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Citrus is one of the most important fruits in China. Miyagawa Satsuma, one kind of

citrus, is a nutritious agricultural product with regional characteristics of Chongming

Island. Near-infrared Spectroscopy (NIR) is a proper method for studying the quality of

fruits, because it is low-cost, efficient, non-destructive, and repeatable. Therefore, the

NIR technique is used to detect citrus’s soluble solid content (SSC) in this study. After

obtaining the original spectral data, the first 70% of them are divided into the training

set and 30% into the test set. Then, the Random Frog algorithm is chosen to select

characteristic wavelengths, which reduces the dimension of the data and the complexity

of the model, and accordingly makes the generalization of the classification model

better. After comparing the performance of various classifiers (AdaBoost, KNN, LS-SVM,

and Bayes) under different characteristic wavelength numbers, the AdaBoost classifier

outperforms using 275 characteristic wavelengths for modeling eventually. The accuracy,

precision, recall, and F1-score are 78.3%, 80.5%, 78.3%, and 0.780, respectively and

the ROC (Receiver Operating Characteristic Curve, ROC curve) is close to the upper left

corner, suggesting that the classification model is acceptable. The results demonstrate

that it is feasible to use the NIR technique to estimate whether the citrus is sweet or not.

Furthermore, it is beneficial for us to apply the obtained models for identifying the quality

of citrus correctly. For fruit traders, the model helps them to determine the growth cycle

of citrus more scientifically, improve the level of citrus cultivation and management and

the final fruit quality, and thus increase the economic income of fruit traders.

Keywords: near infrared spectroscopy, AdaBoost, random frog, citrus soluble solids content, machine learning

1. INTRODUCTION

Citrus fruits are among the most commonly grown and consumed fruits all over the world and
meanwhile one of the most important fruits in China since they are very nutritious and can
supplement vitamins, promote digestion and increase appetite (Zou et al., 2016; Anticona et al.,
2020). The total output of Citrus reticulata Blanco is 21.2 million tons in China, accounting for
67% of the total citrus output. Citrus unshiu is one of the three main varieties of citrus reticulata

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.841452
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.841452&domain=pdf&date_stamp=2022-07-18
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mhhu@ce.ecnu.edu.cn
mailto:acaizh@sjtu.edu.cn
https://doi.org/10.3389/fpls.2022.841452
https://www.frontiersin.org/articles/10.3389/fpls.2022.841452/full


Chen et al. SSC Binary Classification Using NIR

Blanco in China (Nam et al., 2019; Cheng et al., 2020). This
research uses Miyagawa Satsuma, a variety of citrus unshiu,
from Chongming Island in Shanghai, as the research object. The
citrus in Chongming Island not only grows in environmental
conditions famous for fresh air, clean water, and rich soil but also
ripens in cultivation technology of “green prevention and control
and plastic film covering with grass and organic cultivation” (this
cultivation concept originates from Shanghai Qianwei Citrus Co.,
Ltd.). As a result, it owns the advantages of both rich nutrition
and the regional characteristics of Chongming Island.

Soluble solids content (SSC), is one of the most important
internal quality attributes of most fruits. The SSC plays an
important role in the fruit maturity process and partly influences
the flavor of most fruits, thus determining the acceptance of
rich nutrients and economic benefits in the fruit trade. The
detection of citrus SSC is not only beneficial to customers but
also significant for growers (Li et al., 2016b; Fan et al., 2019;
Guo et al., 2020). Therefore, in recent decades, the demand
to develop non-destructive and rapid evaluation methods for
citrus SSC has become more extensive and urgent. Electronic
nose technology (Zhang et al., 2008, 2016), computer vision
(Xia et al., 2016; Bhargava and Bansal, 2021), and hyperspectral
imaging technology (Li et al., 2016a, 2018) are some common
methods to measure the quality of fruits. However, electronic
nose technology is restricted to limited enclosed space, which
is inconvenient to carry out. Computer vision technology lacks
spectral information. As for hyperspectral imaging technology,
the obtained hypercube contains a lot of redundant information
which leads to a high computation cost.

Fortunately, with the advantage of low testing cost, high
efficiency, good reproducibility of test results, and non-
destructive testing, NIR spectroscopy, between wavelength
region range of 780–2,526 nm, has been applied popularly in the
analysis of different fruit or vegetable samples (Beghi et al., 2017;
Arendse et al., 2018), such as apple (Xia et al., 2020; Arefi et al.,
2021; Ma et al., 2021; Li et al., 2022), tomato (Huang et al., 2021;
Zhang et al., 2021), persimmon (Wei et al., 2020), pear (Cruz
et al., 2021), and banana (Cruz et al., 2021). Xia et al. (2020)
studied the effect of sample diameter differences on the online
prediction of SSC of “Fuji” apples with the methods of visible and
near-infrared spectroscopy and partial least square regression.
It is justified that diffuse transmission spectra in 710–980 nm
and diameter correction method with calculated attenuation
coefficient are the best. Wei et al. used NIR hyperspectral imaging
within 900–1,700 nm to model SSC and firmness determination
of persimmon with partial least squares regression (Wei et al.,
2020). The final models obtained a coefficient of determination
of 0.757, RMSEP of 1.404 Brix, and R2p of 0.876, RMSEP of
0.395 for SSC and firmness detection, respectively. Pahlawan et al.
developed the calibration model to predict the SSC of bananas
using NIR spectroscopy in the range from 350 to 1,000 nm.
It was conducted by various distances of fiber optic probes to
bananas samples (Cruz et al., 2021). To our best knowledge,
there have been few similar studies on Miyagawa Satsuma. From
these researches mentioned above, it can be easily seen that
they focus on predicting the accurate number of the attribute
focused on, such as SSC. Sometimes, we are more interested in

knowing the sugar level rating rather than the specific value.
There is no exact numerical index for distinguishing sweet and
unsweetened, and therefore, we calculate the average value of SSC
as the demarcation index for judging sweet or unsweet for the
reason that SSC is an important index affecting the sweetness.

Reducing dimensions and seeking the most informative
wavelengths are effective methods for processing data while
selecting the most informative wavelengths of target information
is an effective measure to simplify computation and improve
the model performance (Li et al., 2019; Zhou et al., 2020).
First, it has been shown that the inclusion of uninformative
wavelengths while modeling affects the performance of
predicting or classifying and model interpretability (Chang
et al., 2016). Second, the identification of wavelengths that
contain information about the attribute the research focuses
on, will reduce the computation time and cost, from a more
practical point of view (Zhang et al., 2019; Mamouei et al.,
2020). Li et al. (2016a) chose the carlo-uninformative variable
elimination and successive projections algorithm to select the
most effective variables from hyperspectral data when doing
the research on measuring SSC in pear. The results indicated
that the model built using 18 effective variables achieved the
optimal performance for the prediction of SSC. Jun et al. (2018)
used an iteratively retaining informative variables algorithm to
obtain 10 characteristic wavelengths when processing samples
in predicting the SSC of cherry tomatoes. The experimental
results showed the IRIV−CS−SVR model for SSC prediction
could reach accuracy with R2p = 0.9718 and R2c = 0.9845. Fan
et al. (2014) adopted a combination of the standard normal
variate, uninformative variable elimination, genetic algorithm,
and successive projections algorithm to obtain 30 characteristic
wavelengths selected from full-spectra achieving the optimal
performance.

In the current study, the binary classification of Miyagawa
Satsuma is focused on, which owns the regional characteristics of
Chongming Island. The classification model for nondestructive
determination of Miyagawa Satsuma SSC will judge the quality
of citrus more scientifically, and overcome the shortcomings
of subjective differences and low efficiency. Meanwhile, it can
identify the growth cycle of citrus and estimate the maturity
time more accurately, which is conducive to the management
arrangement such as picking. It can also provide a theoretical
basis for citrus grading, which is good for fruit farmers or
manufacturers to sell graded citrus and improve profits (Kundu
et al., 2021).

2. MATERIALS AND METHODS

2.1. Data Collection
2.1.1. Near Infrared Spectra Acquisition

The equipment employed in our research is the Fourier
transform near infrared spectrometer, an antaris II–F-NIR
analyzer made by Thermo Fisher. We set NIR acquisition mode
as integrating sphere mode and the gain as × 1. The NIR spectra
are within the range from 1,000 nm to 2,500 nm.

All samples of Miyagawa Satsuma came from Shanghai
Qianwei citrus Co., Ltd located on Chongming Island. All
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FIGURE 1 | Near infrared (NIR) spectra of citrus in different picking times in chronological order. Different picking orders are represented by different colors. Each line is

the average spectrum of 12 fruit samples at each picking time.

samplings, 11 times total, were carried out within 3 months.
In each sampling, five trees with the most similar growth were
selected, which were without films and not among the outermost
three rows of trees. Then the five trees were divided into
upper, middle, and lower parts, where one sample was picked,
respectively, from four directions: south, east, north, and west. As
a result, 12 samples were obtained per tree, and a total of 60 were
taken for each sampling. Next, 12 samples were randomly chosen
among a total of 60 fruits. For each sample in the 12 fruits, the
NIR spectra were gained from 4 points at the cross symmetry of
the equatorial plane of the fruit. Finally, the averagedNIR spectra,
obtained by averaging NIR spectra of four points, were taken as
the original NIR spectra, as shown in Figure 1.

2.1.2. Soluble Solids Content Acquisition

After the Miyagawa Satsuma was squeezed and centrifuged, the
SSC of the selected Miyagawa Satsuma samples was measured
with a saccharometer (PR-101; Atago Co., Tokyo, Japan).

2.2. Data Preprocessing
The samples with obviously incomplete or wrong data are
eliminated, whether NIR spectra or SSC, thus obtaining a total

of 122 samples. Then samples were divided into the training set
and test set by the SPXY algorithm (Galvao et al., 2005), with
70% of the samples as the training set and 30% as the test set.
The principle of the Kennard stone algorithm (KS) algorithm is
to calculate the Euclidean distance among all samples: select two
samples with the maximum Euclidean distance into the training
set, then carry out the iterative calculation, select the samples
with the maximum and minimum Euclidean distance into the
training set until the number of samples required by the training
set is reached. SPXY algorithm is based on the KS algorithm, and
it furthermore involves the chemical values and spectra among
samples when calculating Euclidean distance, which makes the
training set more representative, and makes the generalization
ability of the established prediction model better.

2.3. Characteristic Wavelength Selection
The random frog (RF) algorithm (Li et al., 2012) was used to
obtain the corresponding number of characteristic wavelengths
of NIR spectral data, which has the features of conceptually
simplicity, and fewer parameters to be trained in algorithm
implementation, strong global search and optimization ability,
etc. The principles of the algorithm are as follows. Each sample
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FIGURE 2 | Cutoff probability of different characteristic wavelengths. For the subsequent modeling, 10 (A), 50 (B), 100 (C), 200 (D), 250 (E), 275 (F), and 300 (G)

characteristic wavelengths are chosen, respectively. The numbers on the right corner of the figure are the cutoff probability of corresponding characteristic

wavelengths number. The cutoff probability generally decreases as the number of informative wavelengths increases.

in a population is regarded as a frog. Then the whole population
is divided into m sub-groups with the scale of n. In each sub-
group, the frogs with the best and worst fitness are used to

produce a new child frog, which can be viewed as a jump of
the best frog. If the fitness of the child frog is better than the
parent with the worst fitness, replace the worst parent with

Frontiers in Plant Science | www.frontiersin.org 4 July 2022 | Volume 13 | Article 841452

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chen et al. SSC Binary Classification Using NIR

FIGURE 3 | Histogram of citrus soluble solid content (SSC) of the total 122 fruit samples collected in this study. The mean of all citruses’ SSC is 9.06 Brix while the SD

is 0.93 Brix. The citruses corresponding to the blue areas are regarded as sweet while the citruses corresponding to the red ones are regarded as unsweet.

the child, otherwise, randomly generate a new child, which
can be viewed as the best frog’s jumping again. If the fitness
of the new child frog is still worse than the worst parent,
then randomly generate another new child to replace the
parent with the worst fitness. The evolutionary strategy of the
random frog algorithm is like frogs jumping toward the optimal
solution so that the algorithm gradually converges to the optimal
solution.

The more specific steps of this algorithm are as follows: First,

initialize parameters. Second, randomly generate an initial frog

group and calculate the fitness of each frog. Third, arrange the

frogs in descending order according to the value of fitness, and
record the local optimal solution Px. Then divide the F frogs from
the initial group into sub-groups, namely, allocate F frogs intom
sub-groups with the scale of n. Fourth, do a local search process,
i.e., do the process described above in each sub-group. As a result,
sub-groups do the fourth process, redivide the frog group, do
the same operation as the first round, and record the global
optimal solution Px. Fifth, verify the calculation stop condition.
If the convergence conditions of the algorithm are reached, the
RF algorithm ends. If the global optimal solution has not been
significantly improved, the execution of the algorithm should also
be stopped.

To validate the performance of the RF algorithm in this task,
the other common wavelength selection namely the competitive
adaptive reweighted sampling algorithm (CARS) is used for
comparison with the RF algorithm.

2.4. Binary Classification Model
The AdaBoost classifier (Freund et al., 1999) is selected
for modeling. Boosting is an important integrated learning
technology, which can enhance weak classifiers with poor
prediction performance into strong classifications with good
prediction performance in a cascade way. The core of its
adaptability is that the wrong samples of the previous basic
classifier will be strengthened, and all the weighted samples will
be used to train the next basic classifier again. At the same time, a
new weak classifier is added in each round until a predetermined
small enough error rate or a predeterminedmaximum number of
iterations is reached.

Specifically, the entire AdaBoost iterative algorithm consists
of three steps: First, initialize the weight distribution of training
data. If there are n samples, each training sample is given the same
weight of 1/n at the beginning. Second, train weak classifiers. In
the specific training process, if a sample point has been accurately
classified, its weight will be reduced in the construction of the
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FIGURE 4 | Comparison of NIR spectra of sweet (SSC beyond 9 Brix) and unsweet (SSC below 9 Brix) fruit samples. The shaded areas represent the confident

intervals to each line.

next training set; On the contrary, if a sample point is not
accurately classified, its weight will be improved. Then, the weight
updated sample set is used to train the next classifier, and the
whole training process goes on in this way, iteratively. Third,
combine the trained weak classifiers into strong classifiers. After
the training process of each weak classifier, increase the weight of
the weak classifier with a small classification error rate to make
it play a greater decisive role in the final classification function
while doing the opposite operation for the weak classifier with a
large classification error rate.

To compare the performance of various classifiers, we choose
AdaBoost, k-Nearest Neighbor (KNN), Bayes classifier, and LS-
SVM to explore the best-performing classification model. In the
current study, we use Matlab and Weka to establish the models.

2.5. Model Evaluation
To verify the efficiency of the classification system, evaluation
indicators viz. confusion matrix, accuracy, precision, recall, F1,
micro-measures, and macro-measures are considered.

1) Confusion matrix: Assume that “Positive” means the
positive samples and that “Negative” means the negative samples.
Meanwhile, “True” represents that the prediction is right while
“False” represents that the prediction is wrong. As a result, “TP”
and “TN” mean that the positive sample is classified as “Positive”

and that the negative sample is labeled as “Negative”, respectively.
“FP” and “FN” represent that the negative sample is labeled as
“Positive” and that the positive sample is classified as “False.” The
four indicators make up the confusion matrix.

2) Accuracy: It is a ratio that is used to estimate the
classification ability of a model within the range from 0 to
1. Generally speaking, the larger accuracy is, the better the
classification is. It can be calculated by the following equation:

Accuracy =
TN + TP

TN + TP + FP + FN
(1)

3) Precision: Precision is only used to evaluate the classification
ability of the positive samples within the range from 0 to 1. It is
obvious that the larger precision is, the more effective the system
is. It is computed by:

Precision =
TP

TP + FP
(2)

4) Recall: It is a ratio from 0 to 1. Obviously, the more it is close
to 1, the better the system is. The calculation equation is:

Recall =
TP

TP + FN
(3)

Frontiers in Plant Science | www.frontiersin.org 6 July 2022 | Volume 13 | Article 841452

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chen et al. SSC Binary Classification Using NIR

5) F1: It is a harmonic mean of recall and precision. In this
study, we consider the weight of recall and precision the same,
which means attaching the weight of 0.5 to either of them. It is
calculated by:

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
(4)

6) Receiver Operating Characteristic (ROC) Curve and Area
Under Curve (AUC): The abscissa of the ROC curve is the false
positive rate (FPR) while the ordinate is the true positive rate
(TPR), where FPR =

FP
TN+FP and TPR =

YP
TN+FN . Generally

speaking, the closer the ROC curve is to the upper left corner
of the image, the better the performance of the binary classifier.
AUC is the area under the ROC curve and it is generally within
the range of (0.5, 1). When the closer the ROC curve is to the
upper left corner, the greater the value of AUC.

3. EXPERIMENTAL RESULTS AND
ANALYSIS

3.1. NIR Spectral Characteristics of
Miyagawa Satsuma in Different Picking
Time
The NIR spectra in different picking times are shown in Figure 1.
The trend of the citrus spectra collected each time is similar.
There is an obvious absorption trough near 1,080, 1,300, 1,700,
and 2,200 nm, respectively. According to the principles of NIR
spectroscopy, due to the fact that the sample will selectively
absorb NIR waves with different frequencies, the NIR wave
which passes through the sample will become weaker in some
wavelength ranges, and the transmitted NIR wave will carry
the information of organic component and structure. Therefore,
it can be inferred that these absorption troughs can probably
be the most informative areas, which can be reflected in the
characteristic wavelength selection.

Our reason for using fruits with different picking periods for
modeling is to increase the coverage of the SSC, allowing a larger
range of variation in the spectral data and ultimately increasing
the model robustness. We performed the statistical tests on the
obtained spectral data and SSC and found significant differences
between spectral data and SSC for non-adjacent picking periods
(p < 0.05) and no significant differences for adjacent picking
periods (p > 0.05). This is in accordance with expectations.
Because, as the fruit ripens, the SSC will certainly increase and
the spectral differences will increase.

3.2. Performance of RF
As mentioned above, the characteristic wavelength selection can
accelerate the computation speed and reduce computation cost
to a degree. RF algorithm is chosen to generate characteristic
wavelengths with the numbers 10, 50, 100, 200, 250, 275, and
300, respectively, which is displayed in Figure 2. It is easy to
find that the larger the number of characteristic wavelengths
is, the smaller the cutoff probability is. The cutoff probability
indicates the threshold value for screening the required number
of informative wavelengths. The wavelength numbers, 10, 50,

TABLE 1 | Modeling results of sweet (SSC beyond 9 Brix) and unsweet (SSC

below 9 Brix) classification of Miyagawa Satsuma in Chongming Island under

different classifiers with different characteristic wavelengths.

Characteristic

wavelengths

Models Metrics

Accuracy Precision Recall F1-score

(%) (%) (%)

10 AdaBoost 60.9 62.1 60.9 0.604

KNN 69.6 69.8 69.6 0.696

Bayes 65.2 65.4 65.2 0.648

LS-SVM 62.2 53.3 100.0 0.696

50 AdaBoost 60.9 62.1 60.9 0.604

KNN 52.2 53.7 52.2 0.503

Bayes 65.2 65.4 65.2 0.648

LS-SVM 67.6 57.1 100.0 0.727

100 AdaBoost 69.6 69.8 69.6 0.696

KNN 52.2 52.9 52.2 0.516

Bayes 69.6 69.6 69.6 0.694

LS-SVM 59.5 51.6 100.0 0.681

200 AdaBoost 65.2 71.6 65.2 0.631

KNN 65.2 67.8 65.2 0.644

Bayes 69.6 69.6 69.6 0.694

LS-SVM 62.2 53.3 100.0 0.696

250 AdaBoost 69.6 71.3 69.6 0.692

KNN 56.5 58.1 56.5 0.555

Bayes 69.6 69.8 0.7 0.696

LS-SVM 62.2 53.3 100.0 0.696

275 AdaBoost 78.3 80.5 78.3 0.780

KNN 60.9 62.1 60.9 0.604

Bayes 69.6 69.8 69.6 0.696

LS-SVM 62.2 53.3 100.0 0.696

300 AdaBoost 69.6 71.3 69.6 0.692

KNN 65.2 67.8 65.2 0.644

Bayes 69.6 69.8 69.6 0.696

LS-SVM 62.2 54.2 81.3 0.65

1556 AdaBoost 75.0 68.8 91.7 0.786

KNN 60.9 56.3 81.8 0.667

Bayes 73.9 72.7 72.7 0.727

LS-SVM 56.8 50.0 93.8 0.652

Bold font represents the best model.

100, 200, 250, 275, and 300, respectively correspond to the cutoff
probabilities, 0.0471, 0.0260, 0.0225, 0.0222, 0.0091, 0.0060, and
0.0047. The cutoff probability generally decreases as the number
of informative wavelengths increases (Figure 2). Meanwhile, it
is true with what has been inferred in the above section that
the absorption troughs can be the most informative, most of
the retaining wavelengths gather in the areas inferred before
viz. 1,080, 1,300, 1,700, and 2,200 nm. This probably has a
relationship with the functional groups viz. —OH, —CH, —NH.

In addition, the classification models based on CARS selected
wavelengths are established, and their performance is not as good
as the RF-based models. For example, when ten characteristic
wavelengths are selected, the RF-based model gives a better
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FIGURE 5 | Receiver Operating Characteristic (ROC) curves. (A) is ROC curve of positive samples (SSC beyond 9 Brix) while (B) is ROC curve of negative samples

(SSC below 9 Brix).

performance than the model based on CARS, with the accuracy
of 60.9, 69.6, 65.2, and 62.2% vs. 52.78, 52.78, 58.33, and 47.22%
for AdaBoost, KNN, Bayes, and LS-SVM modeling methods,
respectively. Overall, CARS does not perform as well as RF for
the informative wavelength selection.

3.3. Model Analysis Using Plant Physiology
Phenomenon
The spectral properties of plants are mainly determined by their
internal structure. For the current study, the obtained spectra are
the result of the interaction of the incident light with the chemical
composition and physical structure of Citrus. For Miyagawa
Satsuma, its structure can be divided into exocarp (oil cell layer),
mesocarp (white cortex), endocarp, fruit, and fruit stem from
outside to inside. Among them, the surface of the soluble dietary
fiber of mandarin pulp is not smooth, the strips and gaps are
intertwined, and there are raised particles; the surface of the
soluble dietary fiber of mandarin peel is larger, but the surface
depressions are mixed with a few spherical particles. There is a
strong interaction between the two molecules.

As an important indicator for evaluating fruit sweetness,
SSC is mainly composed of soluble sugars (including sucrose,
fructose, and glucose). In the NIR region, the stretching and
deformation vibration absorption peaks ofO−H bonds in soluble
sugars are located around 1,440 and 2,080 nm, and there are
three absorption peaks of soluble solids at 980, 1,169, and 1,485
nm (Musingarabwi et al., 2016). The water content has a great
influence on the absorption of the plant spectrum. Under the
condition of multi-layer leaves, the water absorption bands at
1,100 and 960 nm have a great influence on spectral reflectance.
Absorption leads to a decrease in reflectance and an increase in
absorbance, and peaks of reflectance (i.e., peaks and valleys of
absorbance) appear at 1,600 and 2,200 nm (Ma et al., 2017).

The wavelengths selected by RF include three characteristic
wavelengths near the absorption peaks of soluble solids at 980
nm, 1,169 nm, and 1,485 nm, and two characteristic wavelengths

near the absorption peaks of stretching and deformation
vibrations ofO−H bonds in soluble sugars at 1,440 nm and 2,080
nm, and a characteristic wavelength near the strong absorption
peak of water at 1,400 nm. This analysis explains why the model
based on the RF selected wavelengths performs better.

3.4. Soluble Solids Content Division
The research holds the opinion that consumers are more
concerned about whether the Miyagawa Satsuma is sweet or not,
but not the concrete value of sweetness. Referring to Figure 3,
the dichotomous map or histogram of 122 Miyagawa Satsuma
citruses’ SSC, the distribution of this figure is roughly similar to
the normal distribution, whose mean of all citruses’ SSC is 9.06
Brix and the SD is 0.93 Brix. To carry out our belief, 9 Brix was
taken as the boundary after asking an expert in agriculture for
advice. As a consequence, the citruses with SSC more than or
equal to 9 Brix are considered to be sweet and the others are not
sweet for the following classification modeling.

Figure 4 shows the comparison of NIR spectra of sweet
and unsweet fruit samples. As shown in Figure 4, the large
overlap between the spectral curves of the sweet and unsweet
samples indicates that the model will not perform as expected
if the model is constructed based on original spectra. Therefore,
we need to select the informative wavelengths specific to SSC
classification, and then combine them with pattern recognition
methods for modeling.

3.5. Performance Analysis of Different
Binary Classification Models
As mentioned before, AdaBoost, KNN, Bayes, and LS-SVM
are adopted to establish classification models. The performance
comparison of different classifiers under different characteristic
wavelengths is shown in Table 1. The conclusion can be drawn
that when the number of characteristic wavelengths is 275,
the classification model established by the AdaBoost classifier
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performs best (bold in the table), with accuracy, precision, recall,
and F1-score 78.3%, 80.5%, 78.3%, 0.780, respectively.

From the perspective of the number of characteristic
wavelengths, when the number is 10, the best performer is the
KNN classifier, with accuracy, precision, recall, and F1-score
69.6%, 69.8%, 69.6%, and 0.696.When the number is 50, LS-SVM
performs best according to the accuracy of 67.6%, precision of
57.1%, recall of 100%, and F1-score 0.727. When the number is
100, Adaboost performs best while the best performer belongs
to Bayes when the number is 200. As for the number 250, the
results of AdaBoost are as good as Bayes. Finally, AdaBoost still
stands out among four classifiers when under the condition of
300 characteristic wavelengths. FromTable 1, it can be found that
when the number of characteristic wavelengths is either too small
or too large, the performance of every different classifier is not
as good as the situation when the number is proper, from the
perspective of four classifiers.

Compared to the results of original wavelengths number
1,556 without any procession, the best results of AdaBoost,
KNN, and LS-SVM happen when they are through characteristic
wavelengths selection, however, except Bayes. But after weighing
the wavelength reduction and performance, it is reasonable to
think that characteristic wavelength selection also works for
Bayes.

The ROC of positive and negative samples of the test set is
shown in Figure 5. It can be seen that the ROC curves of positive
and negative samples are all close to the upper left corner, and the
total AUC is 0.841, indicating that the model has good robustness
and can adapt flexibly to the uneven distribution of positive and
negative samples in actual situations.

Too many spectral features bring information redundancy,
and too few spectral features bring information loss. Based
on the experimental results, for this classification task, the
optimal number of spectral features is 275. Compared to the
other modeling methods, the AdaBoost method achieves the
best performance at 275 wavelength numbers. This is because
AdaBoost combines multiple weak classifiers in a reasonable way
to make one strong classifier. The other three methods used in
this paper just give one separate model.

4. CONCLUSION AND REFLECTION

Based on NIR spectroscopy, the random frog algorithm, and
AdaBoost algorithm, and taking citrus in Shanghai Chongming

Island as the research object, this study focuses on the problems
of binary classification between NIR spectra and Miyagawa
Satsuma SSC. Nine Brix is selected as the threshold of being

sweet or not and the samples are divided into the training set and
test set. After selecting characteristic wavelengths through the RF
algorithm, they are used to establish binary classification models
by AdaBoost, LS-SVM, and other classifiers. According to their
performance, the AdaBoost classifier is the optimummodel, with
accuracy, precision, recall, and F1-score 78.3%, 80.5%, 78.3%, and
0.780, respectively.

Analyzing the model performance, we find that the
constructed model does not have a very high performance.
Combined with the sampling process and the test results, two
reasons may be summarized (1) due to the limited penetration
depth of NIR and the thick skin of the fruit, most of the NIR light
does not penetrate the skin to reach the fruit part; and (2) there
are environment disturbances during sampling and instrument
errors in the process of collecting spectra.

The constructed model has the potential to be embedded
in portable NIR acquisition devices in the future, which can
facilitate fruit farmers to judge the quality of the citrus and
be conducive to improving the sale pricing system of citrus in
Chongming Island, so as to maximize the sale profit of fruit-
sellers.
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