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Priming consists of a short pretreatment or preconditioning of seeds or seedlings with
different types of primers (biological, chemical, or physical), which activates various
mechanisms that improve plant vigor. In addition, stress responses are also upregulated
with priming, obtaining plant phenotypes more tolerant to stress. As priming is thought
to create a memory in plants, it is impairing a better resilience against stress situations.
In today’s world and due to climatic change, almost all plants encounter stresses
with different severity. Lots of these stresses are relevant to biotic phenomena, but
lots of them are also relevant to abiotic ones. In both these two conditions, silicon
application has strong and positive effects when used as a priming agent. Several Si
seed priming experiments have been performed to cope with several abiotic stresses
(drought, salinity, alkaline stress), and Si primers have been used in non-stress situations
to increase seed or seedlings vigor, but few has been done in the field of plant recovery
with Si after a stress situation, although promising results have been referenced in the
scarce literature. This review pointed out that Si could be successfully used in seed
priming under optimal conditions (increased seed vigor), to cope with several stresses
and also to recover plants from stressful situations more rapidly, and open a promising
research topic to investigate, as priming is not an expensive technique and is easy to
introduce by growers.

Keywords: silicon, priming, stress memory, plant recovery, micronutrient deficiency

INTRODUCTION

According to the National Climate Assessment (NCA)-USDA, the highest losses in global crop
production can be attributed to abiotic stresses (∼50%), followed by weeds, insects, and pathogens
(Srivastava et al., 2021). To cope with biotic and abiotic stresses, and due to their sessile life, plants
have developed a great variety of adaptation strategies to mitigate their stressor effects and to
survive in such stress conditions. These strategies are especially relevant to fight against climate
changes that crops should afford, which significantly affect biotic and abiotic stressors (pests,
drought, salinity, etc.) or nutrient imbalances (deficiencies or toxicities).

What Priming Means? General Concepts
The plant stress responses should be first divided into two different approaches: acclimatation
and priming. Acclimation is referred to plant strategies induced to cope with long periods of
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stress duration, to which the metabolism of plants, with more or
less success, will be adjusted (Wiszniewska, 2021), maintaining
higher amounts of stress-protective compounds and therefore
being prepared for future stress episodes. On the contrary,
priming is defined as the stimulation of a specific physiological
state that allows plants to give a stronger and rapid response
against stress compared with plants without priming (Balmer
et al., 2015), which is like a vaccine. Usually, priming is carried
out by short pretreatment or preconditioning with different
compounds (chemical, biological) or by altering physical factors
for a determined period (Filippou et al., 2012; Leuendorf
et al., 2020). Most of the primers are used to affect the
synchronization of seed germination and give plants a better
resistance against stressful conditions (Srivastava et al., 2021).
Primer treatments in seeds activate various enzymes such as
proteases, dehydrogenases, hydrolases, and α-amylase, and this
weakens endosperm and mobilizes reserve substances, which
finally improve seed vigor. In addition, DNA repair proteins,
stress-responsive transcription factors, and metabolites such
as antioxidants, osmolytes, and sugars are upregulated, which
contributes to performing phenotypes more tolerant to stress in
the primed plants (Farooq et al., 2019). It is also considered that
priming promotes the development of stress memory in plants,
which improves plant resilience against adverse conditions
(Savvides et al., 2016). Priming effects can last for the complete
growth cycle of the plant or several generations, although priming
is given only during the initial seed germination or at the
seedling stages and has a short duration (hours for seeds or a few
weeks for seedlings).

There is increasing evidence that not only animals but also
organisms without a specific nervous system (plants, fungi, or
bacteria) can “remember” a past event (i.e., Thellier and Lüttge,
2013). This memory may shape or “prime” future responses to
environmental conditions, which gives a stimulus-dependent and
phenotypic plasticity of response traits. So, the environmental
adaptation of an individual by adjusting its physiological or
developmental phenotype is mediated by such plasticity (Sultan,
2000; West-Eberhard, 2003).

Induction of direct defenses can minimize the benefits of
enhanced protection because this is usually correlated with high
physiological expenses. By contrast, primed plants are almost
equally protected but need considerably lower fitness costs (van
Hulten et al., 2006; Wang et al., 2015). This makes priming-
based approaches valuable to cope with several biotic and
abiotic stresses. Due to its resource-saving character, priming
is considered advantageous over acclimation (Leuendorf et al.,
2020).

Pastor et al. (2014) and Balmer et al. (2015) defined different
states in a priming process: (1) “Priming state” achieved after
the application of the priming stimulus and lasts until plant
exposure to stress. During this period, the levels of various
primary and secondary metabolites, hormones, enzymes, and
other molecules are slightly altered (tricarboxylic acid cycle
metabolites; amino acids, sugars, reactive oxygen species (ROS),
pathogenesis-related proteins (PRPs), salicylic acid), placing
the plant in a standby state. (2) “Postchallenge primed state”
appears when the plant becomes stressed, and the plants

rapidly induced the corresponding reactions to fight the stressor.
(3) “Transgenerational primed state” observed in plants that have
a priming memory due to become from seeds obtained from
primed parental plants.

It is generally assumed that priming acts on the phenotype
of individuals, and its effects are attributed to epigenetic,
hormonal, cellular, and other phenotypic changes (Hilker et al.,
2016). A clear link between changes in protein synthesis or
gene expression and alterations in phenotype is not usually
observed (Balmer et al., 2015). For that reason, it is considered
reversible, because the applied stimulus apparently keeps the
DNA sequence unchanged. So, priming allows for reversion to
the original state. During the poststress phases, the primed plant
behavior is influenced by factors such as developmental stage or
environmental conditions and strongly depends on the plant–
stressor combination (Balmer et al., 2015). The readjustment
of an organism from a primed to inexperienced state, that is,
the “forgetting” of the priming event, may be dependent on the
lifetime of the cellular marks left by priming that are called upon
exposure to stress (Hilker et al., 2016).

For activating the priming process, the priming agent and
the stressor could be of the same nature; for instance, Ding
et al. (2012) described that multiple exposures to drought “train”
Arabidopsis responses to coping with this abiotic stress. Many
other examples for abiotic and biotic stresses of this type are
referred to in Hilker et al. (2016), like pathogen infection
primes plant resistance against future pathogen infection. On
the other hand, the priming agent and the stressor could
have a different nature. Several studies have demonstrated that
exogenous applications of H2O2 induce tolerance to drought,
high temperatures, chilling and salinity, and also heavy metal
stresses (Hossain et al., 2015). This could be explained by the
primer action through the activation of general antioxidant and
signaling pathways.

Priming can be applied at various developmental stages of
the plant life cycle and to various plant parts. The most used
is seed priming because its simplicity allows a wide utilization
of this technique. Seed priming is a presowing treatment that
exposes seeds to ascertain a solution for a certain period that
allows partial hydration, but germination does not occur, because
the moisture of the seed is not enough to cause the seed
to germinate. However, this level is enough to start many of
the physiological processes associated with the early phase of
germination (pregermination metabolism) (Ibrahim, 2016). After
priming, seeds are redried to their initial moisture content to
allow the storage of the primed seeds (Di Girolamo and Barbanti,
2012) or could be directly sown. The optimization of the priming
process is necessary, due to lots of factors that can affect the seed
response to primers, such as duration, temperature, seed vigor,
plant species, and storage condition. There have been different
reports about the positive effects of priming in plants. In general,
primed seeds present improved vigor, reduction in germination
time with changes in molecular, cellular, physiological, and
biochemical aspects and result in higher seed vigor and a better
crop establishment and yield of crops (Yacoubi et al., 2011; Di
Girolamo and Barbanti, 2012; Finch-Savage and Bassel, 2016).
These changes include cell division and elongation, plasma
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membrane fluidity, the induction of stress-responsive proteins,
changes in transcriptome and proteome, H+-ATPase activity
(Soeda et al., 2005; Zhuo et al., 2009; Kubala et al., 2015; Finch-
Savage and Bassel, 2016), and changes in the antioxidant system
activity (Chen and Arora, 2011; Kubala et al., 2015). Moreover,
priming will facilitate the seeds to cope with environmental
stresses during seedling establishment and show increased stress
tolerance at the whole-plant level (Yacoubi et al., 2011; Srivastava
et al., 2021), because, during the dehydration and soaking steps,
it may generate moderate abiotic stress (Ashraf and Foolad, 2005)
probably due to the radicle protrusion repression. Plants will
remember such stress and their memory phase is long term,
which ranges from weeks to months (Srivastava et al., 2021),
and remember that seed priming is applied only once. Similarly,
during soaking, seeds bind water and absorb protective and
biologically active compounds (Wiszniewska, 2021). Beneficial
effects are then expressed in developing seedlings and increased
plant vigor and survivability under biotic or abiotic stresses.

Less often, priming is applied to seedlings or their parts,
and also young plants in active growth phases. This approach
is focused on remediation of plant stresses in specific plant
regions or organs. For example, to cope with metal toxic levels
using phytohormone priming treatments, which application to
seedlings and developed plants are preferred than to seeds
(Sytar et al., 2019). Moreover, priming can be applied in vitro
culture to organs, or their fragments excised from donor plants
(Wiszniewska, 2021). As a result of prolonged selection in the
presence of stress agents, such as salinity, for example, the
plant cells’ behavior and the regenerated plantlets are modified
when compared with plants without a priming treatment
(Chun et al., 2019).

A well-nourished plant that is supplied with enough and
complete essential nutrients diet will have sufficient and more
energy and metabolic resources to invest in memory stress
responses than a plant grown with not all the nutrients or
with a low amount of them. The same for other environmental
conditions influences plant development, such as light, humidity,
oxygen, etc. Defense strategies impose a substantial demand for
resources, which reduce growth (Huot et al., 2014) and could
decrease photosynthesis, which means a reduction of energy
reserves. So, a balance between nutrition, growth, and defense
should be achieved to optimize plant wellness.

Moreover, how much an organism invests in priming depends
on the age at which experiences this stimulus (Hilker et al., 2016).
After priming, short and long-term stress memories could be
activated. The first should work to cope with imminent stress and
the second with future stressors. The different plant costs of these
two strategies will be the key point of the process, and plant age
plays an important role in it, as the plant that expends the costs
of long-term memory also needs to maintain enough resources
for growth and plant protection. Mechanistic differences between
these types of memories and if they are different approaches or
depend on plant species or age or even nutritional factors require
further study. In general, young plants could benefit from a long-
term stress memory, and adult plants are expected to invest
in short-term memory, to have resources for its reproduction
(Huot et al., 2014).

Stress Memory and Priming
Srivastava et al. (2021) considered that seed priming and stress
memory are the two faces of the same coin. These authors
proposed that primers generate a mild (sublethal) stress inside
the seed that prepares the future seedlings to cope with stresses
more efficiently than unprimed plants. This fact was based
on the observation that the growth of seedlings from primed
seeds is slower than that of non-primed seeds a few hours
after postpriming. It could be said that seed priming forces
plants to begin germination under stress, which will create
a stress memory on the seeds. Several stress marks can be
imprinted on the seed genome just as in stress-primed plants,
which lead to improved stress tolerance. However, in the case
of seedlings or plant priming, the stress memory was created
specifically in the plant.

Plants have to cope with different stresses all along their
crop cycle and retain “memories” of previously encountered
stresses as an adaptive mechanism that helps them to encounter
forthcoming stresses more rapidly and efficiently. These
memories are called “acquired tolerance.” They can produce
a short-term effect (somatic memory), a memory that can
be transmitted to succeeding generations (intergenerational
memory), or, in some cases, a memory that can be inherited
across generations (transgenerational memory). Such memories
can be induced artificially through preexposure to a low-dose
stressor or by the addition of beneficial compounds such as
silicon, or by natural exposure to recurrent stress episodes (e.g.,
stational drought) (Srivastava et al., 2021). “Somatic memory”
in plants has been explained through several mechanisms that
include chromatin remodeling, alternative transcript splicing,
metabolite accumulation, and autophagy. However, chromatin-
dependent regulation is considered as a key mechanism for
regulating stress memories (Bäurle, 2018; Friedrich et al., 2019;
Bäurle and Trindade, 2020). Chromatin could be defined as a
substance within a chromosome consisting of DNA and proteins,
being histones the most common proteins in chromatin.
Proteins help package the DNA in a compact form that fits
in the cell nucleus. Moreover, DNA replication and gene
expression are associated with changes in chromatin structure.
At the chromatin level, stress memory is granted by different
epigenetic modifications, which alter the overall accessibility of
genes for transcription. The deposition of active histone marks
(cellular marks) is known to be regulated by stress situations.
As mentioned, other mechanisms, independent from changes
in chromatin, also regulate stress-induced somatic memory in
plants. The accumulation of cellular metabolites attributed to
stressful situations can also modulate plant responses during the
memory phase. Moreover, the adjustment of physical properties,
such as building a thicker cell wall with higher lignin content by
salt primed cells of A. thaliana, is important for regulating salt
stress-induced memory (Chun et al., 2019). Finally, autophagy in
plants plays an opposite role because it degrades stress-induced
proteins and other biomolecules during the recovery phase (Su
et al., 2020), so this process could act as a negative regulator of
stress-induced memory.

Epigenetics studies changes in genes’ work due to the
environment. Epigenetic changes are reversible (unlike genetic
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changes) and do not change the DNA sequence, but they can
change how a plant reads a DNA sequence. These characteristics
of epigenetic changes give a dynamic and persistent stress
response mechanism by which a gene, or a network, is activated
to cope with a stress situation. When the stressor stopped,
two options are possible, and it reverses to the initial state
or keeps a cellular stress mark to facilitate a more potent
and quicker answer to future stresses. Epigenetics includes a
heritable (mitotic or meiotic) component that allows preserving
this mark between generations (Ding et al., 2012). Therefore,
two types of cellular marks could be distinguished, the first
associated with the stressor presence, but removed when the
stress situation finish, called a chromatin mark and the second,
which implies the persistence of the chromatin mark after the
disappearance of the stressor, called an epigenetic mark (Ding
et al., 2012). This second type of marks are related to the
“transcriptional memory,” which could be defined as a type of
information that persists after the plant’s recovery from the stress
and which influences subsequent transcriptional responses (Ding
et al., 2012). These authors described the transcriptional memory
of Arabidopsis plants after applying successive dehydration–
watered treatments in a relatively short time. They observed
that Arabidopsis leaf cells’ ability to retain water was altered
during repetitive exposures to dehydration stress, and this
observation was sustained by increased rates of transcription
and elevated transcript levels from a subset of the stress–
response genes (trainable genes). Two different marks were
found only at the trainable genes during their recovery period,
and therefore, transcriptional memory was associated with
them. The marks were as follows: high levels of trimethylated
histone H3 Lys4 (H3K4me3) nucleosomes and the presence of
Ser5P polymerase II (serine 5 phosphorylated Polymerase II)
(the transcription initiation form of RNA polymerase II). At
the trainable genes, the persistence of H3K4me3 and Ser5P
polymerase II marks was related to the transcriptional memory
length. In contrast, in the non-trainable genes, these two marks
increase during stress but were reduced to basal levels when
the stress was eliminated, and the plants try to recover from
this situation. In diverse plant species and tissue cultures,
changes in histones, including H3K4me3, in trainable genes
have been reported when studied several abiotic stresses such as
salinity, low temperatures, hypoxia, and drought (Sokol et al.,
2007; Kim et al., 2008). Likewise, stress-induced memory has
been reported in various crops that include sugarcane (Marcos
et al., 2018), rice (Li et al., 2019), maize (Virlouvet et al.,
2018), and wheat (Wang et al., 2020), apart from model plant
A. thaliana.

Moreover, there are some reports concerning crosstolerance,
crossresistance, or crossprotection, which means that the stress
response mechanism activated in a plant to cope with specific
stress could have a beneficial effect on the plants when a different
stress situation appears. This is a similar mechanism that the one
observed in several pests against pesticides, and which severely
minimized their efficacy. This has been observed, for instance, in
the case of pepper (Capsicum annuum L.). When grown in an
excess of Cu, severe stress was caused in the plants, and several
responses were induced to mitigate it, but a decrease in the

disease symptoms generated by the inoculation of Verticillium
dahlia was obtained (Chmielowska et al., 2010).

Plant Stress Recovery
Dealing with recurrent stress situations is a key point in plant
memory. In such situations, plants could reduce their response
under recurrent stimulus or present a positive and reinforced
response to the stressor (see Table 1 for a summary of the
different memory types). The most important thing to consider
in a recovery situation is that the previously caused damage needs
to be repaired. Then, the plant needs to continue its growth. As
mentioned before, plants have the ability to remember previous
stress by maintaining some cellular marks that prepare them
for developing a better strategy to cope with future stresses.
But these responses are frequently accompanied by a growth
reduction (Huot et al., 2014). Therefore, after the stress, an
efficient and quick recovery with a reversion of the stress changes
is necessary to obtain the maximal growth and reproduction
rates under the new conditions. In this situation, plants must
balance the necessary recovery and maintenance of stress
memory to cope with future stresses. For this purpose, autophagy
plays an important role in regulating recovery from stress, by
eliminating compounds and cellular marks not currently needed
and resetting cellular memory (Thirumalaikumar et al., 2021).

In that way, plants submitted to several stressors are reported
to maintain stress memory when the stress disappears, due
to memory of trainable genes. Based on their transcriptional
profile, Bäurle (2018) classified them into following types: type I
genes that are upregulated upon first stress and show sustained
expression during the recovery phase; and type II-genes that
are induced upon first stress and hyperinduced upon recurrent
stress separated by a few days or weeks of recovery under
stress-free conditions, but without sustained expression during
recovery. However, the mechanisms that control the regulation
of these genes, and which characteristics distinguish them from

TABLE 1 | A comparative among seed priming, somatic stress memory, and
effect on resupply or restoration of optimal conditions in plants.

Seed priming Stress memory Resupply

Application Before seed
germination

Seedlings/Plants Seedlings/Plants

Number of
applications

One Every sublethal
stress situation

After stress

Memory phase Long term
(weeks-months)

Short-term
(hours-days)

Under investigation

Primers Not necessary to
be the same as
future stress

The same as future
stress (exception
cross-tolerance)

Elimination of the
stressor

Mechanism Under
investigation

Chromatin
modifications
(trainable genes),
metabolite
accumulation, etc.

Under investigation
(trainable genes
with sustained
expression during
recovery?)

Stress response Improved Improved No stress

Non-stress
situation

Possible plant
growth reduction

Possible plant
growth reduction

Total/partial
recovery
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non-trainable genes, need further research. Marcos et al. (2018)
observed that sugarcane plants that have suffered a water deficit
improved their responses when submitted to a new drought
event. Even more, when rewatered, they used water with more
efficiency than those plants grown with an optimal irrigation
pattern. This suggests that sugarcane plants present stress
memory under varying water availability and is a clear example
of trainable genes of type I. The same was previously observed
by Ding et al. (2012). A rapid increase in a specific abscisic acid
(ABA) transporter expression and distribution and an increase
in the endogenous ABA content were obtained under drought
and probably under other stresses. This hormone plays a key role
in the plant stress resistance and changed the postresponse gene
type into the memory gene type. This improved the tolerance
to following stress episodes and also the recovery capacity of
the plant. Qin et al. (2021) in Arabidopsis plants submitted to
different drought–water periods observed that during a second
recovery period, the ABA transporter expression level and ABA
content were higher than at the first recovery.

After metal stress conditions, plant growth recovery depends
on different factors such as the applied metal, stress intensity,
and duration, and plant species. For example, soybean seedlings
were able to restore their growth during 7 days of recovery,
after 2 days under high Cd concentration (89 and 223 µM Cd).
They showed the same levels of chlorophyll and photosynthetic
parameters as the control. The only significant difference was
the shortening of the roots in plants previously treated with
Cd (Holubek et al., 2020). Although, in a similar study with
tobacco suspension cells treated with 50 µM Cd, a fully restored
growth was obtained when treated for 3 days but not when stress
conditions were prolonged only 1 day more (Fojtova, 2002).
Similarly, the recovery of Arabidopsis after 21 days of phosphate
deficiency was studied, and after just 1 day of P resupply, the
expression of 40% of induced genes was reversed and 80% after
3 days. This latter corresponded to the reestablishment of the
adequate root phosphate concentration. However, after 31 days
of resupply, 80 genes remained differentially regulated, and the
reversion of chromatin states during recovery (Secco et al., 2015).
Plant recovery from Fe deficiency was tested in strawberry (a
very susceptible plant to this stress), in which plants were grown
initially with two Fe concentrations (0 or 10 µM), and then, half
of the plants growing without Fe were Fe-resupplied by adding
10 µM Fe (Gama et al., 2016). These authors concluded that Fe
stress does not induce permanent damages in the photosynthetic
apparatus, as they observed a complete regreening of Fe resupply
plants. The rapid response to the resupply of iron (12 days)
has been assigned to quick access of Fe via the xylem to young
leaves (Pestana et al., 2012). This also leads to significant biomass
recovery, although, as expected, resupply plants were smaller
than plants with optimal Fe nutrition. After Fe resupply, there
was a boost of Fe reduction (an increase of Fe chelate reductase).
Thus, explaining the high Fe contents in flowers and similar
content in the rest of the organs of the recovered plants is
compared with well-fed plants. Also, the Fe distribution in
plants was altered in resupply plants, whereas Fe-sufficient plants
accumulated Fe mainly in mature leaves, but recovered plants
mobilized Fe to flowers (future fruits). All these facts may be

related to modifications in trainable genes that persist after stress
suppression (type I genes) and are reflected in Table 1.

PRIMING WITH SILICON

Although Si’s essentiality for plant metabolism has not been
proved yet, the sustainability of the production of several crops,
such as rice or sugarcane, depends on this element. Chemical
speciation and amount of Si in the soil affect the absorption taken
place by plants, being silicic acid (H4SiO4), the form of Si which
is absorbed. Silicon dioxide constitutes 50–70% of the mass of the
soil (Ma and Yamaji, 2006), and clay minerals and sand are the
most important soil components with silicon on their structure.
Weathering, as a natural phenomenon, causes the release of Si
into the soil solution and provides Si to plants; however, intensive
cropping contributes to a Si depletion in the soils. The knowledge
on the Si effect on the mitigation of biotic and abiotic stresses
and the Si reduction in soils make Si fertilizers application a
relevant agricultural practice. Generally, two aspects of Si effects
are considered: (1) The usefulness level of Si application varies in
different plant species: beneficial effects are usually more obvious
in plants that accumulate high levels of Si in their shoots (see
an example in Gonzalo et al., 2013); and (2) The positive and
multilateral effect of Si is more observable when the plant is
under stress or in the recovering process from this stress (i.e.,
Bityutskii et al., 2014; Carrasco-Gil et al., 2018; Nikolic et al.,
2019; Hernandez-Apaolaza et al., 2020; Thorne et al., 2020; Arafa
et al., 2021; Martín-Esquinas and Hernández-Apaolaza, 2021).

In plants, the polymerization of Si in the intercellular spaces
and beneath the leaf ’s cuticles due to its accumulation in
shoot creates a physical barrier against pathogen attack and
contributes to maintaining plant erectness, with the subsequent
improvement of photosynthesis. Moreover, the Si in the root
apoplast contributes to reducing some nutrient–contaminants
translocation to shoot and activates various metabolic pathways.
These physical and biochemical combination enhances plant
defenses against abiotic (drought, salinity, nutrient imbalances,
etc.) and biotic stresses (insects, fungus, and bacteria). In
addition, soluble Si in the plant system attracts beneficial
predators and parasitoids during pest attacks and consequently
increases biological control (Bakhat et al., 2018). An example
of the beneficial effect of priming with Si against an abiotic
stress situation (see Table 2), such as drought, was given by
Hameed et al. (2021), who observed the improvement in wheat
yield when seeds were primed with Si, by inducing a priming
memory in seeds that increased drought tolerance during seed
germination, seedling growth, and plant developmental stages. In
the same way, Si has been used as a primer to minimize metal
toxicity (Abd_Allah et al., 2019) in mustard (Brassica juncea)
seedlings under Ni toxic exposure. In this experiment, after 1
week of Ni treatment, plants (18-day-old seedlings) were primed
with 10−5 M Si as Na2SiO3 added to the nutrient solution, for
1 week, and finally, they were collected after 2 weeks more.
They observed that Si decreased root to shoot Ni translocation
and upregulate enzymes associated with antioxidant defense,
glyoxalase detoxification systems, and also a sufficient primary
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TABLE 2 | Different Si sources use for priming and control abiotic stresses.

Priming agent [Si] Stress Priming period (h) Crop References

Seed priming

Sodium silicate 0, 10, 20, 30, 40, 50 mM Salinity 8 Wheat Azeem et al., 2015

1.5 mM Alkaline 12 Maize Abdel Latef and Tran, 2016

20,40, 60 mM Drought 8 Wheat Hameed et al., 2021

Sodium silicate nano 0, 300, 600, 900, 1,200 mg/L Cd toxicity 20 Wheat Hussain et al., 2019

Nanosilicon (nSiO2) 1.66, 6.65, 13.3, 19.97, 26.63 mM None 4 Maize Kumaraswamy et al., 2021

0.2, 0.4, 0.6, 0.8, 1, 1.2 mM None 8 Sunflower Janmohammadi and
Sabaghnia, 2015

0, 100, 500 mg/L None 24 Lemon balm Hatami et al., 2021

SiO2 0.01% w/v None 4 Maize Kumaraswamy et al., 2021

0.5, 1.0, 1.5% Drought 6 Wheat Ahmed et al., 2016

3% 3.5% w/v Drought 8 Rice Ali et al., 2021

Silicic acid 0.5, 1.0, 1.5% Drought 6 Wheat Ahmed et al., 2016

0, 0.063, 0.125, 0.25, 0.5 mM Drought 24 Tomato Chakma et al., 2021

3-aminopropyl triethoxy silane (pH 5.95) 0, 5, 10, 15, 20, 25 g·L-1 None Maize Sun et al., 2021

3-glycidoxypropyl trimethoxy silane (pH 9.42) 0, 5, 10, 15, 20, 25 g·L-1 None Maize Sun et al., 2021

Seedling priming

[Si]
mM

Stress Priming period
(weeks)

Crop References

Sodium silicate 0.0, 0.5, 1.0 Fe deficiency 2 Soybean Gonzalo et al., 2013

0.0, 0.5, 1.0 Fe deficiency 2 Cucumber Gonzalo et al., 2013

0.0, 0.5, 1.0 Zn deficiency 2 Soybean Pascual et al., 2016

0.0, 2.25 Alkaline 36 h Alfalfa Liu et al., 2018

0.01 Ni toxicity 1 Mustard Abd_Allah et al., 2019

Plant recovery

[Si]
mM

Stress Recovery time Crop References

Silicic acid 0.0, 1.5 Fe deficiency 5 days Cucumber Hernandez-Apaolaza et al.,
2020

0.0, 1.5 Zn deficiency 11 days Cucumber Lozano-González et al.,
2021

Potassium silicate 0.0, 1.8, 3.6 Hyperhydricity 2 weeks Carnation Soundararajan et al., 2017

Sodium silicate 0.0, 0.6 Cd toxicity 4 days Rice Farooq et al., 2016

and secondary osmoprotectant accumulation, which ameliorated
Ni toxic symptoms in this crop. Another example of the beneficial
effect of Si priming is given under alkaline stress conditions
(Liu et al., 2018). In this research, 30-day-old alfalfa seedlings
were primed with 0 or 2.25 mM Na2SiO3·9H2O during 36 h,
and then, plants were stressed for 48 h by adding 25 mM
Na2CO3 to the nutrient solution. It has been obtained that Si
priming significantly alleviated the damage symptoms and greatly
increased the chlorophyll content of stressed plants. Although the
Si treatment did not show appreciable benefits under unstressed
conditions, which indicates that the Si priming effect was
specific to alkaline-stressed plants. Moreover, it altered the root
morphology of alfalfa seedlings, which enhanced the uptake
ability of the roots to uptake nutrients and water, and significantly
increased root dry weight, decreasing membrane injury and
malondialdehyde content, and increasing antioxidant enzyme

activities. Furthermore, Si priming significantly decreased Na
accumulation and increased K accumulation in the leaves
under alkaline stress. Meanwhile, Si priming decreased the
accumulation of metal ions such as Mg, Fe, Mn, and Zn in the
roots of alfalfa seedlings under alkaline stress.

Seed priming is a technique that has been in use for more than
100 years. Around 2,600 research articles have been published
between 2010 and 2022, but only around 50 documents were
related to Si priming (e.g., Azeem et al., 2015; Ahmed et al., 2016).
Different Si sources used for priming have been summarized in
Table 2. In general, for seed priming, the ratio of 1:5 (w/v) seed
weight to solution volume was maintained and seeds were dried
before being sown (Ali et al., 2021; Chakma et al., 2021). Most
of the studies are performed with sodium or potassium silicate.
But only at solution pH above 8.5, silicates are the main form
of Si in solution, being the monosilicic acid the prevalent form
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at pH below this (optimal pH for crop cultures). As silicates are
highly used, the pH of the priming solution becomes very high,
which could probably alter the seed performance, metabolism,
and growth after desiccation or the seedlings–plant development.
If the pH of the priming solution with silicate is reduced by
adding some acid, as hydrochloric acid or others, silicon will
precipitate as SiO2·nH2O, so the priming effect is clearly reduced
by reducing the concentration of silicon in the priming solution.
On the contrary, silicic acid solutions let to adjust different pHs
of the priming solution without any precipitation of the priming
agent at the optimal range for plant production. Its main problem
is the polymerization of the monosilicic acid into polisilicic acid
at high concentrations, but concentrations used in plant culture
are low enough to avoid it.

SILICON PRIMING EFFECT ON PLANT
GROWTH UNDER NON-STRESSED
CONDITIONS

Although the Si effect is described in the literature to be more
relevant under plant stress situations, also beneficial effects of
seed priming with this element are described in well-fed plants.
Kumaraswamy et al. (2021) tested SiO2 (0.01% w/v) and SiO2
encapsulated in a chitosan (a cationic amino-polysaccharide)-
tripolyphosphate nanomatrix (0.01, 0.04, 0.08, 0.12, 0.16%, w/v)
as a slow-release Si source in priming solutions for maize seeds.
They have found that seeds primed with 0.04–0.12%, w/v of the
nano-Si fertilizer exhibited up to 3.7-fold increased seedling vigor
index as compared to SiO2 and treatments without Si. The higher
index was attributed to enhanced activities of α-amylase and
protease to promote remobilization of reserved nutrients (glucose
and amino acids) to the growing embryo (Kumaraswamy et al.,
2021). Janmohammadi and Sabaghnia (2015) studied the effect of
seed soaking in different concentrations of nanosilicon (nSiO2)
solutions (0.0, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 mM) for 8 h on
the germination of sunflower. Seed soaking in 0.2 and 0.4 mM
solutions significantly reduced the germination days to 50% and
improved root length, mean daily germination, seedling vigor
index, and final germination percentage. Hameed et al. (2021)
primed spring wheat seeds with 20, 40, and 60 mM sodium
silicate solutions, for 8 h; after drying, seeds were cultivated for
98 days. In flag leaves of mature wheat plants, they have observed
significant increases of the total soluble protein content and
the reducing and total sugars with increasing Si concentrations.
Moreover, the Si priming treatments significantly increased the
CAT and POD activities, and also both hydrolytic (protease and
a-amylase) enzymes. This suggested the facilitating role of Si in
protein synthesis under optimal conditions. The role of sugars
as osmoprotectants and membrane stability providers was also
accentuated with Si addition to the media (O’Hara et al., 2013).
The enhancement of proteins and sugar content could have
assisted in the regulation of metabolic pathways and provided
energy and nutrients for the induction of stress tolerance,
if appears. Consequently improving yield, plant biomass, and
grain weight of wheat plants grown under optimal conditions
(Hameed et al., 2021).

Moreover, Sun et al. (2021) tested the effect of two water-
soluble Si fertilizers (3-aminopropyl triethoxy silane (pH 5.95)
and 3-glycidoxypropyl trimethoxy silane (pH 9.42) synthesized
by high-temperature chemical reactions in maize at different
concentrations in the soaking solution: 0, 5, 10, 15, 20, and
25 g·L−1. In this study, Si treatments significantly increased
the seed germination, chlorophyll content, osmotic material
accumulation, antioxidant activity, and per-plant dry weight
of seedlings, and the optimal concentration was 15 g·L−1.
Hatami et al. (2021) have studied the priming of lemon balm
(Melissa officinalis L.) seeds with SiO2 nanoparticles (100 and
500 mg·L−1). Seeds were soaked in dark at 20◦C for 24 h
(seed weight: solution ratio, 1.4 g: mL−1) and then surface-
dried for 2 h and stored at 4◦C. They have concluded that
Si priming increased plant biomass indices, leaf relative water
content, photosynthetic pigments values, total soluble protein,
phenolic contents, and essential oil yield. These results suggest
that the incorporation of silicon in priming solution enhanced
germination and invigoration of the seedling and provides fitted
plants to cope with biotic and abiotic stresses and thus contributes
to growth and crop yield. The mechanisms described to explain
this effect have been related to the alteration of the surface
texture of seed coat (testa) (Hatami et al., 2021). These authors
using scanning electron microscopy (SEM) images confirmed
the rupture of testa by Si priming, although no alteration was
detected in control treatments with water. A high porosity degree
and large pores, and also a partial disorganization of the surface
testa structure, facilitate the entry of water, nutrients, and oxygen
into the germinating seed and may explain the Si effect on the
future plants. This may also enhance the plant biomass and
growth in comparison with untreated plants. Moreover, it has
been described that Si increase the relative water content found
in plants raised from seeds primed with nSi (Hatami et al.,
2021), which was attributed to the Si deposition in leaves, which
diminish transpiration rate from leaf surface and significantly
contribute to increase photosynthetic pigments content, due to
plant erectness.

The most used primers are silicates and SiO2, but Si
concentrations tested ranged from 0.2 to 60 mM, so further
research is required to adjust the most adequate Si source and
the concentration to be used. Such parameters could be different
depending on plant species, but it is worthwhile to dedicate time
and effort to establish optimal conditions for priming with Si
according to the benefits already described with this simple and
affordable technique.

SILICON PRIMING EFFECT UNDER
MICRONUTRIENT DEFICIENCY STRESS
CONDITIONS

Silicon seed priming has been used to mitigate several stresses
(Table 2); however, to our knowledge, it has not been used for
micronutrient stress amelioration until now. Although less often,
priming is applied also to seedlings or their parts in active growth
phases (Sytar et al., 2019). Few papers tested the Si seedling
priming effect under micronutrient shortage. In that way, to
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FIGURE 1 | Silicon priming could be done in (A) seeds or seedlings or even in plant parts, and in all cases, stress memory is activated by a stress caused by seeds
desiccation. When another stress condition appears, such as a micronutrient deficiency (B), plant stress memory is activated again, prevent plants from stress
symptoms and accelerate plant recovery (C) when stress stops. In this case, the scheme and photos are referred to micronutrient deficiency (Fe) and its resupplying
to cucumber plants.

mitigate Fe chlorosis symptoms, Gonzalo et al. (2013) compared
soybean and cucumber seedlings primed with different doses
of root Si (Figure 1), with unprimed plants, and with plants
with a continuous Si supply. For that purpose, germinated seeds
were grown for 2 weeks with a sufficient Fe supply and three Si
doses as Na2SiO3·9H2O (0.0, 0.5, and 1.0 mM). Then, Fe was
removed from the nutrient solution, at the same time, half of
the plants of each Si treatment continued with their Si supply
for 3 weeks more, and for the other half, Si was eliminated
from the nutrient solution (seedling priming). A control with
Fe and without Si addition was also studied. For soybean, no
differences were observed in SPAD index and leaves dry weight
between plants treated with 0.5 mM Si either when this element
was applied initially (seedling priming) or continuously during
the experiment. Both presented intermediate SPAD values in
between plants growing with Fe and without Si (positive control
plants) and plants growing without both Fe and Si (negative
control plants), and leaves dry weight were similar to plants
with an optimal Fe supply. However, concerning the stem’s dry
weight and length, only the initial addition of 0.5 mM of Si
showed similar data to plants treated with an optimal Fe supply.
Plants primed with 1.0 mM Si showed an enhancement of Fe
accumulation in the roots compared to the others, although the
total Fe concentration in plants was similar for all the deficient
treatments. This fact may explain the lowest efficacy of this
treatment compared to the primed 0.5 mM Si one. These authors
concluded that for soybean, a priming treatment of 2 weeks with
0.5 mM Si will contribute to better coping with Fe deficiency

symptoms than a continuous Si supply or no Si addition. This
could be attributed to that Si priming-induced physiological
responses that allow the plant to give a more efficient and rapid
answer to the imposed Fe deficiency stress. Becker et al. (2020)
reported that the cause of this quick answer was the Fe uptake
reduction caused by the Si-mediated apoplastic obstruction in
the roots and the subsequent onset of Fe deficiency responses
(the root Fe-homeostasis-related genes were upregulated), even
when Fe was given to plants at an optimal level. Therefore, when
plants were submitted to iron deficiency, primed plants, which
have already activated the strategies to mitigate Fe chlorosis, are
ready to fight against Fe shortage in the media. Data obtained
by Carrasco-Gil et al. (2018) in rice support these findings. On
the other hand, results obtained after priming cucumber plants
with 0.5 and 1.0 mM Si to cope with Fe deficiency showed similar
severe chlorosis symptoms to unprimed plants and plants grown
with a continuous Si supply (Gonzalo et al., 2013). However, these
authors observed that plants primed with 0.5 mM Si showed
a relevant enhancement in growth parameters. So clearly, the
effect of Si priming was related to plant species tested. The link
between the Si transport system and its accumulation could give
a plant classification into active, passive, and rejective. In the
active uptake system of Si, Si absorption is mediated by both
influx and efflux transporters of Si; Lsi1 and Lsi2, and both
of them show polar localization (e.g., rice) (Mitani-Ueno and
Ma, 2021). In the passive transport system (employed by plants
having intermediate Si accumulation such as cucumber, in which
CsLsi1 and CsLsi2 have been partially characterized), most of
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the Si transporters do not show polar localization at the cortex
cells except CsLsi1, and Lsi1 and Lsi2 in these plant species are
not localized at the same cell, which results in low efficiency
in Si uptake (Mitani-Ueno and Ma, 2021). The rejective uptake
system is used by non-Si accumulators such as soybean, in which
other transporters homolog of Lsi1 and Lsi2 have been described
(GmNIP2-1 and GmNIP2-2) (Deshmukh et al., 2013), which
seems to be less effective than the previously described. Beneficial
effects of Si are usually obvious in plants that accumulate high
levels of Si in their shoots, such as rice or sugarcane, so the
beneficial effect of Si in cucumber should be more visible than
in soybean. However, it is considered that Si promotes apoplastic
obstruction, which limits Fe and other micronutrient absorption
in the plant, so the more Si was absorbed the less Fe uptake. When
this element is deficient in the media, soybean plants that are
supposed to absorb less amount of Si showed the highest benefits
from its addition; but in cucumber, the higher Si absorption,
although benefit several growth parameters, may induce the Fe
apoplastic obstruction, and activating the Fe deficiency strategy
with the corresponding energy loss, which makes its benefit
less clear. Gonzalo et al. (2013) indicated that in cucumber,
the primed plants, either with 0.5 or 1.0 mM Si, significantly
decreased the pH of the nutrient solution, from 7.5 until pH 4.5,
after 14 days of -Fe culture, but after 21 days of Fe deficiency,
only seedlings primed with 1.0 mM Si gave a pH value in the
nutrient solution of 5.9 (the initial pH of the nutrient solution
was 7.5). This showed the onset of the strategies to cope with
Fe deficiency, as the release of acidic compounds to solubilize
Fe in the rhizosphere, and the finite duration of them. Priming
with Si seemed to maintain Fe deficiency strategy more time
than a continuous Si supply or the absence of this element, but
future research is required to confirm this fact. The soybean did
not decrease the pH of the nutrient solution. Likewise, Pascual
et al. (2016) tested the effect of initial or continuous Si supply
in soybean Zn-deficient seedlings. Three Si doses were tested:
0.0, 0.5, and 1.0 mM under Zn limiting conditions. The initial
addition of 0.5 mM of Si to the nutrient solution led to an
enhancement of plant growth, Zn and Si content in leaves, and
higher storage of Zn in the root apoplast. The results suggest
that primed seedlings with 0.5 mM Si enhanced the mitigation of
Zn deficiency symptoms. To the author’s knowledge, no further
Si seedling prime experiments have been done, but the ones
presented here suggest a very promising tool in nurseries to get
plants more prepared to cope with Fe or Zn deficiency situations.

RECOVERY EXPERIMENTS WITH
SILICON ADDITION

Very few papers are related to plant recovery memory (plant
memory after a stress situation) dealing with Si application. For
example, Si-mediated recovery from hyperhydricity was studied
in 4-week-old hyperhydric shoots of carnation (D. caryophyllus
L.) plants in a growth media supplemented with 0.0, 1.8 mM,
or 3.6 mM of potassium silicate (Soundararajan et al., 2017).
Hyperhydricity (excess of water) causes severe problems during
in vitro propagation, organogenesis, and acclimatization of

carnation, which is one of the major floricultural crops, mainly
used as a cut flower and potted plant worldwide. After 2 weeks
of culture, 20, 44, and 36% of hyperhydric shoots were
recovered in 0.0, 1.8, and 3.6 mM Si treatments, respectively.
Shoots in control possessed higher lipid peroxidation rate
and damaged stomata were detected in the control without
Si. Furthermore, Si upregulated 17 protein spots at 1.8 mM
Si treatment and 10 protein spots at 3.6 mM of Si when
compared to Si untreated plants. The proteins that have been
identified were involved in several processes such as oxide-
reduction reactions, ribosomal binding, hormone–cell signaling,
photosynthesis, and defense. These results showed that Si was
directly involved in the acceleration of shoots recovery from
hyperhydricity (Soundararajan et al., 2017). The influence of
Si in metal toxicity recovery was also studied. At the age
of 38 days, rice plants were stressed with 10 µM Cd added
to the nutrient solution for 8 days, and then, the silicon
treatments (0.0 or 0.6 mM Si) were introduced 4 days after
Cd stress using a sodium silicate (Na2SiO3) solution which
was maintained for 4 days more (Farooq et al., 2016). In
this experiment, Si remarkably contributes to recovering plants
from the Cd toxicity, as reflected in plant growth increase and
the photosynthetic activity recovery within 48 h following Si
supply and the partial reversion of the deregulation of nutrient
homeostasis caused by Cd. The transcriptional response to Cd
was mostly reversed following Si supply as several proteins–
enzymes as phytochelatin synthase 1 and the transcription
factor genes whose transcript levels were highly activated in
the Cd stressed roots were downregulated in the presence of Si
(Farooq et al., 2016).

Finally, the Si effect on plant recovery from micronutrient
deficiencies has also been investigated (Figure 1). Silicon addition
as silicic acid at a 1.5 mM Si concentration (applied to roots or
shoot) was evaluated on cucumber plants recovery exposed to
fluctuations in stress–recovery Fe regime (Fe sufficiency followed
by Fe deficiency and, in turn, by Fe resupply) (Hernandez-
Apaolaza et al., 2020). Si-treated plants, either when this element
was added to the root or the leaves, showed a more effective and
quick plant recovery after the Fe deficiency period compared to
the untreated plants. However, the SPAD index increment after
resupply was higher and the ROS concentration lower when Si
was supplied to the roots than to the shoot, which indicates that
these plants had recovered from the chlorosis faster than the
others. It was suggested that the extra-activation of the strategies
to cope with Fe deficiency promoted by Si in the roots, due
to the apoplastic obstruction theory (Coskun et al., 2019), may
cause this better recovery. However, there is another hypothesis
that may explain this behavior. As mentioned above, several
stress memories resulted in a rapid increase in endogenous
ABA content. ABA plays a key role in plant stress resistance
and changed the postresponse gene type into the memory gene
type, which probably enhances plant recovery (Qin et al., 2021).
The higher ABA concentration in the shoots of the cucumber
plants treated with root Si was in accordance with this theory.
Meanwhile, the foliar addition of Si did not show any differences
in this hormone. Plant recovery was also correlated with an
increase in the endoreplication cycle when Si was applied to the
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roots; this mechanism prevents plants from damage and then
facilitates their recovery from stress. It is known that ABA inhibits
cell division, so cells are devoted to the endoreplication cycle.
The higher ABA concentration that promotes the switch on of
the endoreplication cycle may explain the quick recovery from Fe
deficiency of root Si treated plants. Likewise, Lozano-González
et al. (2021) studied the effect of Si supply (1.5 mM as silicic acid
applied to roots or shoots) on cucumber plants’ recovery from
Zn deficiency. They concluded that the Si application reduced
plant recovery time. In that case, foliar application of Si showed
faster improvement in SPAD index, higher weight recovery, and
a significant decrease in ROS quantity, but this effect was slightly
lower when Si was applied through the root.

The state of the art today indicates that using Si to accelerate
and improve plant recovery from different stresses such as hyper
hydricity, metal toxicities or deficiencies are very promising tools.
Silicon addition may not cause toxicity itself, but the Si source
used and its concentration needs to be addressed for each specific
recovery, and also the application form (roots of foliar sprays)
and the consequences on fruit quality and shelf life.

PERSPECTIVES

The increasing amount of published papers dealing with plant
memory may open a new research field to cope with plant stresses
in a smart form that takes profit from very simple management
practices, such as seed or seedling priming to ameliorate yield
losses in various crops. It is especially interesting considering the
global climate change in which plants have to cope with higher
temperatures, drought, salinity, and other stresses as nutrient
imbalances. Plant stress memory not only contributes to dealing
with the stress itself but also makes plant recovery after it in a
more fast and efficient way. Although several mechanisms have
been studied to explain the effect of primming in stress memory
and plant recovery, being the histone marks in chromatin the
most studied, there is an increasing necessity of knowing how
primers interact with the plants. Likewise, it is necessary to define
the amount of them and the time needed to obtain the desired
beneficial effect or a crosseffect for various biotic or abiotic
stresses at the same time. Several priming agents are tested for
different stresses, most of them with great success, but several
questions are still open. For example, the beneficial effect of

their application could be observed only in the stress plants or
through different generations? It happens in all crops and for all
types of stresses? In which crops it finishes when stress finishes?
What happens with recurrent stresses (a normal situation in
drought and high-temperature episodes)? May priming agents
cause negative reactions? Is it better to use seed or seedling
priming for specific stress? All these features and more need
to be addressed to maximize the advantages of plant memory,
which like vaccination in humans and animals may create a
plant physiological state to prepare to fight against stresses but
minimize the energy expenses.

There are four accepted and common ways of silicon addition
to the plants which are silicon addition to the soil, silicon added
through the nutrient solution in hydroponics, add as foliar–fruit
sprays, and the less-studied Si seed–seedling priming. Silicon
priming is an economical non-expensive and easy to handle way
to promote plant growth, fight against different biotic and abiotic
stresses in plants, and promote plant recovery after stress. In
recent years, prospective research works have been done about
Si application as a primer on alleviation of the effects of several
environmental biotic and abiotic stresses. But it is expected that
novel research works will be done regarding this issue.
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