8-
OE, EV-Control, and GmTLP8-RNAi lines under drought stress
were 93, 67, and 40%, respectively; these survival rates were
comparable to those of salt-stressed plants (Figure 10H).

Proline (Pro), malondialdehyde (MDA), hydrogen peroxide
(H2O2), and superoxide anion (O2

−) levels are important
indicators of the effects of abiotic stresses on plant growth
(Leng et al., 2021). Proline is a protective agent against osmotic
stress; MDA reflects the degree of lipid oxidative damage; H2O2
and O2

− play immune and signal transduction roles, although
excessive accumulation may lead to cell membrane damage
(Du et al., 2018; Zhang et al., 2019). Chlorophyll levels are an
important indicator of plant photosynthetic capacity (Tanaka
and Tanaka, 2006). To further analyze the potential physiological
mechanism of GmTLP8 in plant stress tolerance, we measured
the levels of Pro, MDA, H2O2, O2

−, and chlorophyll in the
leaves of GmTLP8-OE, EV-Control, and GmTLP8-RNAi plants
under normal growth conditions and under drought or salt stress
(Figures 10F,G,I–K). Levels of Pro and chlorophyll were higher
in GmTLP8-OE compared with EV-Control, whereas levels of
MDA, H2O2, and O2

− were lower. In contrast, the GmTLP8-
RNAi lines had lower Pro and chlorophyll levels but higher MDA,
H2O2, and O2

− levels than EV-Control.
H2O2 and O2

−, produced by the reactive oxygen species
(ROS) pathway in leaf cells under abiotic stress, were measured
to assess the degree of damage in leaf cells (Cui et al., 2019). This
was done using DAB and NBT to stain the leaves of GmTLP8-
OE, EV-Control, and GmTLP8-RNAi plants (Figures 10D,E).
Under normal conditions, leaves from the GmTLP8-OE, EV-
Control, and GmTLP8-RNAi lines showed minimal staining,
with no significant difference between lines. Under drought and
salt stresses, compared with EV-Control, GmTLP8-OE leaves
showed shallow staining, whereas GmTLP8-RNAi showed deeper
staining. These results demonstrated that the GmTLP8-OE line
had lower levels of leaf damage and the GmTLP8-RNAi line had
more severe leaf damage compared to EV-Control in response
to exogenous abiotic stresses. The results of staining leaves with
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FIGURE 10 | Analysis of the function of soybean GmTLP8. (A–C) Phenotypes of transgenic soybean hairy root composites GmTLP8-OE (35S:GmTLP8), EV-Control
(empty plasmid), and GmTLP8-RNAi plants under (A) normal conditions, (B) drought stress, or (C) salt stress. (D) DAB and (E) NBT leaf staining of the GmTLP8-OE,
EV-Control, and GmTLP8-RNAi lines under normal conditions and drought or salt stress. The depth of color corresponds to the concentrations of H2O2 and O2

− in
the leaves. (F) Proline (Pro) content, (G) malondialdehyde (MDA) content, (H) survival rate, (I) chlorophyll content, (J) H2O2 content, and (K) O2

− content in
transgenic soybean hairy root composite plants and EV-control plants under normal conditions and drought or salt stress. Vertical bars indicate ± SD of three
technical and three biological replicates. ∗p < 0.05, ∗∗p < 0.01 (Student’ s t-test).

DAB and NBT were consistent with the physiological indexes of
H2O2 and O2

− contents.

GmTLP8 Activated Stress-Responsive
Genes in Soybean
To analyze the potential stress tolerance mechanism of GmTLP8,
genes known to be involved in drought and salt stress
responses were selected, namely GmDREB1 (Kasuga et al., 1999),
GmDREB2 (Chen et al., 2007), GmNAC11 (An et al., 2018),
GmNCED3 (Pandey and Gautam, 2020), GmSOS1 (Ma et al.,
2020), and GmWRKY27 (Wang et al., 2015) (Figures 11A–F,H–
M). Expression of these genes in the hairy roots of GmTLP8-
OE, EV-Control, and GmTLP8-RNAi transgenic soybean lines
were measured via qRT-PCR. Plants were drought-treated by
withholding water for 7 days or salt-treated with 150 mM
NaCl for 3 days. Under normal growth conditions, the selected
stress responsive genes were expressed at lower levels in all
three plant lines compared to plants that had been exposed
to drought or salt stress (Supplementary Figures 2A–F and
Figures 11A–F,H–M). In plants that had been stressed, compared
with EV-Control, the six stress-related genes were significantly
up-regulated in GmTLP8-OE plants and down-regulated in
GmTLP8-RNAi plants. These results suggest that overexpression
of GmTLP8 may activate expression of downstream drought- and
salt-response genes.

DISCUSSION

Previous reports have proven that TLP family members
participate in plant growth and development, response to abiotic
stress, and can also be involved in the ABA signaling pathway

(North et al., 1997; Lai et al., 2004; Bao et al., 2014; Chen
et al., 2020). Also, reports have confirmed the resistance of TLPs
members in Arabidopsis (Lai et al., 2004), maize (Chen et al.,
2016), wheat (Hong et al., 2015), tomato (Zhang et al., 2020),
apple (Xu et al., 2016), and cotton (Li Z. et al., 2021) to abiotic
stress, but no report has been found in soybean. We used the NJ
method to construct the phylogenetic tree of multiple species.
According to the homology of protein sequences, they were
divided into five groups, which were similar to the phylogenetic
tree group in cotton previously reported (Li Z. et al., 2021). In
group I, there is only one GmTLPs member, GmTLP14, which
is the same as AtTLP8 in Arabidopsis previously reported (Lai
et al., 2004). N-terminal of GmTLP14 and AtTLP8 do not contain
F-Box domain, indicating that they may come from the same
ancestor, so they are classified as the same group (Figure 2).

Gene structure analysis showed that each member of the
GmTLPs had introns and exons, and their numbers were similar
to those previously reported in Arabidopsis (Lai et al., 2004),
indicating that the soybean TLPs was evolutionary conserved
(Figure 4A). Motif analysis showed that except GmTLP14
containing two motifs, the number of motifs contained by other
members was not less than five (Figure 4C). Analysis of protein
conserved domains showed that except GmTLP14 had only one
domain, other members contained two/three conserved domains
(Figure 4D). Multiple sequence alignment marks the protein sites
of two key conserved domains (Figure 3), consistent with the
domain distribution shown in Figure 4D. Above results showed
that the protein structures of other members of GmTLPs were
similar except GmTLP14. Further analysis of transcriptome data
showed that the up-regulated gene was GmTLP8 under drought
and salt stresses, while the down-regulated gene was GmTLP14
(Figure 7). The down-regulated expression of GmTLP14 under
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FIGURE 11 | GmTLP8 regulates stress-responsive gene expression in transgenic soybean plants. (A–F) Expression levels of selected stress-related genes in
transgenic soybean plants under drought stress. (H–M) Expression levels of selected stress-related genes in transgenic soybean plants under salt stress.
(G) Expression levels of GmTLP8 in transgenic soybean plants under drought stress. (N) Expression levels of GmTLP8 in transgenic soybean plants under salt
stress. Vertical bars indicate ± SD of three technical and three biological replicates. ∗p < 0.05, ∗∗p < 0.01 (Student’ s t-test).

drought and salt stresses might be due to the lack of N-terminal
F-box domain (Figure 4D).

Two key conserved domains are in plant TLPs, the F-box
at the N-terminal and the Tub domain at the C-terminal, and
these differ from the conserved domains in mammalian TLPs. In
mammals, TLPs are binary transcription factors; the N-terminal
induces transcriptional activation, and the Tub domain binds
to double-stranded DNA (Boggon et al., 1999; Li S. et al.,
2021). In plants, the N-terminal F-box can participate in the
formation of the Skp1-Cullin1-F-box (SCF) complex, which is
an important part of E3 ubiquitin ligase and can participate in
protein ubiquitination process (Gagne et al., 2002). It has been
reported that GhTULP34 interacts with the subunit GhSKP1A
of the SCF complex to form a functional SCF-type E3 ligase,
which may be involved in the response of plants to abiotic
stresses (Li Z. et al., 2021). Arabidopsis AtTLPs and wheat
TaTULPs have been shown to interact with specific S-phase
kinase-associated protein 1 (SKP1)-like proteins (Lai et al., 2004;
Bao et al., 2014; Hong et al., 2015). These findings suggest that
TLPs may play a role as subunits of the SCF complex in plants.
Yeast two-hybrid assays showed that AtTLP7 and AtTLP11
interacted with NDR1/HIN1-like protein NHL6 (Song et al.,
2019). Because both AtTLP11 and AtTLP7 are functional E3
ligases (Bao et al., 2014), it is possible that AtTLP11 and AtTLP7
redundantly manipulate the function of NHL6 by regulating its
protein turnover (Bao et al., 2016). The above reports confirmed
that the TLPs family, as F-box proteins, played a key role in
protein ubiquitination, and may play a key role in plant response
to various adverse environmental conditions. Based on these
findings, it is speculated that GmTLP14 may be due to the lack
of F-Box domain that affects the protein ubiquitination process
and then down-regulates its expression under drought and salt
stresses. However, the detailed functions of GmTLP14 gene need
to be verified by related experiments. In this study, through
RNA-Seq transcriptome data analysis and qRT-PCR verification,

we determined the up-regulated expression of GmTLP8 under
drought and salt stresses for subsequent studies (Figures 7, 8).
Conserved domain analysis showed that GmTLP8 had two
key conserved domains, namely, F-Box and Tub domains
(Figure 4D), 3D modeling showed the integrity of GmTLP8
C-terminal tubby structure, which might play a role in the
response of its to abiotic stress (Figure 5).

In this study, Agrobacterium rhizogenes-mediated
transformation of soybean hairy roots was used to induce
transgenic roots in soybean to study the function of GmTLP8
gene (Kereszt et al., 2007). Through phenotypic observation,
leaf staining and physiological index analysis of soybean, it was
confirmed that the overexpression of GmTLP8 enhanced the
tolerance of soybean to drought and salt stresses (Figure 10).
However, this genetic transformation mode is transient
expression and cannot be stably inherited to the next generation
through sexual reproduction. Therefore, further exploration
of the application of GmTLP8 gene in transgenic drought-
resistant and salt-resistant soybean needs further research
on transformation.

Previous studies identified genes that play important roles
in response to drought and salt stresses. To further analyze the
molecular mechanism of GmTLP8 in regulating stress tolerance,
we chose several confirmed stress-related genes (Figure 11 and
Supplementary Figure 2). GmDREB1, GmDREB2, GmNAC11,
and GmWRKY27 can specifically recognize and bind to cis-
acting elements to up-regulate the expression of downstream
stress-responsive genes, improving stress tolerance (Marè et al.,
2004; Tran et al., 2004; Xu et al., 2011; Bouaziz et al., 2013,
2015; Sarkar et al., 2019). GmNCED3 is considered to be an
important contributor to ABA synthesis and its overexpression
enhances drought tolerance in seedlings (Li et al., 2019). GmSOS1
improves the salt tolerance of plants, potentially playing a role in
Na+ extrusion out of the roots and regulation of Na+ transport
from roots to shoots (Nie et al., 2015; Cao et al., 2018). These
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selected stress-related genes were up-regulated in GmTLP8-OE
plants under drought and salt treatments. Taken together, these
indicated that GmTLP8 responds to drought and salt stresses
by activating stress-related transcription factors and the SOS
pathway, which provides a scientific basis for further analysis of
the function of GmTLP8 gene under drought and salt stresses.
However, further studies were needed to fully elucidate its
internal mechanism in abiotic stress response.

CONCLUSION

In the present study, we identified 22 TLP genes in the
soybean genome. Based on expression patterns in response
to abiotic stresses, we found that GmTLP14 showed different
structural characteristics and expression patterns from most
other members, but the function of GmTLP14 still needs further
experimental verification. In this study, we selected GmTLP8 with
complete structure and up-regulated expression under drought
and salt stresses, and verified its expression level under abiotic
stress by qRT-PCR. GmTLP8 was responsive to drought and salt
stresses. Overexpression of GmTLP8 enhanced the tolerance of
soybean to drought and salt stresses by activating downstream
stress-responsive genes. These results improve understanding
of the GmTLP family and provide a basis for further study
of the molecular mechanism of GmTLP8 in soybean abiotic
stress responses.
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